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Chapter 1

Variational
Calculus

1 Introduction

Any well-rounded student of natural philosophy or
STEM field has at least one thorough encounter with
the tenets of classical mechanics. A relatable pic-
ture of reality is constructed from Newton’s laws of

motion, along with conservation laws handling en-
ergy, momentum, and angular momentum. Toss in a
few revelations from electromagnetism and thermo-
dynamics and pre-1905 physics is complete, right?

Not quite. What if you learned that there is an-
other tenant in the building living among the classical
laws? That there is another principle of mechanics
at play that not only contains, but runs a bit deeper
than Newton’s seventeenth-century picture? This is
in fact the case, and it is called the principle of least
action.

The tool kit used to grapple with ‘least action’ is
called the calculus of variations. Variational calcu-
lus, as it’s also called, is all about solving for critical
curves rather than critical points as done in ordinary
calculus.

As it pertains to classical mechanics, the prin-
ciple of least action tells something very profound:
The true path on which a body moves is the one that
minimizes the difference between kinetic and potential
energy along that path. Using symbols T for kinetic
energy and U for potential, the above means

S =

∫
(T (v (t))− U (x (t))) dt

3



4 CHAPTER 1. VARIATIONAL CALCULUS

is always minimized if x (t) and v (t) represent the
correct path of position and velocity. The quantity S
is called the action. The action evaluates to a larger
number if the wrong x (t) or v (t) are fed into the
integral.

This is undoubtedly a strange way to think about
mechanics, namely because there is no need for forces,
momentum, or any vectors at all. As a matter of
strictness, the idea of ‘least’ action is sometimes a
misnomer, as sometimes the case of ‘most’ action is
more applicable. In either case, we are safe saying
‘principle of stationary action’.

2 Euler-Lagrange Equation

To begin we will work strictly on the xy plane with-
out mentioning physics until the first solid result is
gained. Consider two fixed points in the Cartesian
plane

(x0, y0) , (x1, y1)

that represent the initial and final position of any
well-behaved curve y (x). The curve y (x) shall be
considered the ‘true’ path that connects the initial
and final fixed points:

y (x) = true path from x0 to x1

2.1 Varied Path

To accompany y (x) in the plane, introduce a second
curve that starts and finishes at the same endpoints,
but is allowed to meander in the plane due to an ad-
ditional term αh (x) such that

f (x) = y (x) + αh (x) .

The variable α is a dimensionless variational param-
eter. The curve h (x) is an ‘incorrectness’ that gives
structure to the varied path, and this is decidedly
zero at each endpoint:

h (x0) = h (x1) = 0

Summarizing this construction, we sketch the fol-
lowing figure in the Cartesian plane:

(x0, y0)

(x1, y1)

y(x) + αh(x)

y(x)

x

y

2.2 Writing the Action

Now, conceive of a new function Λ that depends of
x, f (x), and also the derivative f ′ (x) = df (x) /dx.
Such a function Λ (x, f (x) , f ′ (x)) can be arbitrary in
most respects, whether it represent a physical quan-
tity or a conceptual one is a mere formality as of now.

To construct an action from this, integrate the
function Λ along the path from x0 to x1:

S =

∫ x1

x0

Λ (x, f (x) , f ′ (x)) dx

Keeping the notation from getting out of control,
we hide the explicit mention of x from the f -related
terms:

S =

∫ x1

x0

Λ (x, f, f ′) dx

2.3 Derivative of the Action

Buried in f and f ′ is the dependence on the varia-
tional parameter α, where we explicitly have

f = y + αh

f ′ = yx + αh′ ,

which means the action S is also a function of the
parameter α. In traditional calculus-101 fashion, we
then ask what happens by taking derivative of S with
respect to α? Setting this up, the problem means to
calculate

dS

dα
=

∫ x1

x0

d

dα
(Λ (x, f, f ′)) dx .

The parameter α does not depend on x itself (that’s
what h is for), which is why the α-derivative pene-
trates the integral without fuss.
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To grapple with what dA/dα means, reach for
partial derivatives to write

dA

dα
=

∂Λ

∂x�
��dx

dα
+

∂Λ

∂f

df

dα
+

∂Λ

∂f ′
df ′

dα
,

where the first term is identically zero, and the deriva-
tive terms df/dα and df ′/dα are nothing but h and
h′, respectively. So far then, we have:

dS

dα
=

∫ x1

x0

(
∂Λ

∂f
h+

∂Λ

∂f ′h
′
)
dx .

2.4 Integrating by Parts

To proceed, we’ll focus on the primed term in the
above, and choose the following substitutions for in-
tegration by parts

u = ∂Λ/∂f ′

dv = h′ dx ,

with

du =
d

dx

(
∂Λ

∂f ′

)
dx

v = h .

Then, by the standard form∫
u dv = uv

∣∣∣∣− ∫ v du ,

the derivative of the action looks like

dS

dα
=

∫ x1

x0

(
∂Λ

∂f
h− h

d

dx

(
∂Λ

∂f ′

))
dx+

�
�
�
�∂Λ

∂f ′h

∣∣∣∣x1

x0

,

where the boundary term wholly vanishes because
h (x) is zero at each endpoint.

2.5 Minimizing the Action

Summarizing our progress, the derivative of the ac-
tion has taken the form

dS

dα
=

∫ x1

x0

h (x)

(
∂Λ

∂f
− d

dx

(
∂Λ

∂f ′

))
dx .

