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Chapter 1

Vectors and
Matrices

1 Introduction to Vectors

1.1 Taxonomy of Vectors

Definition

A vector is an ordered list of numbers or variables.
One example of a vector is the sequence of numbers

2, 5, and 7, which can be written in vector notation:

V⃗ = ⟨2, 5, 7⟩

Vector notation requires a label for the vector, V⃗ in
our example, specially marked by an arrow (⃗ ). On
the right, the the so-called vector literal is enclosed
by left-and right-angle brackets ⟨ ⟩ as shown. Each
number in the vector is separated by a comma.

Vector Components

The individual elements in a vector are formally
called components, and the total number of com-
ponents is the dimension of the vector. The order
in which the components of a vector are listed does
matter. For example, the three-dimensional vector
V⃗ = ⟨2, 5, 7⟩ is completely different from its reversed
version ⟨7, 5, 2⟩.

Component Subscripts

In a vector, any given component is represented using
the vector’s symbol without the arrow, but including
an index subscript. For instance, we could represent
V⃗ as

V⃗ = ⟨Va, Vb, Vc⟩

3



4 CHAPTER 1. VECTORS AND MATRICES

with Va = 2, Vb = 5, Vc = 7, but the letters a, b,
c could easily have been x, y, z, or perhaps 1, 2, 3.
Vector component labels are, after the dust settles,
purely for bookkeeping.

1.2 Representing Vectors

Vectors of two dimensions are suited for visualization
on the Cartesian plane. Given a vector V⃗ = ⟨Va, Vb⟩,
we plot V⃗ with the following recipe:

• Choose any base point for the vector on the
plane. From the base point:

• Measure Va units horizontally, measure Vb units
vertically.

• Plot the vector tip point. Connect base and tip
with an arrow.

Plotted in Fig. 1.1 are two equivalent representations
of the vector A⃗ = ⟨2, 6⟩. Note that the vector doesn’t
‘care’ about the choice of base point.

−2 2 4 6 8

−2

2

4

6

8

A⃗

A⃗

x

y

Figure 1.1: Vector A⃗ = ⟨2, 6⟩ plotted from two differ-
ent base points (0, 0) and (5, 1).

It should also follow that the above construction
extends to dimensions beyond two. For instance, vec-
tors of three dimensions can be visualized in a three-
dimensional coordinate system, and so on.

1.3 Position Vector

A vector whose base point is the origin (0, 0) is called

a position vector, often denoted R⃗ or X⃗. A position
vector R⃗ = ⟨Rx, Ry⟩ is equivalent to the ordered pair
(x, y), denoting a unique point in the Cartesian plane.

1.4 Vector Magnitude and Direction

Given the ‘arrow’ representation of a vector, we no-
tice two important features:

• Vectors have a magnitude, i.e. the total arrow
length.

• Vectors have a direction, i.e. a notion of point-
ing somewhere.

The ‘information’ in a vector is completely repre-
sented by its magnitude and its direction. (This may
grant some relief as to why we can be so loose about
the choice of base point.)

Calculating the Magnitude

A vector A⃗ of dimension N has a magnitude given by

A =
∣∣∣A⃗∣∣∣ =√A2

1 +A2
2 + · · ·+A2

N . (1.1)

Intuitively, the magnitude of a vector can be thought
of the hypotenuse of an N -dimensional triangle. For
the special case N = 2, the above reduces to the
Pythagorean theorem.

Calculating the Direction

The direction of an N -dimensional vector A⃗ is al-
ways implied by the components Aj , but an explicit
formula for the ‘angle’ of the vector is only trivial for
small N . Working the N = 2 case, the direction in
which a vector A⃗ = ⟨Ax, Ay⟩ is pointing is given by

ϕ = arctan

(
Ay

Ax

)
(1.2)

To justify (1.2), assume Ax and Ay are two sides of
a right triangle such that

Ax = A cos (ϕ)

Ay = A sin (ϕ) ,

and eliminate the magnitude A.

2 Vector Addition

2.1 Definition

Two vectors A⃗, B⃗ of equal dimension N can be added
by combining like components, resulting in a vector
C⃗ with N components:

C⃗ = A⃗+ B⃗ (1.3)

The jth component is given by

Cj = Aj +Bj (1.4)

j = 1, 2, 3, . . . , N .
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Commutativity of Vector Addition

Following immediately from (1.3)-(1.4) is the commu-
tativity of addition:

A⃗+ B⃗ = B⃗ + A⃗ (1.5)

In particular, (1.5) tells us that the order in which
two vectors are added does not affect the result.

Associativity of Vector Addition

The sum of three vectors A⃗, B⃗, C⃗ involves two addi-
tion operations. Also following from (1.3)-(1.4) is the
associativity of addition, telling us that the order of
the two addition operations does not effect the result:

A⃗+
(
B⃗ + C⃗

)
=
(
A⃗+ B⃗

)
+ C⃗ (1.6)

2.2 Arrow Trick

The ‘arrow’ representation of a vector avails a beau-
tiful shortcut for vector addition. Given a pair of
two-dimensional vectors A⃗, B⃗, recall that each vector
can be drawn anywhere in the Cartesian plane. By
arranging the two vectors in tip-to-tail fashion, the
vector sum goes from the tail of the first to the tip of
the second.

Fig. 1.2 demonstrates the ‘arrow trick’ on two
example vectors A⃗ = ⟨2, 5⟩, B⃗ = ⟨3,−3⟩, whose sum

easily comes out to C⃗ = ⟨5, 2⟩. By plotting A⃗, B⃗ as

suggested, the sum C⃗ is visually represented by an
arrow beginning at the base of A⃗ and ending at the
tip of B⃗.
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Figure 1.2: Vector addition C⃗ = A⃗+ B⃗.

2.3 Additive Inverse

Given any vector A⃗ = ⟨A1, A2, A3, . . . , AN ⟩, the ad-
ditive inverse is another vector that reverses the sign

on all components in A⃗, denoted −A⃗, where

−A⃗ = ⟨−A1,−A2,−A3, . . . ,−AN ⟩ . (1.7)

2.4 Zero Vector

The so-called zero vector is the vector that contains
only zeros:

0⃗ = ⟨0, 0, 0, . . . , 0⟩ (1.8)

For hopefully obvious reasons, turns out that the sum
of any vector and its additive inverse always yields the
zero vector:

A⃗+
(
−A⃗
)
= 0⃗

In practice, the zero vector is simply written 0, omit-
ting the arrow.

