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Chapter 1

Vector Spaces

1 Foundations

1.1 Ket Notation

After a tour through calculus, vectors, and their holy
marriage in vector calculus, one is well aware that a
vector a⃗ is defined as a list of numbers or variables.
We begin by replacing the ‘arrow’ notation with ket
notation popularized by Paul Dirac:

a⃗ = |a⟩

To write out the vector explicitly, list the components
inside the |⟩ symbol:

a⃗ = ⟨a1, a2, a3⟩ = |a1, a2, a3⟩

Of course, the number of components need not be
three, and the coordinate system implied need not
be Cartesian.

1.2 Complex Components

All vector components are assumed to be complex
numbers unless restricted by circumstance. A com-
plex number z has two components, real and imagi-
nary, such that

z = α+ iβ ,

where α, β are real numbers, and i is the imaginary
unit:

i =
√
−1

The same complex number z can be expressed in po-
lar form

z = r eiϕ ,

where
r = |z| =

√
α2 + β2

is the magnitude, and

ϕ = arctan (β/α)

is the complex phase of z. Every complex number z a
complex conjugate z̄ = z∗ that inverts the imaginary
component:

z̄ = z∗ = α− iβ = r e−iϕ

Complex numbers obey special operations for ad-
dition, multiplication, and division. For two complex
numbers zj with j = 1, 2, we have

z1 ± z2 = (α1 + α2)± i (β1 + β2)

z1 · z2 = (α1α2 − β1β2) + i (α1β2 + α2β1)

z1/z2 = z1 · z∗2/ |z2|
2

1.3 Sets

A set is generally defined as a collection of distinct,
well-defined objects. Perhaps the most common set
is the real numbers, denoted R. Distinguishing the
set of integers Z from the irrational numbers Q′, we
can relate each set using the union operator:

R = Z ∪Q′

An individual member of a set is called an element.
For example, the set C of complex numbers is com-
prised of all elements z. This is formally denoted
using the in symbol ∈ as

z ∈ C .

Mathematical statements can be shortened further by
introducing the for all symbol ∀, along with the there
exists symbol ∃. For instance, the idea that ‘for all
complex numbers z there exits a complex conjugate
z∗’ can be written as:

∀z ∈ C , ∃ z∗ ∈ C

1.4 Spaces

A space is a set with some kind of ordered structure.
For instance, the space of all ordered pairs of real
numbers, i.e., all two-dimensional vectors with real
components, is denoted R2.

For a less trivial example, we may define a space
L2 [a, b] of all functions {f (x)} obeying∫ b

a

|f (x)|2 dx <∞ .

2 Vector Space

A vector space, for a given vector |A⟩, contains the
set of all allowed vectors that |A⟩ could have been.
Formally, we say that a vector space V is comprised
of complex elements {|a⟩} that obeys the vector space
axioms.
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2.1 Vector Space Axioms

In the axioms that follow, consider any three vectors
|a⟩, |b⟩, |c⟩ in the vector space V. Let α, β be two
nonzero complex scalars.

Addition

Vectors still obey the familiar rules for addition. Em-
bedded in the definition are the notions of commuta-
tivity and associativity:

|a⟩+ |b⟩ = |b⟩+ |a⟩
|a⟩+ (|b⟩+ |c⟩) = (|a⟩+ |b⟩) + |c⟩

Scalar Multiplication

Multiplying a vector by a complex number results in
a new vector that is parallel to the original. In par-
ticular, this means:

∀ |a⟩ ∈ V , ∀α ∈ C : ∃ α |a⟩ ∈ V

As expected, scalar multiplication follows the
rules of commutativity and associativity:

α (β |a⟩) = (αβ) |a⟩
α (|a⟩+ |b⟩) = α |a⟩+ α |b⟩
(α+ β) |a⟩ = α |a⟩+ β |a⟩

Zero Vector

There exists a zero vector in the vector space that
does not contribute to any sum. In the language of
symbols, this precisely means

∃ |0⟩ ∈ V : ∀ |a⟩ ∈ V ,

or in practice, for addition:

|a⟩+ |0⟩ = |a⟩

The zero vector plays an expected role in scalar
multiplication:

0 |a⟩ = |0⟩

Additive Inverse

Every vector has a ‘negative’ version of itself called
the additive inverse. That is:

∀ |a⟩ ∈ V : ∃ |−a⟩ ∈ V ,
|a⟩+ |−a⟩ = |0⟩

2.2 Uniqueness

Uniqueness of Zero Vector

The first non-axiomatic issue to address is whether
there exist multiple zero vectors in a given vector
space. To capture this concern, take two vectors |a⟩,
|b⟩ and add a unique zero vector to each:

|a⟩+ |0⟩ = |a⟩
|b⟩+ |0⟩′ = |b⟩

Using the shorthand |a⟩+|b⟩ = |c⟩, add the two equa-
tions to get

|c⟩+ |0⟩+ |0⟩′ = |c⟩ .

As it appears, the combination |0⟩+ |0⟩′ can only be
the zero vector itself:

|0⟩+ |0⟩′ = |0⟩

Evidently, |0⟩′ plays an indistinguishable role from
|0⟩. In conclusion, we find there exists exactly one
(abbreviated ∃!) zero vector per vector space:

∃! |0⟩ ∈ V

Uniqueness of Additive Inverse

In a similar spirit, we can show that the additive in-
verse of a vector is unique. Take two copies of a vector
|a⟩ and add a unique additive inverse vector to each:

|a⟩+ |−a⟩ = |0⟩
|a⟩+ |−a⟩′ = |0⟩

Adding the two equations, we have

2 |a⟩+ |−a⟩+ |−a⟩′ = |0⟩ ,

which is only true if

|−a⟩+ |−a⟩′ = 2 |−a⟩
|−a⟩′ = |−a⟩ ,

telling us the additive inverse is unique. Our decla-
ration of the additive inverse becomes more specific:

∀ |a⟩ ∈ V : ∃! |−a⟩ ∈ V

Subtraction

The notion of subtraction can be formally introduced
after establishing uniqueness of the additive inverse:

|a⟩ − |b⟩ = |a⟩+ |−b⟩
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2.3 Identities

Multiplication by One

From the above axioms, it’s easy to show that the
only scalar that multiplies into a vector to return the
same vector is one:

1 |a⟩ = |a⟩

Multiplication by Zero

Similarly we can can ask which scalar multiplies into
a vector to return the zero vector:

α |a⟩ = |0⟩

The answer is obviously zero, but can we prove it?
To do so, take the above statement as a proposition,
and then let α→ −α:

−α |a⟩ = |0⟩

If both statements are to be true, then it can only be
that α = −α, which is only satisfied by α = 0.

Condensed Notation

For a vector |a⟩ and a scalar α, scalar multiplication
is often represented as:

α |a⟩ = |αa⟩

Likewise, the addition of two vectors |a⟩, |b⟩ is
written:

|a⟩+ |b⟩ = |a+ b⟩

2.4 Applications

Cartesian Plane

The set of vectors based at the origin in the Carte-
sian plane qualifies as a vector space, provided that
the ‘usual’ rules (from trigonometry) of vector addi-
tion and scalar multiplication are allowed.

Real n-tuples

Another vector space is the set of real-valued n-tuples

a = (a1, a2, · · · , an)

obeying the addition rule

a+ b = (a1 + b1, a2 + b2, · · · , an + bn)

and the multiplication rule

λa = (λa1, λa2, · · · , λan) .

3 Inner Product

3.1 Bra Notation

There is another way to write vectors as they pertain
to vector spaces using the so-called bra notation:

⟨a|

The so-called bra-vector is related to a⃗ = |a⟩, but is
not identical.

Particularly, the bra-vector is called the dual vec-
tor of |a⟩, also called a linear functional. The vector
space occupied by ⟨a| is called the dual space to that
occupied by |a⟩. On their own, bra-vectors obey the
same axioms as ket-vectors.

3.2 Inner Product

As an operator, a bra-vector ⟨b| can ‘act on’ a ket-
vector |a⟩ to produce a scalar:

⟨b|a⟩ = α

Assuming |a⟩, |b⟩ are of the same vector space, the
quantity ⟨b|a⟩ is called the inner product of vectors
|b⟩ and |a⟩.

Conjugate

As an axiom, let us use up some available freedom to
require that swapping a ↔ b results in the complex
conjugate of the original product:

⟨b|a⟩ = (⟨a|b⟩)∗ = ⟨a|b⟩

Negative Product

It’s possible for the inner product to yield a negative
result. For two nonzero vectors |a⟩, |b⟩ satisfying

⟨b|a⟩ = α ,

calculate the inner product ⟨b| − a⟩ to find:

⟨b| − a⟩ = ⟨b|0− a⟩
=�

��⟨b|0⟩ − ⟨b|a⟩
= −α

3.3 Linearity

The inner product obeys linearity rules much as an
ordinary operator would. For the vectors |a⟩, |u⟩, |v⟩,
along with scalars α, β, we first have:

⟨a|αu+ βv⟩ = α ⟨a|u⟩+ β ⟨a|v⟩
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Furthermore:

⟨αu+ βv|a⟩ = ⟨αu|a⟩+ ⟨βv|a⟩

= ⟨a|αu⟩+ ⟨a|βv⟩

= α∗⟨a|u⟩+ β∗⟨a|v⟩

Comparing each result, we have:

⟨a|αu+ βv⟩ = ⟨αu+ βv|a⟩

3.4 Norm

By calculating ⟨a|a⟩ = ⟨a|a⟩, we readily find α =
α∗ = α, telling us the self-inner product always yields
a real number:

⟨a|a⟩ ∈ R

The square root the self-inner product is called the
norm of the vector, axiomatically a positive number:

∥a∥ =
√
⟨a|a⟩ > 0

Zero Norm

It immediately follows that the norm of any non-zero
vector cannot itself be zero, with the only excepting
being the zero vector:

⟨a|a⟩ = 0 ⇐⇒ |a⟩ = |0⟩

3.5 Applications

Complex Vector Space

Consider the vector space Cn whose elements are vec-
tors containing n individual complex numbers, i.e.