Now comes the crucial observation regarding the vari-
ational parameter α. The derivative dS/dα goes to
zero as α itself goes to zero:

dS/dα → 0

α → 0

By making such a change, the varied path flattens
down to the true path, which means f (x) flattens
down to y (x):

f (x) → y (x)

2.6 Euler-Lagrange Equation

In the zero-variation limit, the above becomes

0 =

∫ x1

x0

h (x)

(
∂Λ

∂y
− d

dx

(
∂Λ

∂yx

))
︸ ︷︷ ︸

=0

dx ,

and the integral must clearly evaluate to zero. Since
h (x) is generally nonzero except for the endpoints,
the parenthesized quantity must therefore be zero
along the whole path. Plucking out this item from
the integral, we arrive at the famed Euler-Lagrange
equation:

0 =
∂Λ

∂y
− d

dx

(
∂Λ

∂yx

)
(1.1)

The Euler-Lagrange equation doesn’t look like
much at fist, perhaps a nice accident of the chain
rule. It is interesting to fathom, though, that
the above holds for whatever arbitrary function
Λ (x, y (x) , yx (x)) is chosen.

2.7 Change of Domain

The whole derivation of Equation (1.1) can be re-
peated in the time domain, in which case t takes the
place of x. Following this through, let us substitute

x → t

y → x (t)

yx → v (t) ,

where v (t) is the velocity x′ (t). While we’re at it,
relabel the arbitrary function Λ with the the letter
L:

Λ → L (t, x (t) , v (t))

With all this, the Euler-Lagrange equation takes a
form in the time domain:

0 =
∂L

∂x
− d

dt

(
∂L

∂v

)
(1.2)

2.8 The Lagrangian

By choosing the proper function the proper function
for L, something curious happens with the Euler-
Lagrange equation (1.2). After some fiddling, one
readily stumbles on the combination

L = T (v)− U (x) , (1.3)

called the Lagrangian. The functions T (v), U (x) are
the respective kinetic and potential energies of the
body being considered.
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By inserting Equation (1.3) into Equation (1.2),
we write

0 =
∂ (T − U)

∂x
− d

dt

(
∂ (T − U)

∂v

)
,

simplifying to

0 = −∂U

∂x
− d

dt

(
∂T

∂v

)
.

From here, a deeply rich formulation of classical
physics called Lagrangian mechanics can be devel-
oped. This topic won’t be formally indulged here,
but its foundations are explored here nonetheless.

2.9 Recovering Newton’s Law

For the Newtonian regime, we have that the kinetic
energy T (v) is given by

T (v) =
1

2
mv2 ,

where m is the mass of the body or particle. Then,
the Euler-Lagrange equation with the choice L =
T − U becomes

0 = −∂U

∂x
− d

dt

(
∂

∂v

1

2
mv2

)
,

readily simplifying to Newton’s second law:

m
d

dt
v (t) = − ∂

∂x
U (x)

Astonishingly, the principle of least action seem-
ingly does contain the classic laws of motion, and the
true path followed by an object really is the one that
minimizes the integral of T − U along the path.

3 Formalism

While the above derivation of the Euler-Lagrange
equation took place in two dimensions, the same rea-
soning apples when there are more variables at play.
To this end, it helps to have an efficient symbol for
certain derivative terms. If we have a function f , and
we need the partial derivative with respect to x, we
should be able to write

fx = ∂f/∂x

fxx = ∂2f/∂x2

without ambiguity. To have the operator by itself
with no mention of which function it’s acting upon,
we use the notation

∂x =
∂

∂x
= ∂/∂x .

Of course, the same notation is useful for full deriva-
tives, for instance

dtf =
d

dt
f .

With such shortcuts, the Euler-Lagrange equation
can be written in the most minimal way:

0 = Lx − dtLv

3.1 Formal Derivation

With the main ideas established, let us re-state the
action calculation

S =

∫ x1

x0

Λ (x, f, f ′) dx

in slightly different terms. The function f (x) is still
the varied path, except variations are represented by

f → f +∆f

fx → fx + (∆f)
′
,

where ∆f replaces the αh (x) construction, and ∆f
is zero at each endpoint.

The action S is no ordinary function, but is for-
mally called a ‘functional’ depending on f (x), de-
noted S [f ]. So far then, we write

S [f ] =

∫ x1

x0

Λ (x, f, xx) dx .

Then a variation in S is written

∆S =

∫ x1

x0

Λ
(
x, f +∆f, fx + (∆f)

′)
dx− S [f ] .

By Taylor-expanding the inner quantity to first
order, we further have

Λ
(
x, f +∆f, fx + (∆f)

′)
=

Λ(x, f, fx) +
∂Λ

∂f
∆f +

∂Λ

∂fx
(∆f)

′
,

and ∆S simplifies to

∆S =

∫ x1

x0

(
∂Λ

∂f
∆f +

∂Λ

∂fx
(∆f)

′
)
dx .

From here, the derivation looks much like the ‘in-
formal’ one we started with, and the steps to finish
are the same. Letting ∆S and ∆f go to zero simulta-
neously after integrating by parts, one finds the now-
familiar Euler-Lagrange equation

0 =
∂Λ

∂f
− d

dx

(
∂Λ

∂fx

)
.
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3.2 Special Form

Starting with Λ (x, f, f ′), let us calculate the total
derivative in x, which is

dΛ

dx
=

∂Λ

∂x
+

∂Λ

∂f

df

dx
+

∂Λ

∂fx

dfx
dx

,

and then replace ∂Λ/∂f using the Euler-Lagrange
equation

dΛ

dx
=

∂Λ

∂x
+

d

dx

(
∂Λ

∂fx

)
fx +

∂Λ

∂fx
fxx .

Note that there is an equivalence between

df

dx
↔ ∂f

∂x

because f is a function of only x. (This is certainly
not true for Λ or any multivariate function.)