An interesting corollary to the rules of vector ad-
dition is that any closed sequence of vectors sums
to zero. For example, drawing a triangle without
lifting the pen from the surface is represented by
A⃗+ B⃗ + C⃗ = 0.

2.5 Vector Subtraction

With the additive inverse established, the notion of
vector subtraction can be framed in terms of vec-
tor addition. Given two vectors A⃗, B⃗, the difference
D⃗ = A⃗ − B⃗ can be visualized with the same ‘arrow
trick’, so long as we reverse the direction on B⃗ as
shown in Fig. 1.3.
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Figure 1.3: Vector subtraction D⃗ = A⃗− B⃗.

3 Scalar Multiplication

A vector A⃗ can be ‘scaled’ by a number α called a
scalar, which has the effect of multiplying the scalar
into each component, yielding a new vector B⃗:

B⃗ = αA⃗ = ⟨αA1, αA2, αA3, . . . , αAN ⟩ (1.9)



6 CHAPTER 1. VECTORS AND MATRICES

3.1 Parallel Vectors

Two vectors whose components are identical up to a
scale factor α are said to be parallel. Somewhat like
parallel lines, two parallel vectors can have different
magnitudes, but point in the same direction. The
vectors A⃗, B⃗ in (1.9) are necessarily parallel.

3.2 Straight Lines

Straight lines in the Cartesian plane are easily repre-
sented with vector addition and scalar multiplication.
Consider the slope-intercept form of a line, namely
y = mx + b, where m is the slope and b is the y-
intercept at (0, b). As a vector, the y-intercept can
be written

b⃗ = ⟨0, b⟩ .

Required next is a vector m⃗ that represents the
slope of the line, which we capture by writing

m⃗ = ⟨mx,my⟩
my

mx
= m .

Multiplying m⃗ by any scalar value α will lengthen,
shorten, or reverse its effective placement.

Putting the two ingredients together, it follows
that any point on the line y = mx+ b is equivalently
represented as

r⃗ = α m⃗+ b⃗ , (1.10)

where r⃗ = ⟨x, y⟩ is the resulting position vector, as
shown in Fig. 1.4. In case (1.10) isn’t convincing,
one may resolve r⃗ back into components

x = αmx

y = αmy + b ,

where eliminating α recovers the familiar y = mx+b.

Perpendicular Lines

Two lines in the Cartesian plane are perpendicular
one line’s slope is m, and the slope is m⊥ = −1/m.
In terms of the components mx, my, this means

m =
my

mx

m⊥ =
−mx

my
.

From this, the ‘perpendicular slope vector’ m⃗⊥ is ev-
idently m⃗⊥ = ⟨−my,mx⟩.

b⃗

m⃗

α m⃗

r⃗

y = mx+ b

x

y

Figure 1.4: Vector construction of a straight line
y = mx+ b.

3.3 Algebraic Properties of Vectors

Associativity with Scalars

If a vector is modified by two scalars, the order in
which they’re applied does not matter:

α
(
βA⃗
)
= (αβ) A⃗ = (βα) A⃗ = β

(
αA⃗
)

(1.11)

Vector Distributive Properties

Readily provable from the properties of vector ad-
dition and scalar multiplication are the distributive
properties involving the sum of two scalars:

(α+ β) A⃗ = αA⃗+ βB⃗ (1.12)

α
(
A⃗+ B⃗

)
= αA⃗+ αB⃗ (1.13)

4 Vector Products

4.1 Dot Product

Two vectors of equal dimension can be ‘multiplied’
to form a scalar, called the dot product, or the scalar
product. The dot product is an operation that tells us
how much of one vector’s ‘shadow’ falls upon another
vector, resulting in a scalar called a projection. For
two vectors A⃗, B⃗ of dimension N , the dot product
reads

A⃗ · B⃗ = A1B1 +A2B2 + · · ·+ANBN ,

or, in summation notation:

A⃗ · B⃗ =

N∑
j=1

AjBj (1.14)
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Commutativity Relation

Implicit in the definition (1.14) is the commutativity
of the dot product (in any number of dimensions):

A⃗ · B⃗ = B⃗ · A⃗ (1.15)

Geometric Interpretation of Vectors

The definition (1.14) becomes more intuitive by
studying the N = 2 case. Consider two arbitrary
vectors given by

A⃗ = ⟨A cos (ϕA) , A sin (ϕA)⟩

B⃗ = ⟨B cos (ϕB) , B sin (ϕB)⟩ ,

where A and B are the respecctive magnitudes. Cal-
culating A⃗ · B⃗ using the formula provided results in

A⃗ · B⃗ = AB (cos (ϕA) cos (ϕB) + sin (ϕA) sin (ϕB))

A⃗ · B⃗ = AB cos (ϕB − ϕA) ,

telling us that the dot product is equal to the product
of the magnitudes and the cosine of the angle between
the vectors. In general, this result reads

cos (θ) =
A⃗ · B⃗
AB

, (1.16)

where θ is the angle between the vectors in any num-
ber of dimensions. The special case N = 2 corre-
sponds to θ = ϕB − ϕA.

Vector Orthogonality

From the two-dimensional dot product, note that the
case ϕA − ϕB = ±π/2 returns cos (±π/2) = 0 on the
left, telling us that the dot product between perpen-
dicular vectors is zero. The formal term for ‘perpen-
dicular’ is orthogonal, and this notion generalizes to
N dimensions:

A⃗ · B⃗ = 0 (1.17)

In the Cartesian plane, recall that the slope of a
line and another perpendicular line are represented
by the vectors

m⃗ = ⟨mx,my⟩
m⃗⊥ = ⟨−my,mx⟩ ,

respectively. We verify these vectors to be orthogonal
by calculating

m⃗ · m⃗⊥ = −mxmy +mymx = 0 .

Vector Magnitude

The dot product is responsible for the formula (1.1)
for calculating the magnitude of a vector. Indeed, for
an N -dimensional vector A⃗, we find the dot product
with itself to be

A⃗ · A⃗ = A2
1 +A2

2 +A2
3 + · · ·+A2

N ,

which is the square of the magnitude of A. More
concisely:

A =
∣∣∣A⃗∣∣∣ =√A⃗ · A⃗ (1.18)

Distributive Property

For three vectors A⃗, B⃗, C⃗ of equal dimension, the dot
product obeys the distributive property as one may
expect:

A⃗ ·
(
B⃗ + C⃗

)
= A⃗ · B⃗ + A⃗ · C⃗ (1.19)

Law of Cosines

An important relation from trigonometry called the
law of cosines is derived using dot products. Consider
the vector sum

A⃗− B⃗ = C⃗ ,

and then square both sides:(
A⃗− B⃗

)
·
(
A⃗− B⃗

)
= C⃗ · C⃗

A⃗ · A⃗+ B⃗ · B⃗ − 2A⃗ · B⃗ = C⃗ · C⃗

Labeling θ as the angle between vectors A⃗, B⃗, the
above simplifies to the law of cosines:

A2 +B2 − 2AB cos (θ) = C2 (1.20)

Note that all right triangles have θ = π/2, in which
case (1.20) reduces to the Pythagorean theorem.