∃ |x⟩ ∈ Cn : |x⟩ = |x1, x2, ..., xn⟩

For two vectors |a⟩ and |b⟩ in Cn, the inner product
can be defined as

⟨a|b⟩ =
n∑

j=1

a∗j bj ,

or more generally, the definition can include weight-
ing coefficients

⟨a|b⟩ =
n∑

j=1

a∗j bjwj

for wj > 0 ∈ R.

Complex Function Space

By analogy to the inner product for vectors, a simi-
lar equation can be written for two complex functions
f (z), g (z) defined in the interval z ∈ [a, b] as

⟨f |g⟩ =
∫ b

a

f∗ (z) g (z) dz .

Of course, the above can be generalized with a weight-
ing function w (z) > 0 ∈ R such that

⟨f |g⟩ =
∫ b

a

f∗ (z) g (z)w (z) dz .

4 Linear Combinations

Consider a vector space V admitting a set of n vec-
tors {|ϕj⟩} with j = 1, 2, . . . , n. Introducing a set
of n complex coefficients {cj}, we construct a linear
combination:

|a⟩ =
n∑

j=1

cj |ϕj⟩

4.1 Span

The linear combination vector |a⟩, along with all
other linear combinations of {|ϕj⟩}, occupy a sub-
space V ′ ∈ V. In tighter terms, we say the vectors
{|ϕj⟩} span the vector space V ′.

4.2 Basis

If it turns out that V ′ = V, any vector allowed in V
can be expressed as some linear combination of its el-
ements. In this case, vectors {|ϕj⟩} are called a basis,
and the number n is a positive non-infinite integer
called the dimension of the space.

4.3 Linear Independence

While the notion of ‘span’ makes sure there are ‘not
too few’ basis vectors, we introduce linear indepen-
dence to assure there aren’t too many. That is, any
basis vector |ϕk⟩ that can be expressed as a linear
combination is not really a basis vector, and the di-
mension of the space may shrink by one.

Equivalently, we may argue that a set of linearly
independent basis vectors only satisfies

n∑
j=1

cj |ϕj⟩ = |0⟩



8 CHAPTER 1. VECTOR SPACES

when all coefficients cj = 0. To show this we choose
any two nonzero ck and ck′ (with the rest zero), re-
ducing the above to

ck |ϕk⟩ = −ck′ |ϕk′⟩ .

Clearly, the vector |ϕk′⟩ is not independent from |ϕk⟩
and either can be excluded from the basis.

4.4 Uniqueness of Coefficients

We can show that the coefficients cj are unique for a
given linear combination. Supposing we have a resul-
tant vector |a⟩ that that is ‘arrived at’ by two different
sets of coefficients

|a⟩ =
n∑

j=1

cj |ϕj⟩

|a⟩ =
n∑

j=1

c′j |ϕj⟩ .

Adding each equation and dividing by 2, we quickly
find

|a⟩ =
n∑

j=1

(
cj + c′j

2

)
|ϕj⟩ ,

which only holds if every cj is equal to c′j .

5 Orthonormal Basis

5.1 Orthogonal Vectors

Two vectors |ϕj⟩, |ϕk⟩ are orthogonal vectors if their
inner product is zero:

⟨ϕj | |ϕk⟩ = 0

If all basis vectors {|ϕj⟩} are mutually orthogonal,
they constitute an orthogonal basis.

5.2 Normalized Basis

A basis vector is normalized if its self-inner product
resolves to one:

⟨ϕj |ϕj⟩ = 1 ,

in which case the change of notation

|ϕj⟩ → |ej⟩

is made. Of course, one can always normalize each
vector in an orthogonal basis by dividing out the
norm:

|ej⟩ =
1√

⟨ϕj |ϕj⟩
|ϕj⟩

Orthonormal Basis

If all basis vectors are mutually orthogonal and have
a norm of one, the set {|ej⟩} is called an orthonormal
basis. We summarize this by writing

⟨ej |ek⟩ = δjk ,

where δjk is the Kronecker delta symbol:

δjk =

{
1 j = k

0 j ̸= k

5.3 Vector Components

Equipped with the notion of the orthonormal basis,
let us reconsider the linear combination

|a⟩ =
n∑

j=1

aj |ej⟩ ,

and solve for the coefficients aj .
Using what’s sometimes called Fourier’s trick, no-

tice that projecting any bra-vector ⟨ek| will trigger
one inner product on the left, and n inner products
on the right. However n−1 of these will be zero, and
this plucks out the kth coefficient from the sum:

⟨ek|a⟩ =
n∑

j=1

aj ⟨ek|ej⟩ = aj δkj = ak

Evidently, any coefficient cj can be reverse-
engineered from a linear combination by the relation

aj = ⟨ej |a⟩ .

The coefficients aj are synonymous with the compo-
nents of a vector. In pure bra-ket notation, a linear
combination reads

|a⟩ =
n∑

j=1

⟨ej |a⟩ |ej⟩ ,

reminding us that the components of a vector are
strictly related to the choice of basis.

5.4 Isomorphism

Consider a vector space V admitting a basis {|ej⟩}.
A linear combination vector |a⟩, in component form,
can be written

|a⟩ = |a1, a2, . . . , , an⟩ .

On the right side, we see that the (complex) com-
ponents form an n-dimensional space of their own,
namely Cn.
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To capture the ‘one-to-oneness’ between the origi-
nal vector space and that occupied by its components,
we say the n-dimensional inner product space is iso-
morphic with Cn, or

V(n)
∼= Cn .

5.5 Gram-Schmidt Procedure

An arbitrary basis {|ϕj⟩} can always be transformed
into an orthonormal basis by the Gram-Schmidt pro-
cedure.

Denote {|ej⟩} as the desired set of unit-normalized
orthogonal vectors, and

{
|e′j⟩
}

as a non-normalized
version (a notational convenience). Starting with the
j = 1 vector, we write the easy result

|e′1⟩ = |ϕ1⟩

|e1⟩ = |e′1⟩ /
√
⟨e′1|e′1⟩ .

Next, we need a new vector |e′2⟩ that involves |ϕ2⟩
and is orthogonal to |e1⟩. This is achieved by writing

|e′2⟩ = |ϕ2⟩ − ⟨e1|ϕ2⟩ |e1⟩

|e2⟩ = |e′2⟩ /
√
⟨e′2|e′2⟩ .

Continuing for j = 3, we need a vector |e′3⟩ that
involves |ϕ3⟩ and is orthogonal to |e1⟩, |e2⟩, satisfied
by

|e′3⟩ = |ϕ3⟩ − ⟨e1|ϕ3⟩ |e1⟩ − ⟨e2|ϕ3⟩ |e2⟩ ,

subject to the same normalization rule.
In the general j = n case, this pattern extends to

|e′n⟩ = |ϕn⟩ − ⟨e1|ϕn⟩ |e1⟩
− ⟨e2|ϕn⟩ |e2⟩ − · · · − ⟨en−1|ϕn⟩ |en−1⟩ ,

normalized by

|en⟩ =
1√

⟨e′n|e′n⟩
|e′n⟩ .

Arbitrary Basis

Let us use the Gram-Schmidt procedure to produce
an orthonormal basis from:

|ϕ1⟩ =

11
0

 , |ϕ2⟩ =
01
1

 , |ϕ3⟩ =
10
1


Starting with |e1⟩, we have

|e1⟩ =
1√

⟨ϕ1|ϕ1⟩
|ϕ1⟩ =

1√
2
|ϕ1⟩ =

1/√2

1/
√
2

0

 .

Next, |e′2⟩ is given by:

|e′2⟩ = |ϕ2⟩ − ⟨e1|ϕ2⟩ |e1⟩ =

−1/2
1/2
1


|e2⟩ =

1√
6

−1
1
2


Finally, for |e′3⟩, we have

|e′3⟩ = |ϕ3⟩ − ⟨e1|ϕ3⟩ |e1⟩ − ⟨e2|ϕ3⟩ |e2⟩ =

 2/3
−2/3
2/3

 ,

normalizing to

|e3⟩ =
1√
3

 1
−1
1

 .

Legendre Polynomials

Consider the set of real-valued polynomial functions
of order no greater than four

P4 (x) = c0 + c1x+ c2x
2 + c3x

3 + c4x
4 ,

known as Legendre polynomials. Confining the x-
domain to the window −1 ≤ x ≤ 1, we may introduce
the inner product of two such polynomials f (x), g (x)
as

⟨f |g⟩ =
∫ 1

−1

f (x) g (x) dx .

Given P4 (x), there are five vectors |ϕj⟩ = xj with
j = 0, 1, 2, 3, 4 form the basis of a five-dimensional
vector space.

By the Gram-Schmidt procedure, we can normal-
ize the basis {|ϕj⟩} starting with

|e0⟩ =
1√∫ 1

−1
dx

|ϕ0⟩ =
1√
2
|ϕ0⟩ =

1√
2
.