Off to the side, calculate the total derivative of
fx∂Λ/∂fx, which looks like

d

dx

(
fx

∂Λ

∂fx

)
= fxx

∂Λ

∂fx
+ fx

d

dx

(
∂Λ

∂fx

)
,

containing the same fxx-term as the previous result.
Eliminating this between the two, we have, after sim-
plifying:

dA

dx
=

∂Λ

∂x
+

d

dx

(
fx

∂Λ

∂fx

)
Putting everything on one side gives special form of
the Euler-Lagrange equation:

0 =
∂Λ

∂x
− d

dx

(
Λ− fx

∂Λ

∂fx

)
(1.4)

The above is especially informative if the function
Λ has no explicit dependence on x, for if this is the
case then we can only have

Λ− fx
∂Λ

∂fx
= constant ,

where fx is not zero. This result is sometimes called
the Beltrami identity.

3.3 Constant of Motion

It’s impossible to resist jumping back into time do-
main and make another connection to Newtonian me-
chanics. Momentarily make the same swap of vari-
ables

x → t

f → x (t)

L → T (v)− U (x) ,

and so on.

Since the Lagrangian has no explicit time depen-
dence, may immediately use the Beltrami identity to
write

L− v
∂L

∂v
= constant .

Knowing that the kinetic energy T (v) takes the form
mv2/2, we find (as before) that

∂L

∂v
=

∂T

∂v
=

∂

∂v

(
1

2
mv2

)
= mv ,

meaning

v
∂L

∂v
= mv2 = 2T (v) .

Putting it all together, we find

L− 2T = T − U − 2T = constant ,

or in other words,

T + U = −constant ,

therefore conservation of energy also emerges from
the principle of least action.

3.4 More Dimensions

The formal derivation of the Euler-Lagrange equation
that generalizes to N simultaneous functions

f →
{
f (1), f (2), . . . , f (N)

}
,

each with a different variation

f (j) → f (j) +∆f (j) ,

with vanishing variation at the endpoints

∆f (j) (x0) = ∆f (j) (x1) = 0

is straightforwardly written.

The function Λ becomes

Λ
(
x, f (1), f (2), . . . , f (N), f (1)

x , f (2)
x , . . . , f (N)

x

)
,

and gives rise to m Euler-Lagrange equations that all
look the same up to index number:

0 =
∂Λ

∂f (j)
− d

dx

(
∂Λ

∂f
(j)
x

)
(1.5)
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3.5 Conservation of Energy

When it comes to having more than one dimension,
one wonders what the generalization of Equation
(1.4) may be, and whether there is one new constant
per added dimension. This is in fact not the case, but
the real answer is more beautiful anyway. Anticipat-
ing the outcome of this analysis, consider a function
E (for ‘energy’) that has all the same dependencies
as Λ:

E = E
(
x, f (1), f (2), . . . , f (N), f (1)

x , f (2)
x , . . . , f (N)

x

)
Then, taking inspiration from the constant of mo-

tion found in the one-dimensional case, consider the
relationship

E =

N∑
j=1

f (j)
x

∂Λ

∂f
(j)
x

− Λ .

If E is to be constant, then the total derivative of E
had better resolve to zero. Pursuing this, we write:

dE

dx
=

N∑
j=1

f (j)
xx

∂Λ

∂f
(j)
x

+

N∑
j=1

f (j)
x

d

dx

(
∂Λ

∂f
(j)
x

)
− dΛ

dx

From the chain rule we also have

dΛ

dx
=

∂Λ

∂x
+

N∑
j=1

∂Λ

∂f (j)
f (j)
x +

N∑
j=1

∂Λ

∂f
(j)
x

f (j)
xx ,

and note that the fxx-sums occur in both equations,
and so does dΛ/dx. Eliminating the common terms
in each, we get the result

dE

dx
= −∂Λ

∂x
+

N∑
j=1

f (j)
x

(
d

dx

(
∂Λ

∂f
(j)
x

)
− ∂Λ

∂f (j)

)
.

In the above, the parenthesized portion is none
other than the Euler-Lagrange equation, and is iden-
tically zero. Evidently, the whole concern of energy
conservation reduces to the statement

dE

dx
= −∂Λ

∂x
.

Note that we’ve worked with the unspecified func-
tion Λ depending fundamentally on x. To turn the
above into a statement about physics, make the fol-
lowing replacement:

x → t

Λ → L = T (v)− U (x)

3.6 Generalized Coordinates

As it pertains to physical systems, The Euler-
Lagrange equation (1.5) occurs in the form

0 =
∂L

∂q(j)
− d

dt

(
∂L

∂q
(j)
t

)
, (1.6)

where the terms q(j) are generalized coordinates. The
physical units of a given q(j) need not be spatial. The
readiest example of this would be polar coordinates,
in where the components of q are represented by

q⃗ = ⟨r, θ⟩ .

Proof

To establish this firmly, let us pull no punches and
do a proper proof. Supposing a system evolving
by variable t depends on coordinates x(j) (t) and
their derivatives v(j) (t), the Euler-Lagrange equation
takes the form

0 =
∂Λ

∂x(j)
− d

dt

(
∂Λ

∂v(j)

)
.

Next, suppose the list of coordinates {x (t)} can
be defined in terms of another list {q (t)} such that

x(j) = x(j)
(
t, q(1), q(2), . . . , q(N)

)
if there are N members in {q (t)}. To first order, the
two sets of coordinates further relate by

v(j) =
∂x(j)

∂t
+

N∑
k=1

∂x(j)

∂q(k)
q
(k)
t .

By the chain rule, we further find

∂x(j)

∂q(k)
=

∂x(j)

∂q(k)
dt

dt
=

∂v(j)

∂q
(k)
t

.