4.2 Cross Product

Two vectors of equal dimension can be ‘multiplied’ to
form a new vector, called the cross product, or the vec-
tor product. The cross product is, for most purposes,
a strictly three-dimensional operation. Consider the
pair of vectors with N = 3:

A⃗ = ⟨Ax, Ay, Az⟩

B⃗ = ⟨Bx, By, Bz⟩

The cross product A⃗× B⃗ is defined as

A⃗× B⃗ = ⟨Cx, Cy, Cz⟩ , (1.21)
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where

Cx = AyBz −AzBy

Cy = AzBx −AxBz

Cz = AxBy −AyBx ,

and is orthogonal to both A⃗ and B⃗.

Determinant Notation

The cross product formula (1.21) is tricky to memo-
rize, and can be more transparently represented as a
‘block of numbers’ (not a matrix), sometimes called
determinant notation:

A⃗× B⃗ =

∣∣∣∣∣∣
(x) (−y) (z)
Ax Ay Az

Bz By Bz

∣∣∣∣∣∣
Without sweating the details of determinant nota-
tion, you can play a matching game between the de-
terminant representation of A⃗ × B⃗ and the formula
(1.21) to remember how it goes.

Orthogonality Check

To ensure that A⃗× B⃗ is mutually orthogonal to A⃗,

A⃗ ·
(
A⃗× B⃗

)
to see what comes out. In detail, the former case
proceeds as

A⃗ ·
(
A⃗× B⃗

)
= AxAyBz −AxAzBy +AyAzBx

−AyAxBz +AzAxBy −AzAyBx

= Bz (AxAy −AyAx)−By (AxAz −AzAx)

+Bz (AxAy −AyAx)

= 0 .

This also holds true for the B-case.

Null Case

The cross product of a vector with itself is identically
zero:

A⃗× A⃗ = 0 (1.22)

Anti-Commutativity Relation

Given the definition (1.21) of the cross product, one

sees that swapping A⃗, B⃗ puts a minus sign on the
result. This is known as the anti-commutativity of
the cross product:

A⃗× B⃗ = −B⃗ × A⃗ (1.23)

Right Hand Rule

There is a trick that allows one to know the direction
of A⃗× B⃗ known as the (oft-dreaded) right hand rule.

To know the direction of the vector A⃗× B⃗, the steps
are as follows:

1. On your right hand: point your thumb, index
finger, and middle finger out in perpendicular
directions.

2. Let your index finger be vector A⃗, let your mid-
dle finger be vector B⃗.

3. Your thumb points along vector A⃗× B⃗.

Geometric Interpretation

The definition (1.21) becomes more intuitive by
studying a special case. Consider the pair of three-
dimensional vectors confined to the xy-plane given
by

A⃗ = ⟨A cos (ϕA) , A sin (ϕA) , 0⟩

B⃗ = ⟨B cos (ϕB) , B sin (ϕB) , 0⟩ ,

where A and B are the respecctive magnitudes. Cal-
culating A⃗× B⃗ using the formula provided results in

A⃗× B⃗ = ⟨0, 0, AB (cosϕA sinϕB − cosϕB sinϕA)⟩

A⃗× B⃗ = ⟨0, 0, AB sin (ϕB − ϕA)⟩ ,

telling us that the cross product is equal to the product
of the magnitudes and the sine of the angle between
the vectors. In general, this result also tells us

sin (θ) =

∣∣∣A⃗× B⃗
∣∣∣

AB
, (1.24)

where θ is the angle between the vectors at any rela-
tive orientation.

Area of a Parallelogram

The quantity AB sin (θ) can be interpreted as the
area of a parallelogram having base B and height
h = A sinϕ. For the right-angle case ϕ = π/2, the
parallelogram becomes a rectangle of area AB. In

the language of vectors, the product
∣∣∣A⃗× B⃗

∣∣∣ is the

area of the parallelogram with sides A, B.

4.3 Vector Identities

Consider three vectors A⃗, B⃗, C⃗, each of three dimen-
sions.
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Triple Product

The quantity

V = A⃗ ·
(
B⃗ × C⃗

)
(1.25)

is a scalar called the triple product. Intuitively, the
triple product describes the volume of the parallel-
piped with sides A, B, C. One can show by brute
force that (1.25) obeys the cyclic relations:

A⃗ ·
(
B⃗ × C⃗

)
= B⃗ ·

(
C⃗ × A⃗

)
= C⃗ ·

(
A⃗× B⃗

)
BAC-CAB Formula

A useful equation known as the BAC-CAB identity, reads

A⃗×
(
B⃗ × C⃗

)
= B⃗

(
A⃗ · C⃗

)
− C⃗

(
A⃗ · B⃗

)
. (1.26)

The proof of (1.26) is slightly long but straightforward, using (optional) determinant notation to contain the
cross product:

A⃗×
(
B⃗ × C⃗

)
=

∣∣∣∣∣∣
(x) (−y) (z)
Ax Ay Az

ByCz −BzCy BzCx −BxCz BxCy −ByCx

∣∣∣∣∣∣
A⃗×

(
B⃗ × C⃗

)
= ⟨AyBxCy −AyByCx −AzBzCx +AzBxCz, 0, 0⟩+

⟨0, AzByCz −AzBzCy −AxBxCy +AxByCx, 0⟩+
⟨0, 0, AxBzCx −AxBxCz −AyByCz +AyBzCy⟩

= Bx ⟨AyCy +AzCz, 0, 0⟩ −AxBx ⟨0, Cy, Cz⟩+
By ⟨0, AzCz +AxCx, 0⟩ −AyBy ⟨Cx, 0, Cz⟩+
Bz ⟨0, 0, AxCx +AyCy⟩ −AzBz ⟨Cx, Cy, 0⟩

A⃗×
(
B⃗ × C⃗

)
= Bx

〈
A⃗ · C⃗, 0, 0

〉
−AxBx ⟨Cx, Cy, Cz⟩+

By

〈
0, A⃗ · C⃗, 0

〉
−AyBy ⟨Cx, Cy, Cz⟩+

Bz

〈
0, 0, A⃗ · C⃗

〉
−AzBz ⟨Cx, Cy, Cz⟩

A⃗×
(
B⃗ × C⃗

)
= B⃗

(
A⃗ · C⃗

)
− C⃗

(
A⃗ · B⃗

)
5 Polar Representation

In the Cartesian plane, consider a position vector

r⃗ = ⟨rx, ry⟩ .