Proceeding for |e1⟩, we have

|e′1⟩ = |ϕ1⟩ − ⟨e0|ϕ1⟩ |e0⟩

|e1⟩ =
1√

⟨e′1|e′1⟩
|e′1⟩ ,

reducing to

|e′1⟩ = |ϕ1⟩ −�����⟨e0|ϕ1⟩ |e0⟩

|e1⟩ =
√

3

2
|ϕ1⟩ =

√
3

2
x .
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Continuing for |e2⟩, begin with

|e′2⟩ = |ϕ2⟩ − ⟨e0|ϕ2⟩ |e0⟩

−((((((⟨e1| |ϕ2⟩ |e1⟩ = |ϕ2⟩ −
√
2

3
|e0⟩ ,

where normalization requires calculating

⟨e′2|e′2⟩ =
∫ 1

−1

(
x2 − 1

3

)2

dx =
8

45
,

landing us at

|e2⟩ =
√

5

8

(
3x2 − 1

)
.

Turning the same crank, it’s straightforwardly shown
that the remaining normalized basis vectors resolve
to

|e3⟩ =
√

7

8

(
5x3 − 3x

)
|e4⟩ =

3

8
√
2

(
35x4 − 30x2 + 3

)
.

With an orthonormal basis on hand, we can ex-
pand an arbitrary function, such as h (x) = x4, in
terms of the basis as a linear combination:

|h⟩ =
4∑

j=0

hj |ej⟩ ,

where the components hj are given by

hj = ⟨ej |h⟩ .

By symmetry of h (x) = x4, all odd hj are zero, leav-
ing three calculations to perform:

h0 =
1√
2

∫ 1

−1

x4 dx =

√
2

5

h2 =

√
5

8

∫ 1

−1

(
3x6 − x4

)
dx =

√
8

5

2

7

h4 =
3

8
√
2

∫ 1

−1

(
35x8 − 30x6 + 3x4

)
dx =

1

35

8
√
2

3

As a reality check, we can readily verify that |h⟩ still
corresponds to x4, as all other xn terms cancel out:

|h⟩ =
4∑

j=0

hj |ej⟩

= h0 |e0⟩+ h2 |e2⟩+ h4 |e04⟩ = |ϕ4⟩

6 Normed Vector Space

6.1 Normed Vector Space

The self-inner product of a vector |a⟩, namely

∥a∥ =
√
⟨a|a⟩ ∈ R ≥ 0

with
∥a∥ = 0 ⇐⇒ |a⟩ = 0

is the norm of the vector |a⟩. It turns out that the
notion of ‘norm’ extends to vector spaces.

A vector space V is said to be normed if two of
its elements |a⟩, |b⟩, obey the triangle inequality:

∥a+ b∥ ≤ ∥a∥+ ∥b∥

A normed vector space must also contain the linearity
relation

∥αa∥ =
√
⟨αa|αa⟩ = |α| ∥a∥

for a complex scalar α.

6.2 Two-Dimensional Systems

Maximum as Norm

Consider the vector space R2, i.e. pairs of real num-
bers (x, y). Let us show that the ‘maximum’ function

∥(x, y)∥m = max {|x| , |y|}

is a norm on R2.
Taking two vectors

|a⟩ = (x1, y1)

|b⟩ = (x2, y2) ,

the ‘max’ function tells us

∥a+ b∥m = max (|x1 + x2| , |y1 + y2|) .

Note from the triangle inequality that the arguments
sent to max {} function obey

|x1 + x2| ≤ |x1|+ |x2|
|y1 + y2| ≤ |y1|+ |y2| .

Also observe that |a⟩, |b⟩ are subject to

|x1| ≤ ∥a∥m
|y1| ≤ ∥a∥m
|x2| ≤ ∥b∥m
|y2| ≤ ∥b∥m .

Summing the x-equations and the y-equations, we
find

|x1|+ |x2| ≤ ∥a∥m + ∥b∥m
|y1|+ |y2| ≤ ∥a∥m + ∥b∥m .
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Tracing back the inequality symbols, we may fi-
nally write

∥a+ b∥m = max (|x1 + x2| , |y1 + y2|)
≤ max (|x1|+ |x2| , |y1|+ |y2|)
≤ max (∥a∥m + ∥b∥m, ∥a∥m + ∥b∥m)

≤ ∥a∥m + ∥b∥m ,

satisfying a requirement of a norm.
To complete the job we also establish a linearity

relation:

∥αa∥m = max (|αx1| , |αy1|)
= |α|max (|x1| , |y1|)
= |α| ∥a∥m

Sum as Norm

Consider the (same) vector spaceR2, i.e. pairs of real
numbers (x, y). Let us show that the ‘sum’ function

∥(x, y)∥s = |x|+ |y|

is a norm on R2.
Taking the two vectors

|a⟩ = (x1, y1)

|b⟩ = (x2, y2) ,

the ‘sum’ function gives, using the same identities as
above,

∥a+ b∥s = |a|+ |b|
= |x1 + y1|+ |x2 + y2|
≤ |x1|+ |y1|+ |x2|+ |y2|
≤ ∥a∥m + ∥b∥m .

To check for linearity, we write

∥αa∥s = |αx1|+ |αy1|
= |α| (|x1|+ |y1|)
= |α| ∥a∥s .

Unit Ball

In any vector space V, the unit ‘ball’ B1 is defined as

B = {|a⟩ ∈ V : ∥a∥ ≤ 1} .

Plotting the the ‘max’ function in the xy-plane, the
unit ball resolves to a square frame of side 1, as
max (a) = 1 in the unit ball. In terms of the ‘sum’
function, the ball resolves to a filled diamond with
points at (0,±1) and (±1, 0), generated by |x|+ |y| ≤
1.

6.3 Identities

Cauchy-Bunyakovsky-Schwarz Inequality

There is a important fact called the Cauchy-
Bunyakovsky-Schwarz Inequality that must be estab-
lished.

For two vectors |a⟩, |b⟩, consider the nonzero sum
|a⟩ − λ |b⟩, or for short, |a− λb⟩ ̸= |0⟩. Now expand
the norm of this vector:

∥a− λb∥2 = ⟨a− λb|a− λb⟩
= ∥a∥2 − λ ⟨a|b⟩ − λ∗ ⟨b|a⟩+ λ2|b∥2

Next choose

λ =
⟨b|a⟩
∥b∥2

,

and the above becomes

∥a− λb∥2 = ∥a∥2 − ⟨b|a⟩
∥b∥2

⟨a|b⟩

− ⟨a|b⟩
∥b∥2

⟨b|a⟩+ ⟨a|b⟩ ⟨b|a⟩
∥b∥2���∥b∥2 �

�|b∥2 .

The last two terms cancel exactly, and the norm
on the left is defined to be positive and real. What’s
left is

∥a∥2 − ⟨a|b⟩ ⟨b|a⟩
∥b∥2

> 0 ,

which simplifies to a very powerful result:

|⟨a|b⟩| ≤ ∥a∥∥b∥

Triangle Inequality

For two vectors |a⟩, |b⟩, consider the nonzero sum
|a+ λb⟩ ≠ |0⟩. Expand the norm of this vector,

∥a+ λb∥2 = ⟨a− λb|a+ λb⟩
= ∥a∥2 + λ ⟨a|b⟩+ λ∗ ⟨b|a⟩+ λ2|b∥2

= ∥a∥2 + 2Re (λ ⟨a|b⟩) + λ2|b∥2 ,

and let λ = 1:

∥a+ b∥2 = ∥a∥2 + 2Re (⟨a|b⟩) + |b∥2

By the Cauchy-Bunyakovsky-Schwarz inequality,
the middle term is less than ∥a∥∥b∥:

∥a+ b∥2 ≤ ∥a∥2 + 2∥a∥∥b∥+ |b∥2

≤ (∥a∥+ |b∥)2

Take a final square root of both sides and the proof
is done.
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Pythagorean Theorem

In the special case ⟨a|b⟩ = 0, the triangle inequality
reduces to the Pythagorean theorem:

∥a+ b∥2 = ∥a∥2 + ∥b∥2

Parallelogram Law

For two vectors |a⟩, |b⟩ and the linear combinations
|a+ b⟩, |a− b⟩, there exists a parallelogram law con-
cerning vector addition:

∥x+ y∥2 + ∥x− y∥2 = 2
(
∥x∥2 + ∥y∥2

)
To prove this, write out the norm of |a+ b⟩ and
|a− b⟩

∥a+ b∥2 = ∥a∥2 + ∥b∥2 + ⟨a|b⟩+ ⟨b|a⟩
∥a− b∥2 = ∥a∥2 + ∥b∥2 − ⟨a|b⟩ − ⟨b|a⟩ ,

and add the resulting equations to finish the proof.
A complementary result comes from subtracting

the equations:

∥a+ b∥2 − ∥a− b∥2 = 4 Re (⟨a|b⟩)

One may imagine what combination on the left yields
Im (⟨a|b⟩) on the right. It’s straightforward to show
that the job is done by:

i∥a+ ib∥2 − i∥a− ib∥2 = 4 Im (⟨a|b⟩)

Polar Identity

The sum of 4 Re (⟨a|b⟩) and 4 Im (⟨a|b⟩), each given
above, leads to the polar identity. First note that

4 Re (⟨a|b⟩) + 4 Im (⟨a|b⟩) = 4 (⟨a|b⟩) ,

which yields the identity

4 (⟨a|b⟩) = ∥a+ b∥2 − ∥a− b∥2

+ i∥a+ ib∥2 − i∥a− ib∥2

Problem 1
Use the Cauchy-Bunyakovsky-Schwarz inequality

to show that

1 <

∫ π/2

0

√
sin (x) dx <

√
π

2
.