With the second set of coordinates, the proposed
Euler-Lagrange equation reads

0
?
=

∂Λ

∂q(j)
− d

dt

(
∂Λ

∂q
(j)
t

)
,

which motivates picking on the inner term:

∂Λ

∂q
(j)
t

=

N∑
k=1

∂Λ

∂v(k)
∂v(k)

∂q
(j)
t

=

N∑
k=1

∂Λ

∂v(k)
∂x(k)

∂q(j)

Take the time derivative of both sides to get

d

dt

(
∂Λ

∂q
(j)
t

)
=

N∑
k=1

d

dt

(
∂Λ

∂v(k)

)
∂x(k)

∂q(j)

+

N∑
k=1

∂Λ

∂v(k)
d

dt

(
∂x(k)

∂q(j)

)
,
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and simplify carefully to finish the proof:

d

dt

(
∂Λ

∂q
(j)
t

)
=

N∑
k=1

(
∂Λ

∂x(k)

∂x(k)

∂q(j)
+

∂Λ

∂v(k)
∂v(k)

∂q(j)

)
=

∂Λ

∂q(j)

4 Motion on a Curve

In uniform gravity, consider a frictionless particle of
mass m that sits on the curve

y (x) =
k

α
(x− a)

α

without departure. If the velocity of the particle is
v⃗ = ⟨ẋ, ẏ⟩, find the equations of motion of this sys-
tem.

With the information provided, there is enough
to write the kinetic and potential of this system all
in terms of x-variables

T =
1

2
mẋ2

(
1 + k2 (x− a)

2α−2
)

U =
mgk

α
(x− a)

α
,

and the Lagrangian, of course, is L = T − U .
Applying the Euler-Lagrange equation, we must

pursue
∂L

∂x
− d

dt

(
∂L

∂ẋ

)
= 0 .

Doing so and simplifying, arrive at a juicy differential
equation:

0 = ẍ
(
1 + k2 (x− a)

2α−3
)

+ ẋ
k2

2
(2α− 2) (x− a)

2α−3
+ gk (x− a)

α−1

4.1 Particle in a Well

For the cases with k > 0 and α > 1 is even, the parti-
cle is stuck in a ‘well’ centered at x = a. The simplest
of these has α = 2, where the above reduces to the
differential equation

0 = ẅ
(
1 + w2

)
+ ẇ2w + gkw ,

where w = kz and z = x− a.
Despite the α = 2 simplification, the above is

still difficult to treat in the general case. We can
do a quick reality check for small motions, which has
1 ≫ w2 and gk ≫ ẇ2. For this we recover the setup
for the simple harmonic oscillator, as expected:

ẅ = −gkw

4.2 Particle on an Incline

An interesting modification to this setup has α = 1,
with y (x) representing a straight line. Restarting the
analysis from here and applying the Euler-Lagrange
equation leads to

ẍ =
−gk

1 + k2
,

and similarly,

ÿ = kẍ .

The total acceleration is the sum of square of each:

|a| =
√

ẍ2 + ÿ2 =
gk√
1 + k2

Letting θ denote the angle of incline, we further have

k = tan (θ)

and

|a| = g sin (θ) .

5 Minimal Surface

5.1 Soap Film Problem

A stretchable membrane, such as a thin soap film,
is trapped two hoops to form an axially-symmetric
surface. One hoop is a circle laying on the xy-plane
at z = z0. the other hoop is parallel to the first and
suspended at z = z1. Ignoring gravity, determine the
shape of the membrane that minimizes surface area.
In other words, determine the proper shape of the
dotted line profile indicated in the figure below.

x
y

z
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The minimal surface problem is characterized by
the surface area (conveniently named S) of the whole
film. Using elementary methods, or by exploiting the
axial symmetry of the system, the surface area reads

S =

∫ z1

z0

2πr (z)
√
1 + r2z dz ,

where rz is the derivative of r with respect to z.
Without needing to finish the integral, we pick

out the working quantity to be

Λ = r
√
1 + r2z ,

which is a function of r and rz, but not z itself.
This warrants use of the special form of the Euler-
Lagrange equation (1.4), which means, for this prob-
lem,

Λ− rz
∂Λ

∂rz
= C0 ,

where C0 is a constant.
Plugging Λ into the above and turning the crank

leads to a separable differential equation

dz =
dr√

r2/C2
0 − 1

.

By the substitution

r = C0 cosh (β)

with
dr = C0 sinh (β) dβ ,

the differential equation simplifies to

dz = C0 dβ ,

revealing the simple relationship

z = C0β + C1 ,

where C1 is an integration constant. After eliminat-
ing β, suddenly we have an equation for r (z):

r (z) = C0 cosh

(
z − C1

C0

)
The constants C0, C1 are specified by the hoop radii,
namely r (z0) = R0 and r (z1) = R1.

Fleshing out an easy example, the symmetric case
with R1 = R2 and

−z0 = z1 = L

leads to

C1 =
z0 + z1

2
=

−L+ L

2
= 0 .

The r (z) equation then says

R = C0 cosh

(
L

C0

)
,

containing one unknown.

5.2 Straight Line

A much easier minimal surface problem is to prove
that the shortest path connecting two points is a
straight line. Setting up the classic ‘arc length’ in-
tegral looks like

S =

∫ x1

x0

√
1 + y2x dx ,

from which we pick out

Λ =
√
1 + y2x .

Unsurprisingly there is no explicit x-dependence in
Λ, warranting the identity

Λ− yx
∂Λ

∂yx
= C ,

with C constant. Simplifying, we find

1√
1 + y2x

= C ,

which can only mean yx is a constant, or y (x) is a
straight line.

6 Motion on a Cycloid

6.1 Brachistochrone

The Ancient Greeks were interested in a curious prob-
lem that has widespread practical application. In
uniform gravity, suppose a body at an initial height
needs to slide down some kind of plank, ramp, or
other curve so as to reach a lower height in the short-
est time possible, ignoring friction. The curve that
solves this problem is called the brachistochrone.