The ‘magnitude-and-direction’ interpretation of r⃗ as-
signs the magnitude r to the hypotenuse of a right
triangle, where the adjacent and opposite sides are
respectively given by

rx = r cos (ϕ) (1.27)

ry = r sin (ϕ) , (1.28)

congruent with equations (1.1)-(1.2). The angle pa-
rameter ϕ is also known as the phase of the vec-
tor, a dimensionless argument unique on the interval
[0 : 2π).

5.1 Polar Coordinate System

Equations (1.27)-(1.28) represent a mapping from
system of Cartesian coordinates to the system of po-
lar coordinates. Any point in the plane that can be
represented by the ordered pair (x, y) has an equiv-
alent representation as the ordered pair (r, ϕ). In
particular, we take the position vecor in polar coor-
dinates to be

r⃗ = ⟨r cos (θ) , r sin (θ)⟩
= r ⟨cos (θ) , sin (θ)⟩
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5.2 Rotated Vectors

Starting with a vector r⃗ in two dimensions, particu-
larly

r⃗ = ⟨r cos (ϕ) , r sin (ϕ)⟩ ,

we may inquire what happens when we modify the
phase such that ϕ → ϕ + θ, effectively rotating the
vector in the plane.

Carrying this out, one writes

(r⃗)
′
= r ⟨cos (ϕ+ θ) , sin (ϕ+ θ)⟩ ,

or, expanding the trigonometry terms,

r′x = r (cos (ϕ) cos (θ)− sin (ϕ) sin (θ))

r′y = r (sin (ϕ) cos (θ) + cos (ϕ) sin (θ)) .

Things get interesting when we keep simplifying:

r′x = rx cos (θ)− ry sin (θ) (1.29)

r′y = rx sin (θ) + ry cos (θ) (1.30)

Written this way, we see that the ‘new’ components
r′j are a mixture of the ‘old’ components rj scaled by
trigonometry terms that depend only on θ.

5.3 Rotation Matrix

Equations (1.29)-(1.30) can be packed into a single
statement using matrix notation:[

r′1
r′2

]
=

[
cos (θ) − sin (θ)
sin (θ) cos (θ)

] [
r1
r2

]
(1.31)

Explicitly, we have made the associations

(r⃗)
′
=

[
r′x
r′y

]
=

[
r′1
r′2

]
r⃗ =

[
rx
ry

]
=

[
r1
r2

]
,

and the ‘block of numbers’ containing the trigonom-
etry terms is called the rotation matrix, or rotation
operator, denoted R:

R =

[
cos (θ) − sin (θ)
sin (θ) cos (θ)

]
=

[
R11 R12

R21 R22

]
(1.32)

Whenever a matrix such as R occurs to the left
of a vector such as r⃗ as in (1.31), there is an implied
operation that ‘applies’ the matrix onto the vector
by cross-multiplying certain components. This pro-
cedure is captured by writing (1.31) in component
form:

r′j =

2∑
k=1

Rjk rk (1.33)

6 Basis Vectors

6.1 Unit Vectors

Consider a vector V⃗ of dimension N , having magni-
tude V . A special vector V̂ , called a unit vector, is
defined as V⃗ divided by its own magnitude:

V̂ =
1

V
V⃗ (1.34)

That is, a unit vector always has magnitude one, and
points along the original vector. A vector of the form
(1.34) is said to be normalized.

A more intuitive way to understand unit vectors
is to rearrange (1.34) to write

V⃗ = V V̂ ,

which says that a full vector V⃗ is the product of the
magnitude V and the ‘direction’ unit vector V̂ .

Problem 1

What is the vector that bisects the angle between
two vectors U⃗ , V⃗ ?

6.2 Introduction to Basis Vectors

Consider an arbitrary vector V⃗ of dimension N . A
curious way to express

V⃗ = ⟨V1, V2, V3, . . . , VN ⟩

is to fully pull apart each component so that V⃗ is the
sum of N pure sub-vectors:

V⃗ = ⟨V1, 0, 0, . . . ⟩
+ ⟨0, V2, 0, · · · ⟩+ ⟨· · · , 0, V3, 0, · · · ⟩
+ · · ·+ ⟨· · · , 0, VN ⟩

Each sub-vector contains just one component Vj ,
which can be factored out of the sub-vector as a
scalar. The sub-vectors that remain are called basis
vectors, denoted êj .

ê1 = ⟨1, 0, 0, · · · , 0⟩ (1.35)

ê2 = ⟨0, 1, 0, · · · , 0⟩
ê3 = ⟨0, 0, 1, · · · , 0⟩

· · ·
êN = ⟨0, 0, 0, · · · , 1⟩

There is one basis vector êj for each of the N dimen-
sions in which the vector is situated.
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Cartesian Coordinates

In the Cartesian xy-plane, a vector is typically rep-
resented as V⃗ = ⟨Vx, Vy⟩, suggesting basis vectors

êx = ⟨1, 0⟩
êy = ⟨0, 1⟩ .

Note that the same notation extrapolates to three
dimensions, in which case

êx = ⟨1, 0, 0⟩
êy = ⟨0, 1, 0⟩
êz = ⟨0, 0, 1⟩

are the basis vectors.

Orthogonality of Basis Vectors

Basis vectors are all mutually orthogonal by necessity.
For two different basis vectors êj , êk, the orthogonal-
ity relation is

êj · êk = 0 . (1.36)

On the other hand, two of the same basis vector êk
obeys

êk · êk = 1 . (1.37)

In the general case, any set of basis vectors {êj} that
obeys (1.36), (1.37) is said to be orthonormal.

6.3 Linear Combinations

Having established the notion of basis vectors, we are
free to an express arbitrary vector V⃗ as a linear com-
bination of each êj , namely

V⃗ = V1 ê1 + V2 ê2 + V3 ê3 + · · ·+ VN êN , (1.38)

or in summation notation:

V⃗ =

N∑
j=1

Vj êj (1.39)

In the above, V⃗ can potentially point to any ‘place’
in the N -dimensional space in which it lives. Such a
place is formally called a vector space.