Hint: For the left, establish

sin (x) ≤
√
sin (x) ≤

√
x

and integrate, remembering∫ π/2

0

sin (x) dx = 1 .

For the right, associate a =
√
sin (x) and b = 1 so

that ⟨a|a⟩ = 1 and ⟨b|b⟩ = π/2.

7 Countably Finite System

7.1 Convergent Sequence

Suppose V is a normed vector space. The sequence
of vectors

{|aj⟩ ∈ V} : j = (1, 2, 3, . . . )

is said to be convergent to the vector |a⟩ if

∀ kϵ : ∃ ϵ > 0

such that if k > kϵ, then

∥a− ak∥ < ϵ .

This statement inspires a definition of a convergent
vector:

|a⟩ = lim
k→∞

|ak⟩

7.2 Cauchy Sequence

The (same) sequence of vectors {|aj⟩ ∈ V} qualifies
as a Cauchy sequence if

∀ kϵ : ∃ ϵ > 0 ,

then

∥am − an∥ < ϵ

provided that m,n > kϵ.

It’s easy to show that any convergent sequence
qualifies as a Cauchy sequence. For two vectors |am⟩,
|an⟩, we know

∥a− am∥ < αϵ

∥a− an∥ < βϵ

for two parameters α, β > 0 ∈ R. Adding each, we
have

∥a− am∥+ ∥an − a∥ < (α+ β) ϵ ,

which becomes, by the triangle inequality,

∥a− am + an − a∥ < ϵ ,

reducing to the fingerprint of a Cauchy sequence:

∥am − an∥ < ϵ



8. COUNTABLY INFINITE SYSTEM 13

7.3 Complete Space

A normed vector spaces in which all Cauchy se-
quences converge is called a complete space, also
known as a Banach space. In terms of an orthonormal
basis, an arbitrary vector is given by

|a⟩ =
n∑

j=1

aj |ej⟩ ,

where clearly

∥a∥ =

√
|a|21 + |a|22 + · · ·+ |a|2n .

We may further consider a vector |b⟩ that is itself
a Cauchy sequence of vectors |a(k≤m)⟩ such that

|b⟩ =
m∑

k=1

|a(k)⟩ =
n∑

j=1

m∑
k=1

a
(k)
j |ej⟩ =

n∑
j=1

bj |ej⟩ ,

where each coefficient bj is itself a Cauchy sequence
of the complex coefficients aj :

bj =

m∑
k=1

a
(k)
j

7.4 Supremum

Consider the complete infinite-dimensional space Cab
of complex-valued functions f (x) : x ∈ [a, b]. Here
we define the ‘supremum’ function

∥f∥sup = max {|f (x)| : x ∈ [a, b]} .

The ‘sup’ norm guarantees homogeneous convergence
of a Cauchy sequence of functions f (k) (x) to a single
function f (x).

Unlike other norms we’ve encountered, the ∥f∥sup
does not bear a notion of inner product. Choosing a
trivial example f (x) = cosx, g (x) = x in the interval
x ∈ [a, b], we have

∥f∥sup = 1

∥g∥sup = π

∥f + g∥sup = 1 + π

∥f − g∥sup = −1− π ,

which violates the parallelogram law:

∥f + g∥2sup + ∥f + g∥2sup ̸= 2
(
∥f∥2sup + ∥g∥2sup

)
(1 + π)

2
+ (−1− π)

2 ̸= 2
(
1 + π2

)
4π ̸= 0

7.5 Hilbert Space

A complete inner product space is called a Hilbert
space, and we have shown that all finite-dimensional
vector spaces are Hilbert spaces. The ‘supremum’
norm is a unique example of a complete space that is
not a Hilbert space.

8 Countably Infinite System

The results of the previous section readily generalize
to handle a countably infinite basis.

8.1 Fourier Series

Consider an orthonormal basis {|ej⟩} containing an
infinite number of basis vectors. An infinite linear
combination

|x⟩ =
∞∑
j=1

⟨ej |x⟩ |ej⟩

is the Fourier series of the vector |x⟩ in the basis
{|ej⟩}, where ⟨x|ej⟩ are Fourier coefficients.

8.2 Bessel Inequality

Let us show that any partial sum of a Fourier series
is a Cauchy sequence.

Truncating the series at the nth term gives

|x(n)⟩ =
n∑

j=1

⟨ej |x⟩ |ej⟩

as a partial sum. Another truncation of the series
with m > n can be written

|x(m)⟩ = |x(n)⟩+
m∑

j=n+1

⟨ej |x⟩ |ej⟩ ,

where the norm of the difference of the two vectors
reads

∥x(m) − x(n)∥2 =

m∑
j=n+1

|⟨ej |x⟩|2 .

The above series is assured to be a positive real num-
ber, reducing the problem to showing that

∞∑
j=1

|⟨ej |x⟩|2

does not diverge.
Proceed by writing out the m→ ∞ case, giving

⟨x− x(n)|x− x(n)⟩ = ∥x∥2 −
n∑

j=1

|⟨ej |x⟩|2 ≥ 0 .
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Reading the equation form the right, we arrive at the
Bessel inequality

n∑
j=1

|⟨ej |x⟩|2 ≤ ∥x∥2 ,

proving that a partial sum of a Fourier series is a
Cauchy sequence. Reading the above from left to
right, we also have

∥x− x(n)∥ =

√√√√∥x∥2 −
n∑

j=1

|⟨ej |x⟩|2 ,

which in the case of convergence (n → ∞), we get
the Parseval relation:

∥x∥2 =

∞∑
j=1

|⟨ej |x⟩|2

8.3 Inner Product Space of Functions

The space C2 [a, b] of the inner product of two com-
plex functions was written as

⟨f |g⟩ =
∫ b

a

f∗ (z) g (z) dz .

For certain cases of the function f (z), for instance
a discontinuous function, the space C2 [a, b] is easily
shown to not be complete with respect to the usual
notion of norm,

∥f∥ =

√∫ b

a

|f |2 dz ,

implying that a Hilbert space of functions must be
carefully discerned.

According to the Riesz-Fisher theorem, we may
define a Hilbert of functions with a countably infi-
nite basis, denoted L2 [a, b]. Furthermore, the Stone-
Weierstrass theorem states that the set of polyno-
mials {|xj⟩} with j = 1, 2, . . . forms a basis in
L2 [a, b]. Of course, we found such vectors to be non-
orthogonal, corrected by the Gram-Schmidt process
to produce the Legendre polynomials.

9 Operators

9.1 Definition

An operator L is a function that ‘acts on’ a vector
|x⟩ ∈ V to create a new vector

L |x⟩ = |Lx⟩ = |y⟩

that may or may not live in V.

9.2 Linear Operator

An operator that maps a vector to its own vector
space V is said to be linear if the relation

L |αu+ βv⟩ = αL |u⟩+ βL |v⟩

is satisfied, where α, β are complex scalars. Needless
to mention, scalar multiplication is a special case of
a linear operator.

Linearity Check

Interpreting vectors as functions, we can check
whether certain operations for a function f (x) qualify
as linear operators. For example, the transformation

L (f (x)) = sin (f (x))

fails when tested for linearity:

L (αf (x)) = sin (αf (x)) = sinα cos (f (x))

+ cosα sin (f (x))

̸= αL (f (x))

The less trivial example

L (f (x)) =

∫ 1

0

sin (xy) f (y) dy

does qualify as a linear operator, as the function f
enters the integral linearly. Explicitly, we have

L (αf (x) + βg (x))

=

∫ 1

0

sin (xy) (αf (y) + βg (y)) dy

= α

∫ 1

0

sin (xy) f (y) dy + β

∫ 1

0

sin (xy) g (y) dy

= αL (f (x)) + βL (g (x)) .

9.3 Adjoint Operator

Given an operator L, the adjoint operator L†, is de-
fined such that

⟨b|L |a⟩ = ⟨a|L† |b⟩

readily implying:

⟨b|L |a⟩ = ⟨L†b|a⟩(
L†)† = L

Two linear operators A and B always obey the
relation

(AB)
†
= B†A† ,

proven by writing ⟨u|AB |v⟩ two different ways and
comparing each right-hand result:

⟨u|AB |v⟩ = ⟨(AB)
†
u|v⟩

⟨u|AB |v⟩ = ⟨A†u|Bv⟩ = ⟨B†A†u|v⟩
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9.4 Hermitian Operator

An operator that is its own adjoint operator is called
self-adjoint, also known as Hermitian:

L = L† → ⟨b|La⟩ = ⟨Lb|a⟩

If L is Hermitian, the operator L† is called the Her-
mitian conjugate to L.

For self-adjoint operators, the quantity

λ = ⟨b|L |a⟩

is always real-valued.
We may also inquire whether the product AB of

two Hermitian operators is itself Hermitian. Starting
with (AB)

†
= B†A†, let A = A† and B = B† to find

AB =
(
B†A†)† = (BA)

†
,

telling us AB is Hermitian only if AB = BA.

9.5 Anti-Hermitian Operator

An Anti-Hermitian operator is one that obeys

L = −L† .

For two Hermitian operators A, B, it turns out that
AB −BA is anti-Hermitian:

(AB −BA)
†
= (AB)

† − (BA)
†

= B†A† −A†B† = BA−AB

Partial Derivative Operator

The partial derivative operator

A =
∂

∂x

is an anti-Hermitian operator for certain boundary
conditions. Consider two arbitrary function f (x),
g (x) in the domain Ω where each function is zero
on the boundary ∂Ω.

Then, writing out ⟨f |A |g⟩ two different ways
gives

⟨f |Ag⟩ = ⟨A†f |g⟩∫
Ω

f∗∂xg dx =

∫
Ω

(∂x)
†
f∗g dx .