Starting from first principles, the time T taken to
slide down such a curve is given by

T =

∫ y(t1)

y(t0)

dt ,

where T is the quantity to minimize. The differential
arc length ds relates to dt by

ds = v (t) dt ,

where v (t) is the velocity of the body at time t.
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From geometry we have that

ds2 = dx2 + dy2 ,

and meanwhile from energy conservation we know

v (x) =
√

2g (y0 − y (x)) .

Updating the T -integral with this information gives

T =

∫ x1

x0

√
1 +

(
dy

dx

)2
dx√

2g (y0 − y (x))
.

Now, we’re trying to minimize T as a way of solv-
ing for y, which seems completely backwards until
utilizing the calculus of variations. The above can be
regarded as a functional

T =

∫ y1

y0

Λ (x, y, yx) dx ,

with no explicit x-dependence. Reasoning from the
special form of the Euler-Lagrange equation (1.4), we
have

Λ− yx
∂Λ

∂yx
= C ,

where C is constant. Calculating this out, we find

1√
2g (y0 − y (x))

1√
1 + (dy/dx)

2
= C ,

which can be turned into an integral for x (y):

∫
dx =

∫ √
2gC2 (y0 − y)

1− 2gC2 (y0 − y)
dy

Now introduce a peculiar trigonometric substitu-
tion in the variable θ such that

2gC2 (y0 − y) =
1− cos (θ)

2

and

dy = − sin (θ)

4gC2
dθ .

Running this substitution through the above integral,
we have ∫

dx =
−1

4gC2

∫
(1− cos (θ)) dθ ,

and evidently the combination 1/4gC2 has units of
space, and this will be renamed to R, as in ‘radius’.

Finishing up the calculation for x, we finally have

x = x0 −R (θ − sin (θ)) , (1.7)

and solving similarly for y,

y = y0 −R (1− cos (θ)) . (1.8)

This pair of parametric equations is a surprising re-
sult, namely because a unified equation y (x) is not
straightforwardly attained. The shape described is
known as a cycloid.

x

y

In the domain 0 ≤ θ ≤ 2π, we see the cycloid gen-
erates right-to-left. To rectify this, one can change
θ → −θ to reverse the evolution of the x-equation
while leaving the y-equation unchanged. To put the
entire picture above the x-axis, one may flip the sign
on R as if reversing the sign on g.

6.2 Tautochrone

A question similar to the brachistochrone is to seek
a curve called the tautochrone, the shape with the
property that a body can start sliding from rest any-
where on the curve and reach the lowest point in a
fixed time.

It may be no surprise that the cycloid also solves
this problem, so we start with this assumption and
check that the claim is satisfied. To this end, let us
take as a starting point

T =

∫ x1

x0

√
1 +

(
dy

dx

)2
dx√

2g (y0 − y (x))
,

where x1 is located at the bottom of the cycloid (up-
turned as sketched above).

Knowing the solution to y (θ), we can write

y0 − y = R (cos (θ0)− cos (θ)) ,

where θ0 characterizes the initial position of a body
sliding from rest. Then, the equation for velocity as
a function of θ reads

v (θ) =
√
2gR (cos (θ0)− cos (θ)) .

The remaining quantities in the integral must also
be expressed in terms of θ. Doing so carefully, the T -
integral becomes

T =

√
R

g

∫ π

θ0

√
1− cos (θ) dθ√

cos (θ0)− cos (θ)
.
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Note that the change of variables θ → −θ has been
invoked, simply reversing the sign on the integral to
make sure the result is positive.

The task is to solve the integral and ultimately
show that θ0 does not affect the result. For this we
use a pair of trigonometric identities

sin

(
θ

2

)
=

√
1

2
− cos (θ)

2

cos (θ) = 2 cos2
(
θ

2

)
− 1 ,

so now

T =

√
R

g

∫ π

θ0

sin (θ/2) dθ√
cos2 (θ0/2)− cos2 (θ/2)

.

Proceed with the u-substitution

u = cos (θ/2) / cos (θ0/2)

du = −dθ sin (θ/2) /2 cos (θ0/2) ,

and all θ0-dependence vanishes from the integral,
leaving

T =

√
R

g

∫ 0

1

−2 du√
1− u2

.

To finish the integral one could proceed by el-
ementary methods, however notice in our final u-
substitution that the initial condition θ0 has been
divided out, and thus never mattered. Choosing a
θ0 that trivializes the integral, namely θ0 = 0, makes
the hard part vanish. One way or the other, the an-
swer boils down to

T = π

√
R

g
,

affirming the cycloid as the solution to the tau-
tochrone problem.

7 Lagrange Multipliers

An item from the calculus tool chest, not particularly
related to the Euler-Lagrange equation or Lagrange
mechanics, is the idea of Lagrange multiplier. A La-
grange multiplier is used when solving an optimiza-
tion problem subject to a particular constraint. For
instance, if we have a two-variable function f (x, y),
there may be reason to extremize f subject to a dif-
ferent function g (x, y) = c, where c characterizes a
level curve on g.

7.1 Parallel Gradients

Finding critical points in f subject to g entails notic-
ing that the gradient of each function is the same at
a critical point, up to a proportionality constant λ,
the Lagrange multiplier:

∇⃗f (x, y) = λ∇⃗g (x, y)

Said a different way, a constrained optimization prob-
lem minimizes a functional F⃗

F⃗ [x, y, λ] = ∇⃗f (x, y)− λ∇⃗g (x, y)

at critical points (x0, y0).
When there are multiple constraint functions,

each introduces a new and different λ. The gradi-
ent of the original function and all constraints remain
proportional:

∇⃗f (x, y) = λ1∇⃗g1 (x, y) + λ2∇⃗g2 (x, y) + · · ·

Worked Example

For an example, suppose we have a function

f (x, y) = x2 + y2 ,

and we are to find any critical points in f subject to
the constraining line

y + 3x = 3 .