Vector Component Isolation

One may ‘solve’ for the Vjth component in a vec-

tor V⃗ by exploiting the orthogonality relations (1.36),
(1.37). Start with (1.38), and multiply any particular
êk into both sides:

êk · V⃗ = V1 êk · ê1 + V2 êk · ê2 + · · ·+ VN êk · êN

Next, observe that all except one of the dot products
on the right will cancel due to (1.37). The whole sum
collapses to the term with j = k, namely Vk êk · êk,
simplifying to Vk. Formally, we have uncovered the
obvious yet satisfying statement:

Vk = V⃗ · êk (1.40)

With an explicit formula for the Vjth component
of a vector, it’s curious to see happens by replac-
ing Vj in (1.39). Carrying this out, we can write a
component-free way to reference a vector and its con-
tents:

V⃗ =

N∑
j=1

(
V⃗ · êj

)
êj (1.41)

Spanning the Vector Space

It’s important to notice that a linear combination V⃗ ,
with appropriate values of Vj , could represent any
point in the N -dimensional vector space in which the
vector is embedded. This is possible because the set
of basis vectors {êj} are said to span the vector space.

7 Change of Basis

Consider a two-dimensional vector V⃗ = ⟨Vx, Vy⟩, nat-
urally expressed as a linear combination in the Carte-
sian basis

ê1 = x̂ = ⟨1, 0⟩
ê2 = ŷ = ⟨0, 1⟩ .

By convention, the Cartesian coordinate system is
usually aligned with the edges of a rectangular sheet
of paper or computer screen. The orientation of the
coordinate system is of course arbitrary, and we must
be free to rotate the basis vectors without ‘physical’
consequences.

Figure 1.5 shows a two-dimensional example with
two sets of basis vectors {êj}, {ûj} embedded on the
Cartesian plane. In particular, the basis vector û is
rotated up from x̂ by some arbitrary angle, and simi-
larly v̂ corresponds to ŷ by the same angle. Any given
linear combination r⃗ has a different representation in
each basis.
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x̂

ŷ

r⃗

û
v̂

x

y

Figure 1.5: Vector r⃗ as a linear combination in two
different bases.

Generalizing this idea to N diensions, we can say
that linear combinations of the form (1.39) can be re-
expressed in terms of a different set of orthonormal
basis vectors {ûj}:

(V⃗ )′ =

N∑
j=1

V ′
j ûj (1.42)

Analogous to (1.40), the primed components relate
to the vector by:

V ′
k = (V⃗ )′ · ûk (1.43)

7.1 Two Dimensions

Rotated Cartesian Coordinates

Suppose a different set basis vectors û, v̂ is given in
terms of the original {êj} basis, for instance

û1 = û =

〈√
3

2
,
1

2

〉

û2 = v̂ =

〈
−1

2
,

√
3

2

〉
,

or equivalently,

û1 =

√
3

2
ê1 +

1

2
ê2

û2 = −1

2
ê1 +

√
3

2
ê2 .

Note that each ûj is a linear combination of each êj .
The coefficients

√
3/2, 1/2, etc. are carefully chosen

to assure orthonormality between û1,2.
If a vector r⃗ is expressed in the {êj} basis as the

linear combination

r⃗ = r1 ê1 + r2 ê2 ,

the so-called ‘change of basis’ occurs if we alge-
braically replace all êj with ûj , which first requires
inverting the above relations:

ê1 =

√
3

2
û1 −

1

2
û2

ê2 =
1

2
û1 +

√
3

2
û2

Then, the vector r⃗ can be written

(r⃗)
′
= r1

(√
3

2
û1 −

1

2
û2

)
+ r2

(
1

2
û1 +

√
3

2
û2

)

(r⃗)
′
=

(
r1

√
3

2
+ r2

1

2

)
û1 +

(
−r1

1

2
+ r2

√
3

2

)
û2 ,

where the components r1,2 are finally readable as

r′1 = r1

√
3

2
+ r2

1

2

r′2 = −r1
1

2
+ r2

√
3

2
,

and a form like (1.42) is attained:

(r⃗)
′
= r′1 û1 + r′2 û2

General Coordinate Rotations

The above example can be easily generalized such
that û points anywhere in the Cartesian plane, with
v̂ appropriately perpendicular to û. To achieve this,
we introduce an arbitrary parameter θ such that

û1 = cos (θ) ê1 + sin (θ) ê2

û2 = − sin (θ) ê1 + cos (θ) ê2 .

By straightforward algebra, we find the inverted ver-
sion to be

ê1 = cos (θ) û1 − sin (θ) û2

ê2 = sin (θ) û1 + cos (θ) û2 .

The pairs of equations above are suggestive of a ma-
trix formulation, particularly[

û1

û2

]
=

[
cos (θ) sin (θ)
− sin (θ) cos (θ)

] [
ê1
ê2

]
, (1.44)

and [
ê1
ê2

]
=

[
cos (θ) − sin (θ)
sin (θ) cos (θ)

] [
û1

û2

]
, (1.45)

respectively. Comparing the above to (1.32), we see
(1.45) contains the same rotation matrix R that ro-
tates vectors in a fixed basis. Denoting the other
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matrix in (1.44) as R̃, the component version of the
above reads:

ûj =

2∑
k=1

R̃jkêk

êj =

2∑
k=1

Rjkûk .

With a convenient representation for the basis
vectors {êj}, an arbitrary linear combination

r⃗ = r1 ê1 + r2 ê2

becomes

(r⃗)
′
= r1

2∑
k=1

R1k ûk + r2

2∑
k=1

R2k ûk

=

2∑
k=1

 2∑
j=1

Rjk rj

 ûk ,

telling us that the kth component of the vector (r⃗)
′

is given by

r′k =

2∑
j=1

Rjk rj , (1.46)

which is a cousin to equation (1.33). To do a fair
comparison, let us swap the j-index and the k-index
in (1.46) to write

r′j =

2∑
k=1

Rkj rk .

Looking carefully, the above differs from (1.33) by
the order of the subscripts on the R-term, ultimately
equivalent to reversing the sign on θ. Said another
way, a ‘positive’ rotation in the basis vectors with r⃗
fixed is equivalent to a ‘negative’ rotation of r⃗ with
the basis fixed.