Integrating the left side by parts, we write

f∗g
∣∣
∂Ω

−
∫
Ω

∂xf
∗g dx =

∫
Ω

(∂x)
†
f∗g dx ,

where the boundary term equals zero by construction,
indicating A to be anti-Hermitian.

9.6 Projector

For any fixed vector |a⟩, the combination

Pa = |a⟩ ⟨a|

is called the projector of |a⟩. The projector does noth-
ing on its own, but waits for a bra- or ket-vector to
interact with the left or the right side, respectively.
Acting on a vector |x⟩, we have

Pa |x⟩ = |a⟩ ⟨a|x⟩ = ⟨a|x⟩ |a⟩ ,

which is |a⟩ multiplied by a scalar.

Properties

The projector is a linear operator, easily verified by

Pa |αu+ βv⟩ = |a⟩ ⟨a| (|αu⟩+ |βv⟩)
= |a⟩ (α ⟨a|u⟩+ β ⟨a|v⟩)
= α ⟨a|u⟩ |a⟩+ β ⟨a|v⟩ |a⟩
= αPa |u⟩+ βPa |v⟩ ,

and is also Hermitian:

⟨u|Pav⟩ = ⟨u| (⟨a|v⟩ |a⟩)
= ⟨a|v⟩ ⟨u|a⟩
= (⟨u|a⟩ ⟨a|) |v⟩
= ⟨Pau|v⟩

9.7 Identity Operator

Consider any vector |x⟩ in the vector space V spanned
by the basis vectors {|ek⟩}. Choosing any basis vector
|ej⟩, apply a projector

Pej = |ej⟩ ⟨ej |

to |x⟩ to get

Pej |x⟩ = ⟨ej |x⟩ |ej⟩ = xj |ej⟩ .

Summing over the index j, we find∑
j

Pej

 |x⟩ =
∑
j

xj |ej⟩ = |x⟩ .

The parenthesized quantity that leaves the vector
unchanged is called the identity operator I. That is,

I |x⟩ = |x⟩ ,

where
I =

∑
j

|ej⟩ ⟨ej |

is also called the completeness relation for the basis.
(It is possible for a basis to be incomplete, in which
case the above sum is not equivalent to an identity
operator.)
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9.8 Commutator

For any two operators A and B, the difference

[AB] = AB −BA

defines their commutator, also known as the commu-
tation relation. The result of [AB] tells us which
‘extra terms’ emerge when swapping two operators.
When the commutator evaluates to zero, the opera-
tors are said to commute.

For example, consider two operators

A =
∂

∂x
B = x

that can act on a function f (x). Allowing the com-
mutator to act on f (x), we write

(AB −BA) |f⟩ = ∂x (x |f⟩)− x (∂x |f⟩)
= |f⟩+ x∂x |f⟩ − x∂x |f⟩
= |f⟩ ,

telling us that that operators on hand do not com-
mute, but instead obey

AB −BA = I .

10 Eigen-Calculations

If an operator L applied to a vector |x⟩ results in a
parallel vector λ |x⟩, then |x⟩ is called an eigenvector
of L, and λ is the corresponding eigenvalue:

L |x⟩ = λ |x⟩

10.1 Real Eigenvalues

It’s straightforward to show that eigenvalues are al-
ways real if L is self-adjoint (Hermitian):

⟨x|L |x⟩ = λ ⟨x|x⟩ → λ =
⟨x|L |x⟩
⟨x|x⟩

To establish this, write the eigenvalue problem

L |x⟩ = λ |x⟩ ,

and project an arbitrary vector ⟨y| to write

⟨y|L |x⟩ = λ ⟨y|x⟩ ,

equivalent to

⟨L†y|x⟩ = λ ⟨y|x⟩ .

Take the complex conjugate of each side to get

⟨L†y|x⟩ = λ∗⟨y|x⟩ ,

or
⟨x|L†y⟩ = ⟨x|L† |y⟩ = λ∗ ⟨x|y⟩

Finally, let us set |y⟩ = |x⟩, and without loss of
generality assume |x⟩ is normalized, so we may take
⟨y|x⟩ = ⟨x|y⟩ = 1. After simplifying, we are lift with

⟨x|L |x⟩ = λ

⟨x|L† |x⟩ = λ∗

If L is self-adjoint, we automatically have L = L†.
This can only mean λ = λ∗, thus all λ are real.

10.2 Orthogonal Eigenvectors

For a linear self-adjoint operator L, we can show that
two distinct eigenvalues λ1, λ2 correspond to two or-
thogonal eigenvectors.

Start with

⟨x2|L |x1⟩ = λ1 ⟨x2|x1⟩
⟨x1|L |x2⟩ = λ2 ⟨x1|x2⟩ ,

and complex-conjugate the second equation to elimi-
nate the ⟨x2|x1⟩-term:

⟨x2|L |x1⟩ =
(
λ1
λ2

)
⟨x1|L |x2⟩ =

(
λ1
λ2

)
⟨x2|L |x1⟩

For λ1 ̸= λ2, the only reasonable conclusion is

⟨x2|L |x1⟩ = 0 → ⟨x1|x2⟩ = 0 ,

meaning |x1⟩, |x2⟩ must be orthogonal.

10.3 Equal Eigenvalues

If n eigenvalues are equal, one speaks of n-fold de-
generacy. In this case, the corresponding eigenvec-
tors are not necessarily orthogonal, in which case the
vectors form a vector subspace of the original vector
space that might admit its own orthonormal basis.

10.4 Calculating Eigenvectors

When the form of L is given, it’s usually possible to
solve for all eigenvalues λj . With n of these these
established, the next move is to calculate the eigen-
vectors directly using

L |x(j)⟩ = λj |x(j)⟩
j = 1, 2, . . . , n
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Whether or not the eigenvectors form an orthonor-
mal basis, we may express an arbitrary vector |u⟩ as
a linear combination:

|u⟩ =
∑
j

Cj |x(j)⟩

Recall that the eigenvectors |x(j)⟩ are only orthogonal
if L is self-adjoint, i.e. Hermitian.

10.5 Time Derivative Operators

Consider a vector space V of dimension n admitting
a fixed orthonormal basis {|ej⟩} where j = 1, . . . , n.
A time-varying vector |u (t)⟩ is a linear combination
of time-varying coefficients such that

|u (t)⟩ =
∑
j

uj (t) |ej⟩ .

Single Time Derivative Operator

Now we introduce the single time-derivative operator

L =
∂

∂t
= ∂t .

If we let L act on an eigenvector |x(j) (t)⟩, the re-
sult is equal to |x (t)⟩ multiplied by its corresponding
eigenvalue λ. That is,

L |x (t)⟩ = λ |x (t)⟩ ,

or ∑
j

∂txj (t) |ej⟩ =
∑
j

λxj (t) |ej⟩ ,

implying n copies of the same separable differential
equation

∂txj (t) = λxj (t)

for each index j.
Elementary methods give the solution for each

equation

xj (t) = xj (t = 0) eλt = x0j e
λt ,

telling us

|x (t)⟩ =
∑
j

x0j e
λt |ej⟩

= eλt
∑
j

x0j |ej⟩ = eλt |x0⟩ .

Perhaps not surprisingly, the time dependence
evolves exponentially in time.

As a matter of technicality, a vector |x (t)⟩ is best
described as an eigenfunction, as the operator L = ∂t
is trivial for time-independent vectors.

Double Time Derivative Operator

We also consider the double time-derivative operator
L = ∂tt. Using the same setup, it follows that each
xj is governed by the differential equation

∂ttxj (t) = λxj (t) ,

whose solution is governed by λ.
For λ = 0, the coefficients evolve linearly in time:

λ = 0

xj (t) = x0j + x1j t

For λ ̸= 0, we have a linear combination of exponen-
tial terms:

λ ̸= 0

xj (t) = x0j e
√
λt + x1j e

−
√
λt

11 Operator as Matrix

Consider a vector |x⟩ living in vector space V that
admits an orthonormal basis {|ej⟩}. As a linear com-
bination of coefficients {xj}, such a vector is written

|x⟩ =
∑
j

xj |ej⟩ .

Suppose another vector |y⟩, which is itself a linear
combination of coefficients {yj} in the same basis,
arises by applying a linear operator A onto |x⟩:

|y⟩ = A |x⟩ =
∑
j

yj |ej⟩

The question now is, what can we discern about the
operator A?

11.1 Matrix Elements

We proceed by ‘solving for’ any component yj , which
entails taking the inner product with a basis vector
⟨ek ̸=j | to get

⟨ek|A |x⟩ =
∑
j

⟨ek| yj |ej⟩ = yjδjk = yk ,

implying

yj = ⟨ej |A |x⟩ = ⟨ej |A
∑
k

xk |ek⟩

=
∑
k

⟨ej |A |ek⟩xk .
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That is, any yj depends on each member of {xj} mul-
tiplied by a number

Ajk = ⟨ej |A |ek⟩

called a matrix element.
The set of matrix elements {Ajk} is the matrix

represented by the operator A. To restore the opera-
tor A in terms of its elements, begin with the identity
A = IAI and write out each identity operator explic-
itly to get

A = IAI =
∑
j

∑
k

|ej⟩ ⟨ej |A |ek⟩ ⟨ek|

=
∑
j

∑
k

|ej⟩Ajk ⟨ek| .

Here we emphasize that the choice of basis vectors
has direct impact on the components Ajk.

11.2 Matrix Algebra

Matrix Addition

Two operators A and B readily add to form a new
operator C such that

A |x⟩+B |x⟩ = C |x⟩
Ajk +Bjk = Cjk ,

which of course requires A, B to be of equal dimen-
sion.