Sketched below is the constraining function along
with a single level curve (f = constant) of f (x, y).

x

y

Constructing the functional F⃗ [λ], we have

F⃗ [λ] = ∇⃗f (x, y)− λ∇⃗g (x, y)

= ⟨2x, 2y⟩ − λ ⟨3, 1⟩ .

Setting the left side to zero, we gain two new equa-
tions

2x0 = 3λ

2y0 = λ ,



8. SAGGING CABLE 13

and a third equation is given by g:

y0 + 3x0 = 3

As a system of three equations and three unknowns,
the results for λ, x0, y0 must be found simultaneously,
resulting in

λ = 3/5

x0 = 9/10

y0 = 3/10 ,

and the problem is solved.

Practice

Problem 1
Identify all critical points of the function

f (x, y) = x2 + 2y2 that coincide with the unit cir-
cle x2 + y2 = 1.

Problem 2
Find the largest rectangle that fits inside the first

quadrant of the ellipse x2/a2 + y2/b2 = 1. Answer:

x0 = a/
√
2

y0 = b/
√
2

Problem 3
Find the largest square that fits inside the first

quadrant of the ellipse x2/a2 + y2/b2 = 1. Hint:

∇⃗ (xy) = λ1∇⃗
(
x2

a2
+

y2

b2
− 1

)
+ λ2∇⃗ (x− y)

Problem 4
A cylinder of radius R and length L is capped on

each end by a cone of heightH. Maximize the volume
for a given surface area. Hint:

∇⃗
(
πR2L+

2

3
πR2H

)
=

λ∇⃗
(
2πRL+ 2πR

√
R2 +H2

)
Answer:

V =
AR

3
= A3/2 (2π)

−1/2 5−1/4

3

7.2 Constrained Systems

Let us return to Equation (1.5) representing a system
of several variables, namely:

∂Λ

∂f (j)
− d

dx

(
∂Λ

∂f
(j)
x

)
= 0

With zero on the right side of the equation, one
speaks of this as an ‘unconstrained’ case.

Lagrange multipliers are an elegant means for en-
forcing constraints of motion by modifying the right
side:

∂Λ

∂f (j)
− d

dx

(
∂Λ

∂f
(j)
x

)
=

n∑
k=1

λk
∂gk
∂f (j)

(1.9)

Replacing zero is any number n total constraint
terms. Each involves a Lagrange multiplier λ and
also a function g to specify the constraint itself. In
particular, gk must evaluate to zero when the con-
straint is satisfied.

7.3 Generalized Force

From a mechanical point of view, the right side of
Equation (1.9) is called the generalized force. This is
justified by taking a modified Lagrangian

L = T (v)− U (x)− λg (x) ,

where g (x) is a potential energy term. Then, the
gradient factor

Q = −λ
∂

∂x
g (x)

when g (x) = 0 corresponds to the body obeying the
constraint.

In terms of generalized coordinates, the mechani-
cal analog to Equation (1.9) reads

∂L

∂q(j)
− d

dt

(
∂L

∂q
(j)
t

)
= Q(j) =

n∑
k=1

λk
∂gk
∂f (j)

.

8 Sagging Cable

In gravity, a homogeneous cable of fixed length sus-
pended between two points will sag downward to min-
imize the gravitational potential energy throughout
the cable. The exact shape of the cable is straightfor-
wardly attained using the calculus of variations with
a Lagrange multiplier.

8.1 Setup

If the linear mass density of the cable is a constant ρ,
then a functional representing the gravitational po-
tential energy of the cable is written

U [y] = ρg

∫ x1

x0

y (x)

√
1 +

(
dy

dx

)2

dx .
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To instill the notion that the length of the cable is
constant, a second functional is constructed:

V [y] =

∫ x1

x0

√
1 +

(
dy

dx

)2

dx

The ‘grand’ functional with which we must work
is one that relates U and V by a Lagrange multiplier
such that

F [y] = U [y]− λV [y] ,

and the working quantity becomes

F [y] =

∫ x1

x0

(ρgy (x)− λ)

√
1 +

(
dy

dx

)2

dx .

8.2 Shape of the Cable

Introduce the substitution

u (x) = y (x)− λ

ρg

such that the functional changes to

F [u] = ρg

∫ x1

x0

u (x)

√
1 +

(
du

dx

)2

dx ,

or in more symbolic notation,

F [u] =

∫ x1

x0

Λ (x, u, u′) dx .

There is no explicit x-dependence in Λ, so the
identity

Λ− ux
∂Λ

∂ux
= C0

must hold, where C0 is a constant. Substituting B
into the above and simplifying results in a differential
equation (

du

dx

)2

=

(
u

C0/ρg

)2

− 1 ,

which can be separated into x- and u-integrals:∫
dx =

∫
du√

u2/ (C0/ρg)
2 − 1

These are straightforwardly solved as

x =
C0

ρg
cosh−1

(
u

C0/ρg

)
+ C1 ,

where C1 is an arbitrary constant.

Restoring the original y variable through the lay-
ers of substitutions, we end up with, for the final
shape of the cable:

y (x) =
λ

ρg
+

C0

ρg
cosh

(
x− C1

C0/ρg

)
The answer you can walk away with is, ‘the sagging
cable makes the shape of a hyperbolic cosine’. There
are three constants in the solution that grant all the
flexibility for adjusting endpoints and cable length,
but the shape is always governed by cosh as depicted:

(x0, y0)

(x1, y1)

x

y

8.3 Length of the Cable

None of λ, C0, or C1 alone specify the length of the
cable. To determine this, we write

L =

∫ x1

x0

√
1 +

(
dy

dx

)2

dx

and use the dy/dx derived from the shape y (x). Car-
rying this out results in

L =
C0

ρg
sinh

(
x− C1

C0/ρg

) ∣∣∣∣x1

x0

.