7.2 N Dimensions

Change of Basis Vectors

At the center of the change-of-basis problem is the
issue of relating the two orthonormal bases êj , ûj to
one another. In N dimensions, the basis vectors are
related by linear combinations

ûj =

N∑
k=1

Ũjk êk (1.47)

êj =

N∑
k=1

Ujk ûk . (1.48)

Having two subscripts, the terms Ũjk, Ujk are not
vector components, but instead matrix components.
These typically end up being coefficients like

√
3/2,

1/2, and so on.
To isolate the matrix components Ujk and Ũjk,

multiply (via dot product) the basis vectors êm, ûm,
respectively into (1.47), (1.48):

êm · ûj =

N∑
k=1

Ũjk êm · êk

ûm · êj =
N∑

k=1

Ujk ûm · ûk

Due to orthonormality, the right side of each equa-
tion resolves to zero except for the case with m = k,
allowing the components to be isolated:

Ũjm = êm · ûj = ûj · êm (1.49)

Ujm = ûm · êj = êj · ûm (1.50)

From this, deduce also that

Ũjm = Umj . (1.51)

Linear Combinations

An arbitrary linear combination

V⃗ =

N∑
j=1

Vj êj

can be written with all êj replaced according to
(1.48):

(V⃗ )′ =

N∑
j=1

N∑
k=1

Ujk Vj ûk =

N∑
k=1

 N∑
j=1

Ujk Vj

 ûk

Comparing the above to (1.42) gives a formula for the

kth component of the vector (V⃗ )′:

(V ′)k =

N∑
j=1

Ujk Vj (1.52)

Unity Condition

We can learn a bit more about the matrix components
Ujk, Ũjk by eliminating ûk between (1.47)-(1.48):

êj =

N∑
k=1

Ujk

(
N∑

m=1

Ũkm êm

)

=

N∑
k=1

N∑
m=1

(
UjkŨkm

)
êm
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Next, use the symbol I to represent the quantity

Ijm =

N∑
k=1

(
UjkŨkm

)
,

and the above becomes

êj =

N∑
m=1

Ijm êm .

For the above to make sense, all terms in the right-
hand sum must vanish except for that with m = j.
Explicitly, this means Ijm obeys

Ijm =

{
1 m = j

0 m ̸= j
,

reminiscent of (1.36)-(1.37).

8 Vectors and Limits

Vectors, whose components are numbers and func-
tions, obey all of the established properties of limits.
While the technical proof for this is attainable, it’s
worth staving off a formal effort for multivariate cal-
culus, and for now take it on intuition that vectors
and limits get along nicely.

8.1 Pi from Nested Radicals

Here we apply vectors to a curious problem that ap-
proximates the value of π by covering unit circle with
triangles of known area. Figure 1.6 shows the first
quadrant of the unit circle with several lines and
points labeled to aid the derivation. The origin is
at what would be the center of the complete circle.

Figure 1.6: Covering a quarter circle with triangles.

To establish some notation, let the lines OA, OB
define a pair of unit vectors:

î = OB

ĵ = OA

Also, let the hypotenuse of AOB be a vector h⃗0 such
that

h⃗0 = î− ĵ ,

with magnitude ∣∣∣⃗h0

∣∣∣ = √
2 .

Order-Zero Triangle (1)

The largest triangle that fits in the quarter unit cir-
cle is depicted AOB, whose area is 1/2. Using the
vectors on hand, the area of AOB shall be written

A0 =
1

2

∣∣∣̂i∣∣∣ ∣∣∣ĵ∣∣∣ ,
which is a fancy way to write 1/2.

Order-One Triangle (2)

Next, we seek two identical triangles that cover the
largest uncovered portion of the quarter circle. In
Figure 1.6 these are depicted DCA, DCB, respec-
tively.

Analyzing DCB, consider a unit vector x̂1 and a
shorter vector x⃗1 such that

x⃗1 = OC =
î+ ĵ

2

x̂1 = OD =
î+ ĵ√

2
,

whose difference in length is CD.
Then, the area of DCB is

A1 =
(CD) (CB)

2

=
1

2
|x̂1 − x⃗1|

1

2

∣∣∣⃗h0

∣∣∣ .
That is, the base is line CB, whose length is half
the magnitude h⃗0. The height CB is given by the
difference in x-vectors.

Notice that, because x̂1, x⃗1 are parallel, the fol-
lowing simplification can be made:

|x̂1 − x⃗1| = 1− x1

Calculating out A1, one finds, after some algebra:

A1 =
1

2

(
−1

2
+

1√
2

)
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The hypotenuse of DCB is denoted h⃗1 and is
given by

h⃗1 = î− x̂1 ,

and has length DB. Note that the vector h⃗1 doesn’t
play into the area of DCB, rather the previous h⃗0 is
used. Explicitly, the vector h⃗1 reads

h⃗1 =

(
1− 1√

2

)
î+

1√
2
ĵ ,

having magnitude∣∣∣⃗h1

∣∣∣ =√2−
√
2 .

Order-Two Triangles (4)

To keep covering the circle, we’ll take four copies of
triangle FEB as shown in the Figure. To find the
area of just FEB, first notice

x⃗2 = OE = x̂1 +
1

2
h⃗1

x̂2 = OF = x⃗2/ |x⃗2| ,

whose difference in length is EF . In detail, it’s
straightforward to show that

x⃗2 =
1

2

(
1 +

1√
2

)
î+

1

2
√
2
ĵ ,

where

x2 =
1

2

√
2 +

√
2 ,

and

x̂2 =

(
1 + 1/

√
2√

2 +
√
2

)
î+

(√
2−

√
2

2

)
ĵ .

The area of FEB is

A2 =
(EF ) (EB)

2

=
1

2
|x̂2 − x⃗2|

1

2

∣∣∣⃗h1

∣∣∣
=

1

4
(1− x2)

∣∣∣⃗h1

∣∣∣ ,
which plays much like the previous case with all in-
dices shifted up by one. Calculating out A2, one finds,
after a lot of algebra:

A2 =
1

4

(
− 1√

2
+

√
2−

√
2

)
The hypotenuse of FEB is h⃗2, given by

h⃗2 = î− x̂2 ,

which is also just like the the formula for h⃗1 with
the indices bumped by one. Explicitly, the vector h⃗2

reads

h⃗2 =

(
1−

(
1 + 1/

√
2
)√

2 +
√
2

)
î+

(√
2−

√
2

2

)
ĵ ,

having magnitude∣∣∣⃗h2

∣∣∣ =√2−
√
2 +

√
2 .