Scalar Multiplication

A scalar λ can be ‘multiplied into’ an operator A by
scaling each component to create another operator B:

B = λA

Bjk = λAjk

Matrix Multiplication

Two operators A and B can ‘multiply’ to form a new
operator C such that

A (B |x⟩) = C |x⟩
AB = C ,

which is generally an associative operation, but not
commutative:

(AB)C = A (BC)

AB ̸= BA

The formula for matrix multiplication is calcu-
lated by brute force. C = AB expands to

C =
∑
j

∑
k

∑
j′

∑
m

|ej⟩Ajk ⟨ek|ej′⟩Bj′m ⟨em|

C =
∑
j

∑
m

|ej⟩

(∑
k

AjkBkm

)
⟨em| ,

telling us

Cjm =
∑
k

Ajk Bkm .

11.3 Matrix Transpose

For a given operator A with components Ajk, the
transpose of A, denoted AT , has components Akj .
That is, the transpose swaps rows ↔ columns. Using
the matrix multiplication rule, it’s straightforward to
show that the transpose of the product of two matri-
ces equals the product of the individually transposed
matrices in reversed order:

(AB)
T
= BTAT

It’s also straightforward to show the following de-
terminant identity:

det
(
A†) = det

(
(A∗)

T
)
= (det (A))

∗

11.4 Matrix Trace

For operators A represented by a square (n× n) ma-
trix, a special quantity exists called the trace of the
matrix. The trace is defined as the sum of the com-
ponents along the diagonal:

trA = A11 +A22 + · · ·+Ann =

n∑
k=1

Akk

12 Hermitian Matrix

Recall that an operator A that is it’s own adjoint
operator, meaning A = A† as appearing in the defi-
nition

⟨y|A |x⟩ = ⟨x|A† |y⟩ ,

where
|x⟩ , |y⟩ ∈ V ,

is a Hermitian operator, synonymous with Hermitian
matrix, where A† is the Hermitian conjugate.

In component form, we note that

⟨y|Ax⟩ =
∑
ij

Aij y
∗
i xj ,
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where meanwhile, an equivalent statement is

⟨x|A†y⟩ =
∑
ij

(
A†

ji

)∗
xjy

∗
i ,

telling us that the components of a Hermitian oper-
ator obey

A∗
ij = A†

ji .

Anti-Hermitian Matrix

The properties of anti-Hermitian operators also ex-
tend to matrices. An anti-Hermitian matrix satisfies

A† = −A
A∗

ij = −Aij .

As a corollary, we note that if a matrix A is Hermi-
tian, then iA is anti-Hermitian, and vise-versa.

Symmetric Matrix

When the components of a Hermitian matrix are all
real-valued, the matrix is symmetric. Work this from
the identity

A∗
ij = A†

ji ,

and notice that the complex conjugate A∗ is just A
again:

Aij = A†
ji

Since A = A† by definition, we further have

Aij = Aji ,

telling us A is symmetric.
As a special case of the Hermitian operator, we

automatically have that the eigenvectors correspond-
ing to non-equal eigenvalues of a symmetric matrix
are orthogonal.

12.1 Commuting Operators

Now we derive the important fact that commuting
Hermitian operators share an orthonormal basis. To
begin, consider an operator A admitting an eigenvec-
tor |ψn⟩ with corresponding eigenvalue an, and also
a second operator B admitting an eigenvector |ϕn⟩
with corresponding eigenvalue bn:

A |ψn⟩ = an |ψn⟩
B |ϕn⟩ = bn |ϕn⟩

Our key assumption is that any |ψn⟩ can be writ-
ten as a linear combination of {|ϕn⟩}, and vice-versa,

which assumes each vector is a member of the same
basis:

|ψn⟩ =
∑
m

γmn |ϕm⟩

|ϕn⟩ =
∑
m

γ̃mn |ψm⟩ .

In the above, γ, γ̃ are matrix coefficients. We gain a
restriction on γ, γ̃ by the substitution

|ψn⟩ =
∑
m

γmn

∑
m′

γ̃m′m |ϕm′⟩

=
∑
m′

(∑
m

γmnγ̃m′m

)
|ϕm′⟩ ,

implying the delta relation

δm′n =
∑
m

γmnγ̃m′m .

To gain two more delta relations, compute A |ψn⟩
two different ways to write

A |ψn⟩ = A
∑
m

γmn |ϕm⟩

= A
∑
m

∑
m′

γmnγ̃m′m |ψm′⟩

and

an |ψn⟩ =
∑
m′

∑
m

γmnγ̃m′mam′ |ψm′⟩ .

Comparing each ride side we find

1

an

∑
m

γmnγ̃m′mam′ = δm′n ,

and a similar exercise for for B |ϕn⟩ yields

1

bn

∑
m

γmnγ̃m′mbm′ = δm′n .

Anticipating a commutation calculation, let the
operator B act on A |ψn⟩

BA |ψn⟩ = B
∑
m′

∑
m

γmnγ̃m′mam′ |ψm′⟩

=
∑
m′

∑
α

∑
m

γmnγ̃m′mam′γαm′bα |ϕα⟩

=
∑
m′

∑
ρ

∑
α

γ̃ραγαm′bαδnm′an |ψρ⟩

=
∑
m′

∑
ρ

δρm′δnm′anbρ |ψρ⟩

= anbn |ψn⟩ ,

which simplifies nicely.



20 CHAPTER 1. VECTOR SPACES

Similarly, we must let A act on B |ψn⟩. Begin by
calculating B |ψn⟩ to get

B |ψn⟩ = B
∑
m

γmn |ϕm⟩

=
∑
m

γmnbm |ϕm⟩

=
∑
m

∑
m′

γmnbmγ̃m′m |ψm′⟩ .

The rest goes as

AB |ψn⟩ = A
∑
m

∑
m′

γmnbmγ̃m′m |ψm′⟩

=
∑
m

∑
m′

γmnbmγ̃m′mam′ |ψm′⟩

=
∑
m′

δnm′bnam′ |ψm′⟩

= anbn |ψn⟩ .

To finish, let us write the commutator of A and
B to conclude

[AB] |ψn⟩ = (AB −BA) |ψn⟩
= (anbn − anbn) |ψn⟩ = 0 ,

which evaluates to zero. That is, we get a zero com-
mutator of two operators whose eigenvectors share an
orthonormal basis.

13 Matrix in Hilbert Subspace

13.1 Laplacian Operator

In the Hilbert space of functions L2 [−1, 1], one can
determine the components of the Laplacian operator

B = ∂xx

of a subspace spanned by an orthonormal basis.
For instance, taking

|e1⟩ =
1√
2

|e2⟩ =
1√
2

(
sin
(π
2
x
)
+ cos (πx)

)
|e3⟩ =

1√
2

(
sin
(π
2
x
)
− cos (πx)

)
,

the corresponding matrix B is calculated from

B =

⟨e1|B |e1⟩ ⟨e1|B |e2⟩ ⟨e1|B |e3⟩
⟨e2|B |e1⟩ ⟨e2|B |e2⟩ ⟨e2|B |e3⟩
⟨e3|B |e1⟩ ⟨e3|B |e2⟩ ⟨e3|B |e3⟩

 ,

where

⟨ej |B |ek⟩ =
∫ 1

−1

e∗j (x) ∂xxek (x) dx .

Carrying out each integral, find

B =
−π2

8

0 0 0
0 5 −3
0 −3 5

 ,

which is a Hermitian matrix by inspection.

13.2 Two Operators

In the (same) Hilbert space of functions L2 [−1, 1],
one can determine the components of a derivative op-
erator A = ∂x and a Laplacian operator B = ∂xx of
a subspace spanned by an orthonormal basis.

Using an example orthonormal basis

|e1⟩ =
1√
2

|e2⟩ =
1√
2
sin (πx)

|e3⟩ =
1√
2
cos (πx) ,

we first check that the subset is closed under opera-
tions A:

A |e1⟩ = ∂x

(
1√
2

)
= 0

A |e2⟩ = ∂x

(
1√
2
sin (πx)

)
=

π√
2
cos (πx) = π |e3⟩

A |e3⟩ = ∂x

(
1√
2
cos (πx)

)
= − π√

2
sin (πx) = −π |e2⟩

Each nontrivial result can be written in terms of the
original basis vectors. Therefore A |x⟩, where |x⟩ is an
arbitrary linear combination of the basis vectors, will
result in a vector in the same subspace. Expressing
A as a matrix requires calculating Ajk = ⟨ej |A |ek⟩,
resulting in

A = π

0 0 0
0 0 −1
0 1 0

 ,

which is a not a Hermitian matrix.
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Repeating the same exercise using B = ∂xx re-
sults (of course) in a Hermitian matrix

B = −π2

0 0 0
0 1 0
0 0 1

 .

Interestingly, since the operation ∂xx is two instances
of ∂x, it should follow that AA = B, easily checked
by matrix multiplication:

π2

0 0 0
0 0 −1
0 1 0

0 0 0
0 0 −1
0 1 0

 = −π2

0 0 0
0 1 0
0 0 1


13.3 Pauli Matrices

Consider the set of three 2× 2 Hermitian matrices

σ1 =

[
0 1
1 0

]
σ2 =

[
0 −i
i 0

]
σ3 =

[
1 0
0 −1

]
called the Pauli matrices, where i =

√
−1. Interest-

ingly, each matrix (k = 1, 2, 3) has the property

σkσk = I ,

where I is the two-dimensional identity matrix. As a
consequence, it follows that

σ2m
k = I

σ2m+1
k = σk

for integer m. Furthermore, we have

σ2σ3 = iσ1

σ3σ1 = iσ2

σ1σ2 = iσ3 .