8.4 Lowest Point

The location x∗ at which the cable sags lowest is the
point satisfying dy/dx = 0, a criteria easily written:

0 = sinh

(
x∗ − C1

C0/ρg

)
This is satisfied by x∗ = C1, thus C1 is equal to the
x with the lowest y. The lowest point reached by the
cable is

y∗ =
λ+ C0

ρg
.
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Having a complete description of the sagging ca-
ble doesn’t always mean that solving problems is an
easy chore. The constant C0, for instance, is brutally
tangled into the y-equation, and also makes an ap-
pearance in the formula for L. Once the problem is
set up, the number crunching is best left to a com-
puter.

Worked Example

To have an example, consider a cable hung between
two endpoints of equal height and equal distance x0

to the origin. If the cable length obeys L = 4x0, de-
termine the height difference H between the lowest
point and the highest point.

The maximum height difference H = y (±x0)−y∗

is straightforwardly written

H =
C0

ρg

(
cosh

(
x0

C0/ρg

)
− 1

)
,

and the length factors in via

L = 2
C0

ρg
sinh

(
x0

C0/ρg

)
,

which is given as 4x0. The above is characterized by

2q = sinh (q) ,

approximately solved by

x0

C0/ρg
= q ≈ 2.177 .

With this, H comes out to

H ≈ x0

(
cosh (2.177)− 1

2.177

)
≈ 1.59 x0 .

9 Sliding Down a Sphere

(x0, y0)

(x∗, y∗)

θ
x

y

A particle of mass m sits at rest on a spherical
surface of radius R. Receiving a very small nudge to
the right, the particle slides down the sphere due to
gravity. Measuring the particle’s evolution using an-
gle θ, determine the critical angle θ∗ that corresponds
to the particle leaving the sphere’s surface and enter-
ing free-fall.

9.1 Newtonian Analysis

By standard Newtonian analysis, it’s straightforward
to write an equation in polar coordinates for the nor-
mal force N that keeps the particle on the surface

N = −mv2

R
+mg cos (θ) ,

where −mv2/R is the angular acceleration. The mo-
ment when the sliding particle enters free-fall, char-
acterized by θ∗, v∗, occurs exactly when the normal
force reaches zero:

0 = −mv2∗
R

+mg cos (θ∗)

Meanwhile, energy conservation gives us

E =
1

2
mv2 +mgR cos (θ) ,

where E is constant and consists of a kinetic term and
a potential term. This also holds until the condition
θ∗, v∗ is met:

mgR =
1

2
mv2∗ +mgR cos (θ∗)

Eliminating v∗ between the two equations and
simplifying, we conclude easily that

cos (θ∗) =
2

3
,

which means the particle leaves the sphere’s surface
at angle:

θ∗ = arccos

(
2

3

)
≈ 0.841 rad ≈ 48.2◦

9.2 Constrained Motion Analysis

It it illustrative to solve the problem using con-
straints. To this end we will write the Lagrangian
of the system with the assumption that r is allowed
to vary in time:

L =
1

2
m
(
(rt)

2
+ (rθt)

2
)
−mgr cos (θ)

Then, the so-called constraint simply makes sure that
r is a constant:

g (r) = r −R

With two variables in play, namely r and θ, the
constrained Euler-Lagrange equation (1.9) yields two
items:

∂L

∂r
− d

dt

(
∂L

∂rt

)
= λ

∂

∂r
(r −R)

∂L

∂θ
− d

dt

(
∂L

∂θt

)
= λ

∂

∂θ
(r −R)
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Carrying these calculations through gives a pair of
equations

mr2ωt = −2mrrtω +mgr sin (θ)

mrtt = mrω2 −mg cos (θ)− λ ,

where λ is the normal force that keeps the particle
outside the sphere, and the angular speed θt is selec-
tively replaced by another Greek letter ω:

∂θ

∂t
= θt = ω

The moment that λ goes to zero the the moment
the particle leaves contact with the sphere. Motion is
characterized by rtt = rt = 0 because r = R. At the
critical point, the angular speed θt takes on a special
value ω∗. Updating the above and simplifying, we
have

ωt =
g

R
sin (θ)

ω2
∗ =

g

R
cos (θ∗) .

The top equation can be manipulated to write

R

∫
ω dω =

∫
g sin (θ) dθ ,

which is indeed a statement of energy conservation:

E = mgR =
1

2
mR2ω2 +mgR cos (θ)

The critical case θ = θ∗, ω = ω∗, produces the same
answer as above.

10 Maximal Area

10.1 About Enough Length

Two points fixed on the x-axis are separated by ∆x.
The points are connected by a length L of string that
is longer than ∆x but shorter than π∆x/2:

∆x < L <
π

2
∆x

Maximize the area contained above the x-axis and
under the string.

Supposing the path of the string is y (x), the sys-
tem is described by an area integral and an arc length
integral:

A [y] =

∫ x1

x0

y dx

L [y] =

∫ x1

x0

√
1 + y2x dx

Introduce a Lagrange multiplier λ to combine each
quantity:

F [y] =

∫ x1

x0

(
y − λ

√
1 + y2x

)
dx

The working quantity

Λ = y − λ
√

1 + y2x

has no explicit x-dependence, thus we reason from
Equation (1.4) that

Λ− yx
∂Λ

∂yx
= C1 ,

where C1 is a constant. Running our function Λ
through this results in

y − λ√
1 + y2x

= C1 ,

which can be written as a separable differential equa-
tion:

dy

dx
=

√(
λ

y − C1

)2

− 1

Letting w = y−C1 we quickly transform the above
into an integral∫

dx =

∫
w dw√
λ2 − w2

,

motivating another substitution

q = λ2 − w2

dq = −2w dw .

From here the integration results in

x = −√
q + C0 ,

where C0 is a constant.