Order-Three Triangles (8)

By now we’re running out of letters in the Figure, but
the pattern continues. The next step has eight total
triangles. Begin with

x⃗3 = x̂2 +
1

2
h⃗2

x̂3 = x⃗3/ |x⃗3| ,

implying the area to be

A3 =
1

2
|x̂3 − x⃗3|

1

2

∣∣∣⃗h2

∣∣∣
=

1

4
(1− x3)

∣∣∣⃗h2

∣∣∣ ,
and furthermore:

h⃗3 = î− x̂3

Leaving the algebra to the dedicated reader, the
area A3 resolves to:

A3 =
1

8

(
−
√
2−

√
2 + 2

√
2−

√
2 +

√
2

)

Order-N Triangles

It will take an infinite number of iterations to cover
the entire quarter circle with increasingly smaller tri-
angles. At the nth step, it follows that

x⃗n = x̂n−1 +
1

2
h⃗n−1

x̂n = x⃗n/ |x⃗n|

h⃗n = î− x̂n ,

with

An =
1

4
(1− xn)

∣∣∣⃗hn−1

∣∣∣ .
While we’ll take the above as a workable result,

note that ∣∣∣⃗hn−1

∣∣∣ =√2
(
1− î · x̂n−1

)
.
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With this, the area simplifies to

An =

√
2

4
(1− xn)

√
1− î · x̂n−1 ,

which only works for n ≥ 2.
Also, it’s easy to derive

î · x̂n−1 = cos
( π

2n

)
from the vectors on hand. It would be bad form, how-
ever, to invoke π in the midst of trying to calculate
it, so we’ll leave the cosine function alone.

Working out the area A4 from the above, which
is absolutely tedious without a machine, one finds:

A4 = −
2

√
2−

√
2 +

√
2

16

+
4

√
2−

√
2 +

√
2 +

√
2

16

N-Sided Polygon

Tallying all areas of all triangles up to the Nth step
gives one quarter the area of an N -sided polygon with
equal angles and equal sides. Doing so, we write

P (N) =

N∑
n=0

wnAn ,

where A is the total area, An is the area of one tri-
angle of order n, and wn is the number of triangles
of order n, particularly wn = 2n.

Condensing variables again, we also write, for
n ≥ 2:

P (N) =

N∑
n=0

2n

4
(1− xn)

∣∣∣⃗hn−1

∣∣∣ = N∑
n=0

Pn

Evaluating P(N)

Now the real work begins. Starting with N = 0 and
working up, we find

P0 = 20A0 =
1

2

P1 = 21A1 = −1

2
+

1√
2

P2 = 22A2 = − 1√
2
+

√
2−

√
2

P3 = 23A3 = −
√

2−
√
2 + 2

√
2−

√
2 +

√
2 ,

along with

P4 = 24A4 = −2

√
2−

√
2 +

√
2

+ 4

√
2−

√
2 +

√
2 +

√
2

Now an amazing simplification happens. Calcu-
lating the sum P (N) requires adding all terms Pn up
to the Nth term. However, notice that each Pn con-
tains a positive term and a negative term. The nega-
tive term is always the exact negative of the previous
positive term. The end result is, only the positive
term in PN survives the summation.

Going from the pattern on hand, we evidently
have

P (N) =
2N

4

√
2−

√
2 +

√
2 +

√
2 + · · ·

with N total square roots.

Area of N-Sided Polygon

Define Π (uppercase of π) such that

Π (N) = 4P (N) ,

which is the area of an N -sided polygon (all four
quadrants).

For the first few orders, a calculator reveals:

Π (0) = 2

Π (1) = 2.8284271248 . . .

Π(2) = 3.0614674589 . . .

Π(3) = 3.1214451523 . . .

Π(4) = 3.1365484905 . . .

Π(5) = 3.1403311570 . . .

Π(10) = 3.1415914215 . . .

Π(15) = 3.1415926524 . . .

Π(20) = 3.1415926536 . . .

The area becomes suspiciously close to π as the
number of iterations increases, and we get about ten
digits of π after N = 18 iterations.

The number of triangles for the quarter-area is
given by

W (N) =

N∑
n=0

wn =

N∑
n=0

2n = 2N+1 − 1 ,

and for N = 18, we approximately have

W (18) = 219 − 1 .
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The total number of triangles is four times the above.
Over two million triangles are needed to get π to ten
digits:

4W (18) = 221 − 4 = 2097148

Area of Unit Circle

In the limit N → ∞, the triangles cover the unit
circle and the area converges to π:

π = lim
N→∞

Π(N) ,

or

π = lim
N→∞

2N

√
2−

√
2 +

√
2 +

√
2 + · · · .

There are N square roots on the right.
This result is a bit counter-intuitive in the sense

that 2N tends to infinity while the quantity under
the outermost square root goes to zero. It just hap-
pens that infinity times zero, in this particular limit,
equals π.

9 Matrix Formalism

Formally, a matrix is a collection of numbers or vari-
ables arranged in a block with fixed rows M and
columns N . Each element, i.e. component in the
matrix requires two subscripts.

9.1 Matrix-Operator Equivalence

A primary use for a matrix is to ‘operate’ on a vector
of dimension N , yielding a new vector of dimension
M . (The term ‘matrix’ is often interchanged with the
term ‘operator’.) Symbolically, this is written

Ax⃗ = y⃗ ,

and in full block notation, the same statement looks
like

A11 A12 A13 · · · A1N

A21 A22 A23 · · · A2N

A31 A32 A33 · · · A3N

· · · · · · · · · · · · · · ·
AM1 AM2 AM3 · · · AMN



x1

x2

x3

· · ·
xN

 =


y1
y2
y3
· · ·
yM


More compactly, we use index notation to express the
same calculation:

N∑
k=1

Ajk xk = yj (1.53)

j = 1, 2, 3, . . . ,M

9.2 Matrix Components

Consider two vectors x⃗, y⃗, each a linear combination
in some N -dimensional basis such that

x⃗ =

N∑
j=1

xj êj

y⃗ =

M∑
j=1

yj êj .

While y⃗ is perfectly happy being expressed as a lin-
ear combination in the basis {êj}, it’s instructive to
re-express y⃗ in terms of its brother, x⃗. To do so, we
propose an operator A such that

y⃗ = Ax⃗ .

To proceed, write the above as

M∑
k=1

yk êk =

N∑
k=1

xk Aêk ,

and multiply the basis vector êj (via dot product)
into both sides:

M∑
k=1

yk êj · êk =

N∑
k=1

xk êj ·Aêk

On the left, every term in the sum vanishes except
that with j = k, and the above becomes

yj =

N∑
k=1

(êj ·Aêk)xk

j = 1, 2, 3, . . . ,M .