Eigenvectors and Eigenvalues

Eigenvectors and eigenvalues of the Pauli matrices
are determined by

σk |x⟩ = λk |x⟩ .

Working with σ1 as an example, we write[
0 1
1 0

] [
x1
x2

]
= λ1

[
x1
x2

]
,

giving two equations

x2 = λ1x1

x1 = λ1x2 ,

having two nontrivial branches λ1 = 1 and λ1 = −1,
implying either x1 = x2, or respectively, x1 = −x2.

By standard means, find one normalized eigenvec-
tor per eigenvalue:

λ1 = +1 → |x(+)⟩ = 1√
2

[
1
1

]
λ1 = −1 → |x(−)⟩ = 1√

2

[
1
−1

]
Repeating the exercise on σ2 |y⟩ = λ2 |y⟩, and a

third time on σ3 |z⟩ = λ3 |z⟩, we find the eigenvalues
are always λk = ±1. The corresponding normalized
eigenvectors turn out to be

|y(+)⟩ = 1√
2

[
i
1

]
|y(−)⟩ = 1√

2

[
1
i

]
|z(+)⟩ = 1√

2

[
1
0

]
|z(−)⟩ = 1√

2

[
0
1

]
.

14 Functions of Operators

14.1 Motivation

Recall that the single time derivative operator L =
∂t as it appears in the problem L |x⟩ = λ |x⟩ has
exponentially-evolving eigenvectors |x (t)⟩ = eλt |x0⟩,
where |x0⟩ is the initial state in a fixed orthonormal
basis. The more general statement

|x (t)⟩ = eLt |x0⟩

leads to the same solution, easily shown by taking a
time derivative:

∂t |x (t)⟩ = L eLt |x0⟩ = L |x (t)⟩

14.2 Time Evolution Operator

The combination eLt is generally known as a time
evolution operator. The exponential function, despite
having an operator in its argument, readily expands
as

eLt =

∞∑
k=0

1

k!
(Lt)

k

= I + (Lt) +
1

2!
(Lt)

2
+

1

3!
(Lt)

3
+ · · · .



22 CHAPTER 1. VECTOR SPACES

Grouping even terms and odd terms separately,
the above reads

eLt =

(
I +

1

2!
(Lt)

2
+

1

4!
(Lt)

4
+ · · ·

)
+

(
Lt+

1

3!
(Lt)

3
+

1

5!
(Lt)

5
+ · · ·

)
.

Making the substitution L = −iH̃, we further have

e−iH̃t =

(
I − 1

2!

(
H̃t
)2

+
1

4!

(
H̃t
)4

− · · ·
)

− i

(
H̃t− 1

3!

(
H̃t
)3

+
1

5!

(
H̃t
)5

− · · ·
)
,

simplifying nicely to

e−iH̃t = cos
(
H̃t
)
− i sin

(
H̃t
)
,

giving away two more functions where an operator
may naturally embed.

14.3 Pauli Matrix Operators

In the special case that H̃ is equal to any of the Pauli
matrices {σk} with k = 1, 2, 3 up to a proportionality
constant µ such that H̃ = µσk, the above reduces to

e−iσkµt = I cos (µt)− iσk sin (µt) ,

which removes the operator from any infinite series.
Explicitly:

e−iσ1µt =

[
cos (µt) −i sin (µt)

−i sin (µt) cos (µt)

]
e−iσ2µt =

[
cos (µt) − sin (µt)
− sin (µt) cos (µt)

]
e−iσ3µt =

[
e−iµt 0
0 eiµt

]

15 Unitary Operators

Consider a vector space V admitting two different
sets of basis vectors {|ej⟩} and {|ẽj⟩}. In terms of
coefficients xj and x̃j , a given vector |x⟩ is a linear
combination in each basis:

|x⟩ =
∑
j

xj |ej⟩ =
∑
j

x̃j |ẽj⟩

Any coefficient(s) xj , which exist in the vector

space Ṽ, can be isolated by exploiting the orthogo-
nality between each |ej⟩ such that

xj = ⟨ej |x⟩ =
∑
k

⟨ej |xk |ẽk⟩ =
∑
k

x̃k ⟨ej |ẽk⟩ ,

which applies similarly to x̃j :

x̃j = ⟨ẽj |x⟩ =
∑
k

⟨ẽj |xk |ek⟩ =
∑
k

xk ⟨ẽj |ek⟩

15.1 Unitary Matrix

In component notation, the above has implicated two
matrices

Ujk = ⟨ẽj |ek⟩
Ũjk = ⟨ej |ẽk⟩ ,

which can be interpreted as a set of coordinate trans-
formation matrices that carry {xj} ∈ Ṽ → {x̃j} ∈ Ṽ,
and vice versa.

These matrices are intricately related, which we
first notice by the observation

Ũjk = ⟨ej |ẽk⟩ = ⟨ẽk|ej⟩ = U∗
kj = U†

jk ,

telling us each matrix is the other’s Hermitian conju-
gate (dropping component notation):

Ũ = U†

U = Ũ†

Now, the double transformation {xj} → {x̃j} →
{xj} (and vice versa) tells us that each combination

ŨU and UŨ is an identity matrix:

ŨU = I

UŨ = I

Combining the two previous results yields four iden-
tities:

U†U = I

UU† = I

ŨŨ† = I

Ũ†Ũ = I

Any operator satisfying the above equations is called
unitary.

15.2 Effect on Inner Product

An important consequence of unitary operators arises
when dealing with the inner product of two vectors
|x⟩, |y⟩ ∈ V. Calculating the inner product of U |x⟩
and U |y⟩, we find

⟨Ux|Uy⟩ = ⟨U†Ux|y⟩ = ⟨Ix|y⟩ = ⟨x|y⟩ ,

indicating that the inner product is unaffected by the
operations.

In most applications (namely in two- and three-
dimensional space), unitary operations correspond to
rotations and reflections of the coordinates {xj} ∈ Ṽ.
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15.3 Effect on Basis Vectors

Next, we examine how operator U acts directly on the
basis vectors {|ej⟩} ∈ V. Supposing we set |x⟩ = |ej⟩
and |y⟩ = |ek⟩, we find

⟨Uej |Uek⟩ = ⟨ej |ek⟩ = δjk ,

telling us that the combinations |Uej⟩ and |Uek⟩ are
members of a second orthogonal basis {|gj⟩} that can
be generated from the original {|ej⟩} via

|gj⟩ = U |ej⟩
j = 1, 2, 3, . . . , N .

As a matrix, recall that the operator U can be
written as

U =
∑
jk

|ej⟩Ujk ⟨ek| =
∑
jk

|ej⟩ ⟨ẽj |ek⟩ ⟨ek| ,

where the completeness relation

I =
∑
k

|ek⟩ ⟨ek|

reduces the above to

U =
∑
j

|ej⟩ ⟨ẽj | .

Right away, we find

U |ẽj⟩ =
∑
j

|ej⟩ ⟨ẽj |ẽj⟩ = |ej⟩ .

Similarly, we deduce

Ũ =
∑
j

|ẽj⟩ ⟨ej | ,

which leads to
Ũ |ej⟩ = |ẽj⟩ .

In other words, the matrix U takes the jth vector
from the primed basis and churns out the jth vector
from the unprimed basis. Or, the Ũ matrix takes the
jth vector from the unprimed basis and computes the
corresponding primed vector.

In component form, these results read:

|ek⟩ = U |ẽk⟩ =
∑
ij

|ẽi⟩Uij ⟨ẽj |ẽk⟩ =
∑
j

Ujk |ẽj⟩

|ẽk⟩ = Ũ |ek⟩ =
∑
ij

|ei⟩ Ũij ⟨ej |ek⟩ =
∑
j

Ũjk |ej⟩

Project ⟨ẽj | into the first equation and ⟨ej | into the
second to recover the component form of each matrix:

Ujk = ⟨ẽj |ek⟩ = ⟨ẽj |U |ẽk⟩
Ũjk = ⟨ej |ẽk⟩ = ⟨ej | Ũ |ek⟩

Sanity Check

For a sanity check, let us apply U to a vector |x⟩ ∈ V.
Calculating this, we have

U |x⟩ =
∑
jk

xk |ej⟩ ⟨ẽj |ek⟩

=
∑
j

(∑
k

Ujkxk

)
|ej⟩ = |x′⟩ ,

where

x′j =
∑
k

Ujkxk

is the rotated vector component in the same basis
{|ej⟩}.