Restoring all of the substitutions back to y, we
get a result that is undoubtedly a circle:

(x− C0)
2
+ (y − C1)

2
= λ2

Evidently, the shape that solves the problem is a
semicircular arc with radius λ centered at (C0, C1)
as shown:
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x

y

10.2 Too Much Length

To solve the maximal area problem above, each in-
tegral is framed in terms of y and its derivative yx,
which is to assume that the curve never ‘doubles back’
in itself, i.e. y (x) is a function. Clearly this won’t
work in the case where there is too much string, i.e.

L >
π

2
∆x ,

which is the case we ponder now.
By intuitive arguments, we could speculate (but

not rely on) that the solution for the modified case is
also semicircular. If so, it seems that the figure above
already depicts the answer, as the quadrant under the
x-axis happens to display circles that satisfy the cri-
teria.

As it turns out, it’s a bit easier to proceed by
studying a closed loop which has no endpoints. To
rationalize this we may assume the special case

∆x ≪ L ,

so that the flat part of the resulting curve will be
negligible. In effect, we’re finding the otherwise-
unconstrained finite closed loop that encloses the
most area.

10.3 Cartesian Analysis

One way to frame the problem is to write integrals
for A and L that do not depend on y being a func-
tion. To this end, we borrow from vector calculus and
Green’s theorem to write the following area formula
for a closed curve:

A [x, y] =

∮
1

2
(x dy − y dx)

L [x, y] =

∮ √
dx2 + dy2

To proceed, frame each of x and y as parametric
equations in the variable t. Then, using the chain
rule, the above become

A [x, y] =

∮
1

2
(x yt − y xt) dt

L [x, y] =

∮ √
x2
t + y2t dt ,

and from here we combine these using a Lagrange
multiplier:

F [x, y] =

∮ (
1

2
(x yt − y xt)− λ

√
x2
t + y2t

)
dt

Picking out the working quantity

Λ =

(
1

2
(x yt − y xt)− λ

√
x2
t + y2t

)
and counting the variables, we can apply two in-
stances of the Euler-Lagrange equation:

d

dt

(
∂Λ

∂xt

)
− ∂Λ

∂x
= 0

d

dt

(
∂Λ

∂yt

)
− ∂Λ

∂y
= 0

Substituting Λ into each gives

d

dt

(
−1

2
y − λxt√

x2
t + y2t

)
=

1

2
yt

d

dt

(
1

2
x− λyt√

x2
t + y2t

)
=

−1

2
xt ,

both of which are easily integrated. Introducing re-
spective integrations constants C0, C1, we find, after
simplifying:

x− C0 =
λyt√
x2
t + y2t

y − C1 =
−λxt√
x2
t + y2t

Square both sides and add to recover the formula for
a circle:

(x− C0)
2
+ (y − C1)

2
= λ2

10.4 Polar Analysis

The same result can be framed more ‘naturally’ in po-
lar coordinates, however the calculation that follows
isn’t any easier than the Cartesian analysis. The area
and length functionals respectively take the form

A [r, θ] =

∮
1

2
r2 dθ

L [r, θ] =

∮
r

√
1 +

(
1

r
rθ

)2

dθ ,
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so the total functional using a Lagrange multiplier
reads

F [r, θ] =

∮ 1

2
r2 − λr

√
1 +

(
1

r
rθ

)2
 dθ .

The working quantity

Λ =
1

2
r2 − λ

√
r2 + r2θ

is a function of r and rθ, but there is no explicit θ-
dependence. By Equation (1.4), we additionally have

Λ− rθ
∂Λ

∂rθ
= C ,

where C is constant. Substituting Λ into the above,
after simplifying, gives

1

2
r2 − C =

λr2√
r2 + r2θ

.

Polar Frame

In a polar coordinate system, the differential arc
length is given by

ds⃗ = ⟨dr, r dθ⟩ ,

having two components that form the sides of a right
triangle with hypotenuse

ds =
√
dr2 + r2dθ2 .

The angle formed between the hypotenuse and r dθ
shall be denoted ϕ and is given by:

sin (ϕ) =
r dθ√

dr2 + r2dθ2
=

r√
r2 + r2θ

In terms of ϕ, the differential equation for this
system now reads

1

2
r2 − C = λr sin (ϕ) .

Now, if the path of integration is to make a closed
loop somewhere in the plane, then the angle ϕ will
(at least) hit all of its values in the domain [0, 2π].
From this we can write a pair of relations

1

2
r2− − C = λr− sin

(
−π

2

)
1

2
r2+ − C = λr+ sin

(π
2

)
,

readily implying

λ =
1

2
(r+ + r−) .

The distances r+, r− are interpreted as the respective
furthest and nearest distances from the origin to the
extremes of the path.

The case r2 = 2C corresponds to two points along
the path where the dθ-component of the arc length is
zero, i.e. the displacement is momentarily parallel to
the line made by r.

Cartesian Frame

It’s possible to begin with the polar analysis of the
problem, namely

1

2
r2 − C =

λr2√
r2 + r2θ

,

and end up with a Cartesian result.

Looking at the case r2 = 2C, this corresponds to
the scenario where the position vector is tangent to
the curve. By specially tuning C = 0, we move the
origin to somewhere on the curve itself, with the po-
lar axis being along the tangent to the curve at that
point. With this choice, we then have

r2 =
2λr2√
r2 + r2θ

,

readily simplifying to a separable differential equation∫
dθ =

∫
dr√

4λ2 − r2
,

having solution

θ = θ0 + arcsin
( r

2λ

)
,

where the integration constant θ0 = 0 by construc-
tion.

Rearranging the above, we ultimately find

r = 2λ sin (θ) .

Making use of the identities

x = r cos (θ)

y = r sin (θ) ,

we swiftly make out the fingerprint of a circle:

r2 = 2λr sin (θ)

x2 + y2 = 2λy

x2 + (y − λ)
2
= λ2
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