The parenthesized quantity is what we’re after:

Ajk = êj ·Aêk (1.54)

The term Ajk is the component of the matrix A cor-
responding to the jth row, kth column.

9.3 Projector

Consider the curious quantity

Px = x⃗ x⃗ , (1.55)

called the the projector of x⃗. By itself, Px does noth-
ing - there is no operation between the two copies of
x⃗. What the projector does is ‘wait’ to be multiplied
into another vector, resulting in a scaled version of
x⃗. For example, applying the projector to a different
vector y⃗ (of the same dimension as x⃗) goes like

Pxy⃗ = x⃗ (x⃗ · y⃗) .
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9.4 Identity Operator

Consider a vector x⃗ as a linear combination in some
N -dimensional basis:

x⃗ =

N∑
j=1

xj êj

For any one of the basis vectors êk, write the projec-
tor

Pek = êk êk ,

and then multiply x⃗ onto the right side to get

Pek x⃗ = êk êk · x⃗ = xk êk

By summing over the index k, the right side is iden-
tically x⃗: (

N∑
k=1

Pek

)
x⃗ =

N∑
k=1

xk êk = x⃗

For the left side to also equal x⃗, the parenthesized
quantity must be equivalent to ‘multiplying by one’,
which we call the identity operator:

I =

N∑
k=1

Pek (1.56)

The identity operator leaves a vector unchanged:

Ix⃗ = x⃗

The matrix-equivalence of I is square, has no mixed
components, and has ones along the diagonal:

I =


1 0 0 · · · 0
0 1 0 · · · 0
0 0 1 · · · 0
· · · · · · · · · · · · · · ·
0 0 0 · · · 1

 (1.57)

9.5 Unified Matrix Notation

Recall that a matrix A relates to its components Ajk

in a way given by (1.54), namely

Ajk = êj ·Aêk .

To establish this directly using projectors, start with
A = IAI and watch what happens:

A = IAI =

M∑
j=1

N∑
k=1

PejAPek

=

M∑
j=1

N∑
k=1

êj (êj ·Aêk) êk

The parenthesized quantity is precisely Ajk. Evi-
dently, the symbolic notation unifies with the index
notation in the equation

A =

M∑
j=1

N∑
k=1

êj (Ajk) êk (1.58)

The presence of êj êk is like a projector - it couples
the component to the operator.

10 Matrix Operations

10.1 Matrix Addition

Two matrices A and B of identical dimensions, mean-
ing M rows, N columns, can be combined to form a
new matrix C such that

A+B = C ,

or, to elaborate:

Ajk +Bjk = Cjk (1.59){
j = 1, 2, 3, . . . ,M

k = 1, 2, 3, . . . , N

10.2 Scalar Multiplication

A scalar α can be multiplied into each component of
a matrix A to form a new matrix B such that

αA = B ,

or:

αAjk = Bjk (1.60){
j = 1, 2, 3, . . . ,M

k = 1, 2, 3, . . . , N

10.3 Matrix Multiplication

Two matrices A, B, of equal or different dimensions
can be multiplied to form a new matrix C:

AB = C

The main ‘rule’ is that the number of columns in A
must equal the number of rows in B:

A(M,K) ×B(K,N) = C(M,N)

Matrix Non-Commutativity

If you’re paying attention, the commutated product
BA may violate the above, and no product is defined.
In any case, we should assume that the multiplication
of two matrices is not commutative:

AB ̸= BA (1.61)
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Multiplication Formula

To derive the formula for matrix multiplication, be-
gin with the following ‘unified’ representation (1.58)
of the respective matrices:

A =

M∑
m=1

K∑
k=1

êm (Amk) êk

B =

K∑
k′=1

N∑
n=1

êk′ (Bk′n) ên

Then, the product AB reads

AB =

M∑
m=1

K∑
k=1

êm (Amk) êk

K∑
k′=1

N∑
n=1

êk′ (Bk′n) ên

=

M∑
m=1

K∑
k=1

K∑
k′=1

N∑
n=1

êm (Amk) êk êk′ (Bk′n) ên

Note that the quantity êm êk êk′ ên is the juxta-
position of two projectors, readily translating to
êm (êk · êk′) ên. Note further that the parenthesized
product obeys (1.36)-(1.37), namely

êk · êk′ =

{
1 k = k′

0 k ̸= k′
,

which has the effect of equating k = k′ in the above,
eliminating one of the sums. So far then, we have

AB = C =

M∑
m=1

K∑
k=1

N∑
n=1

(AmkBkn) êm ên

C =

M∑
m=1

N∑
n=1

(
K∑

k=1

AmkBkn

)
êm ên .

The symbol C has replaced the quantity AB on the
left. Comparing the right side to (1.58), we conclude
that the component Cmn of matrix C is given by the
famed matrix multiplication formula:

Cmn =

K∑
k=1

AmkBkn (1.62){
m = 1, 2, 3, . . . ,M

n = 1, 2, 3, . . . , N

Equation (1.62) reminds that it’s only required
that the number of columns in A match the number
of rows in B. For instance, the operation A(2,4) ×
B(4,3) = C(2,3), explicitly written as

[
a11 a12 a13 a14
a21 a22 a23 a24

]
b11 b12 b13
b21 b22 b23
b31 b32 b33
b41 b42 b43


=

[
c11 c12 c13
c21 c22 c23

]

is perfectly valid, whereas the commuted product
B(4,3) ×A(2,4) is undefined.

Matrix Associativity

A direct consequence of matrix multiplication is the
associativity rule:

(AB)C = A (BC) (1.63)

10.4 Change of Basis

A square matrix A with components Ajk in the basis
{êj} can be represented by (1.58):

A =

N∑
j=1

N∑
k=1

êj (Ajk) êk .

Under a change of basis {êj} → {ûj}, we can use
(1.48)

êj =

N∑
k=1

Ũjk ûk

to replace the unit vectors, leading to

A′ =

N∑
m=1

N∑
n=1

ûm

 M∑
j=1

N∑
k=1

UmjAjkŨkn

 ûn ,

where the (first) term Ũjm has been replaced by Umj

due to (1.51). The parenthesized quantity is precisely
the formula for the component A′

mn of the trans-
formed matrix

A′
mn =

N∑
j=1

N∑
k=1

UmjAjkŨkn , (1.64)

or in symbolic form,

A′ = UAŨ .

Note that the above verifies the associativity rule
(1.63) for matrix multiplication. The order in which
the sums are taken directly corresponds to which ma-
trices are multiplied first. As a bonus, (1.64) tells us
exactly how to take the product of three square ma-
trices.
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