15.4 Rotations

Two Dimensions

The simplest nontrivial case involving unitary opera-
tors addresses rotations in the two-dimensional plane.
Consider a Cartesian space spanned by the orthonor-
mal basis |e1⟩ = x̂, |e2⟩ = ŷ. A second orthonormal
basis {|ẽj⟩} is oriented at angle ϕ with respect with
respect to the original. In particular:

|ẽ1⟩ = cos (ϕ) |e1⟩+ sin (ϕ) |e2⟩
|ẽ2⟩ = − sin (ϕ) |e1⟩+ cos (ϕ) |e2⟩

Using the above formula for Ujk applied to stan-
dard two-dimensional geometry, we quickly find the
components of U to be

Uxx = ⟨ẽ1|e1⟩ = cosϕ

Uxy = ⟨ẽ1|e2⟩ = − sinϕ

Uyx = ⟨ẽ2|e1⟩ = sinϕ

Uyy = ⟨ẽ2|e2⟩ = cosϕ ,

and similarly for U† = Ũ :

Ũxx = ⟨e1|ẽ1⟩ = cosϕ

Ũxy = ⟨e1|ẽ2⟩ = sinϕ

Ũyx = ⟨e2|ẽ1⟩ = − sinϕ

Ũyy = ⟨e2|ẽ2⟩ = cosϕ

There is an important different between the two
operators. Matrix U calculates the components of a
rotated vector in a fixed basis. Matrix U† = Ũ trans-
forms the coordinates of a fixed vector when the basis
is rotated.
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Three Dimensions

In three dimensions, we extend the two-dimensional
case to write three matrices (presumably named after
aviation terms)

Rz (α) =

cos (α) − sin (α) 0
sin (α) cos (α) 0

0 0 1

 = ‘yaw’

Ry (β) =

 cos (β) 0 sin (β)
0 1 0

− sin (β) 0 cos (β)

 = ‘pitch’

Rx (γ) =

1 0 0
0 cos (γ) − sin (γ)
0 sin (γ) cos (γ)

 = ‘roll’ ,

where a general rotation of a vector in three dimen-
sions is the product

R = Rz (α)Ry (β)Rx (γ) .

Due to commutivity rules, the order in which the
matrices are applied does affect the result. Formally,
the above matrices correspond to an intrinsic rota-
tion, having Tait–Bryan angles α, β, γ. The domain
restriction on each angle is as follows:

0 ≤ α < 2π

0 ≤ β < π

0 ≤ γ < 2π

15.5 Effect on Operator

Now we examine what happens to the components
of an operator A when undergoing a change of basis
vectors summarized by

|x⟩ =
∑
j

xj |ej⟩ =
∑
j

x̃j |ẽj⟩ .

For some vector |x⟩ in the vector space V, the
operation A |x⟩ yields a vector |y⟩, also in V. Ex-
pressing this calculation in two different orthonormal
bases, we have ∑

j

Aijxj = yi∑
j

Ãij x̃j = ỹi .

Substituting

xj =
∑
k

x̃k ⟨ej |ẽk⟩

yi =
∑
k

ỹk ⟨ei|ẽk⟩

into the first equation, we end up with

AŨ |x̃⟩ = Ũ |ỹ⟩ ,

where multiplying both sides by U gives

UAŨ |x̃⟩ = UŨ |ỹ⟩ = I |ỹ⟩ = |ỹ⟩ .

Meanwhile, we already already know |ỹ⟩ = Ã |x̃⟩ by
construction, and we conclude

Ã = UAŨ .

Of course, this result can be attained more di-
rectly by substituting

A =
∑
i′

∑
j′

|ei′⟩Ai′j′ ⟨ej′ |

into Ãij = ⟨ẽi|A |ẽj⟩.

16 Differential Equations

16.1 Schrodinger Equation

The chief equation of quantum mechanics is conve-
niently framed as an eigenvalue problem. As such,
the famous Schrodinger equation reads

iℏ
d

dt
|ψ (t)⟩ = H |ψ (t)⟩ ,

where i =
√
−1, ℏ is Planck’s constant, and H is

a Hermitian operator called the Hamiltonian of size
n×n. The symbol |ψ (t)⟩ is the quantum state vector,
which like any other vector, resolves to components
provided an orthonormal basis exists:

|ψ (t)⟩ = (ψ1 (t) , ψ2 (t) , ψ3 (t) , . . . )

Naming the supporting orthornormal basis |ej⟩,
we explicitly have

|ψ (t)⟩ =
∑
j

ψj (t) |ej⟩

and
H =

∑
j

∑
k

|ej⟩Hjk ⟨ek| ,

letting us state the problem in component form:

iℏ
∑
j

d

dt
ψj (t) |ej⟩

=
∑
j

∑
k

∑
j′

|ej⟩Hjkψj′ (t) ⟨ek|ej′⟩

=
∑
j

∑
k

Hjkψk (t) |ej⟩

With the j-sum present on each side, the above re-
duces to:

iℏ
d

dt
ψj (t) =

∑
k

Hjkψk (t)
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TISE

Assuming that H admits n eigenvalues Ej and n
eigenvectors represented by |ϕ(j)⟩, we may also write
the time-independent Schrodinger equation, or TISE :

H |ϕ(j)⟩ = Ej |ϕ(j)⟩

Next, since H is a Hermitian operator, its eigenvec-
tors |ϕ(j)⟩ form an orthonormal basis for which the
quantum state vector can be expressed as a linear
combination:

|ψ (t)⟩ =
∑
j

Cj (t) |ϕ(j)⟩

Applying the H-operator to both sides of the
above, thereby writing the Schrodinger equation,
gives for any given index j,

iℏ
d

dt
Cj (t) = EjCj (t) ,

solved by

Cj (t) = Cj (t = 0) e−iEjt/ℏ .

Note that the initial value of each Cn (0) is calculated
from the initial condition |ψ (0)⟩ according to

⟨ϕ(k)|ψ (0)⟩ =
∑
j

Cj (t) ⟨ϕ(k)|ϕ(j)⟩ = Ck ,

where

Ck = ⟨ϕ(k)|ψ (0)⟩ =
∑
j

(
ϕ
(k)
j

)∗
ψj (0) .

The evolution of the quantum state vector can thus
be written

|ψ (t)⟩ =
∑
j

Cj (0) e
−iEjt/ℏ |ϕ(j)⟩ .

16.2 Hamiltonian Matrix

Consider a two-component vector that presumes the
existence of an orthonormal basis

|u (t)⟩ =
[
u1 (t)
u2 (t)

]
that relates to the time derivative operator by

i∂t |u (t)⟩ = Ĥ |u (t)⟩ ,

where Ĥ is the dimensionalized Hamiltonian matrix,
having form

Ĥ =

[
0 δ
δ 0

]
,

with δ being constant.

Solving the eigenvalue problem

Ĥ |x(j)⟩ = λj |x(j)⟩

for this case, we quickly find two eigenvalues

λ+ = δ

λ− = −δ ,

and two corresponding eigenvectors

|x(+)⟩ = 1√
2

[
1
1

]
|x(−)⟩ = 1√

2

[
1
−1

]
.

With the eigenvectors for the operator on hand,
the vector |u (t)⟩ can be expressed as a linear combi-
nation

|u (t)⟩ = C+ (t) |x(+)⟩+ C− (t) |x(−)⟩

=
∑
j

Cj (t) |x(j)⟩ .

Apply Ĥ to both sides to distill a differential equation

i
∂

∂t
Cj (t) = Cj (t)λj ,

solved by

Cj (t) = Cj (t = 0) e−iλjt .

The updated general solution now reads

|u (t)⟩ = C+ (0) e−iδt |x(+)⟩+ C− (0) eiδt |x(−)⟩ ,

where the coefficients C± (0) are determined by the
initial conditions of the system. Since the eigenvec-
tors |x(±)⟩ form an orthonromal basis, the coefficients
are easily isolated from |u (t = 0)⟩:

Cj (0) = ⟨x(j)|u (0)⟩

Note finally that the exponential terms can be
traded for trigonometric terms by Euler’s formula to
give

|u (t)⟩ = 1√
2
cos (δt)

[
C+ + C−
C+ − C−

]
+

i√
2
sin (δt)

[
−C+ + C−
−C+ − C−

]
.
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16.3 Damped Harmonic Oscillator

The differential equation that governs the damped
harmonic oscillator reads

d2

dt2
x (t)− b

d

dt
x (t) + ω2

0x (t) = 0 ,

which is a second-order equation. However, this prob-
lem can be turned into a system of first-order equa-
tions by defining a vector

|u (t)⟩ =
[

x (t)
dx (t) /dt

]
along with a matrix

A =

[
0 1

−ω2
0 −b

]
,

so the problem may be rewritten

d

dt
|u (t)⟩ = A |u (t)⟩ .

Solving the eigenvalue problem

A |q(j)⟩ = λj |q(j)⟩ ,

we quickly find

λ = − b
2
±
√
b2

4
− ω2

0 ,

with corresponding eigenvectors

|q(+)⟩ = 1√
λ2+ + 1

[
1
λ+

]

|q(−)⟩ = 1√
λ2− + 1

[
1
λ−

]
.

Note that the eigenvectors |q(±)⟩ are linearly inde-
pendent but not orthogonal. Regardless of this, the
general solution can be written as a linear combina-
tion

|u (t)⟩ = C+ (t) |q(+)⟩+ C− (t) |q(−)⟩

=
∑
j

Cj (t) |q(j)⟩ .

Applying the A-operator to both sides of the
above produces

∑
j

d

dt
(Cj (t)) |q(j)⟩ = A

∑
j

Cj (t) |q(j)⟩

=
∑
j

Cj (t)λj |q(j)⟩ ,

immediately implying

d

dt
Cj (t) = Cj (t)λj ,

solved by

Cj (t) = Cj (t = 0) eλjt .

The general solution now reads

|u (t)⟩ =
∑
j

Cj (0) e
λjt |q(j)⟩ .

Setting t = 0 in the above gives

|u (0)⟩ =
∑
j

Cj (0) |q(j)⟩ .

Note however that the basis vectors |q(k)⟩ are not
orthogonal, thus the coefficients Cj (0) cannot be iso-
lated by taking the inner product with ⟨q(k)|. To
proceed, write the above in component form to get

uk (0) =
∑
j

Cj (0) q
(j)
k .

This is a linear system of the form A |x⟩ = |b⟩ with
|u (0)⟩ playing the role of |b⟩, the vector components

q
(j)
k serving as matrix components, and the compo-
nents Cj (0) corresponding to |x⟩.
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