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Chapter 1

Trigonometry

1 Angles and Triangles

Trigonometry is the mathematical study of triangles.
A triangle is defined as the intersection of three non-
parallel straight lines as shown in Figure 1.1. The
place where two lines intersect is called a vertex, and
a triangle has three vertices. At each vertex, the tri-
angle has an interior angle A, B, C. The vertex-to-
vertex distance is a side of the triangle, AB, BC or
CA, respectively.

Figure 1.1: Triangle made from three lines.

Using the rules of Euclidean geometry, the angles
A, B are portrayed with their opposite angles outside
the triangle. Also from Euclidean geometry, we can
imagine translating the segment AB to the left (as
shown) until touching vertex C. From here, we see
that the sum of angles B+C+A is equivalent to the
the angle represented by a straight line.
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4 CHAPTER 1. TRIGONOMETRY

1.1 Angles

Any angle A, B, C, etc. is generally represented by
the symbol θ (Greek theta), a parameter that must
be a dimensionless quantity. That is, θ must be a
pure number such as 3 or −17.5 , but never some
measure of meters, seconds, or pounds.

Degrees and Radians

There are two standard units for representing angle,
namely degrees and radians. By convention, a trian-
gle encloses 180 degrees, also written 180◦, which is
equivalent to π radians:

A+B + C = 180◦

A+B + C = π

From these, we have a pair of unit conversion fac-
tors

1◦ =
π

180
rad 1 rad =

180◦

π
,

which extrapolates to the following:

0◦ = 0 rad

45◦ = π/4 rad

90◦ = π/2 rad

135◦ = 3π/4 rad

360◦ = 2π rad

The primary domain for angles is represented by

0 ≤ θ < 360◦

0 ≤ θ < 2π ,

which is to say that any quantity depending on angle
regards 0◦ and 360◦ to be synonymous. Or, an angle
of 375◦ is effectively the same as 15◦.

1.2 Taxonomy of Triangles

Triangles whose sides and angles obey certain rela-
tionships may have standard names.

Equilateral Triangle

An equilateral triangle has all three sides of the same
length. It follows too that all three angles must be
the same, particularly 60◦ or π/3 rad, regardless of
the size of the triangle. An equilateral triangle ex-
hibits three-fold symmetry about its center, which is
to say, there are three orientations of an equilateral
triangle that appear identical.

Isosceles Triangle

An isosceles triangle has two equal sides and two
equal angles. The third side and third angle are al-
lowed to be larger or smaller than the other sides and
angles. An isosceles triangle exhibits mirror symme-
try about a line through the vertex of the two equal
sides and the center of the triangle.

Scalene Triangle

A scalene triangle has no equal sides, no equal angles,
and no symmetry. It’s a typical ‘unplanned’ triangle.

Acute Triangle

An acute triangle has all internal angles less than 90◦.

Obtuse Triangle

An obtuse triangle has one internal angle greater than
90◦.

1.3 Right Triangles

A right triangle is any triangle that has two sides
meeting at 90◦ = π/2rad. Labeling either of the ‘un-
used’ angles as θ, the sides of the right triangle take
on unique names as shown in Figures 1.2, 1.3.

• The side across from the ninety-degree angle is
the Hypotenuse.

• The side across from θ is the Opposite.

• The side touching θ is the Adjacent.

Figure 1.2: Right triangle.
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Figure 1.3: Right triangle.

Area of a Triangle

From geometry, we know that the area of any triangle
is given by

Area =
Base×Height

2
.

For the case of right triangles, it’s convenient to asso-
ciate Base, Height with Opposite, Adjacent (or vice
versa):

ARight =
Opposite×Adjacent

2

1.4 Pythagorean Theorem

The Pythagorean theorem is an equation that relates
the sides of a right triangle to one another, and hap-
pens to also be the backbone equation of trigonom-
etry. Figure 1.4 shows a typical right triangle with
hypotenuse c, opposite a, and adjacent b.

b

a
c

θ

Figure 1.4: Right triangle.

To derive the Pythagorean theorem, imagine a
line that extends from the ninety-degree vertex and
intersects the hypotenuse at a right angle as shown
in Figure 1.5.

b

a c2

c1

θ

Figure 1.5: Similar right triangles.

With this, the hypotenuse is broken into two seg-
ments obeying

c1 + c2 = c .

Then, using similar triangles, we can write two ob-
servations:

c1
a

=
a

c
c2
b

=
b

c

Rearrange these and rewrite to get

c1c = a2

c2c = b2 ,

and then sum the two equations

c (c1 + c2) = a2 + b2 ,

and replace c1 + c2 with c to finish the job:

a2 + b2 = c2 (1.1)

Using the triangle side names in place of a, b, c
yields the equivalent statement:

Opposite2 +Adjacent2 = Hypotenuse2

1.5 Sine, Cosine, Tangent

On a right triangle, the opposite, adjacent, and hy-
potenuse can be stacked into ratios. These ratios have
designated names:

Sine =
Opposite

Hypotenuse
(1.2)

Cosine =
Adjacent

Hypotenuse
(1.3)

Tangent =
Opposite

Adjacent
=

Sine

Cosine
(1.4)

The ratio of sides of a triangle, i.e. the sine, co-
sine, or tangent, is equivalent governed by the angle
θ formed between the hypotenuse and the adjacent.
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It’s customary to include the θ-dependence into the
notation and create the abbreviations:

Sine = sin (θ)

Cosine = cos (θ)

Tangent = tan (θ) =
sin (θ)

cos (θ)

SohCahToa

A useful mnemonic for recovering Equations (1.2)-
(1.4) on the fly is the fictitious name:

SohCahToa

In this, the letter a stands for adjacent, o for opposite,
and h for hypotenuse. Meanwhile S is for the sine, C
for cosine, and T for tangent. Then, the SocCahToa
shorthand expands to:

S = o/h

C = a/h

T = o/a

Fundamental Trigonometric Identity

Immediately from the Pythagorean theorem, we can
write the most important equation in trigonometry,
known as the fundamental identity. Starting with
Equations (1.2), (1.3), square each and take the sum:

(sin (θ))
2
+ (cos (θ))

2
=

Opposite2 +Adjacent2

Hypotenuse2

The right side is identically one due to the
Pythagorean theorem. On the left is the sum of sine
square and cosine squared, which is conventionally
written with the exponent before the parentheses:

(sin (θ))
2
+ (cos (θ))

2
= sin2 (θ) + cos2 (θ)

In concise form, the fundamental trigonometric iden-
tity reads:

sin2 (θ) + cos2 (θ) = 1 (1.5)

2 Circles

In the Cartesian plane, a circle is most generally de-
scribed by

(x− h)
2
+ (y − k)

2
= R2 , (1.6)

where the center of the circle is located at (h, k) and
the radius is R as depicted in Figure 1.6.

x

y

(h, k)

(x, y)

θ

R

(0, 0)

Figure 1.6: Circle.

Taking a second look at this construction, notice
that the line joining the center of the circle to a point
(x, y) on its perimeter is the hypotenuse of a right
triangle where θ is defined to ‘rise off’ a line parallel
to the x-axis.

Theta Convention

By tradition, the angle θ always ‘opens up’ in the
counter-clockwise direction, starting from θ = 0,
measured from a ray parallel to the positive x-axis.

2.1 Taxonomy of Circles

As we’ve seen a circle is entirely characterized by its
center (h, k) and its radius R.

Diameter

The diameter of any shape is distance between its
maximally-separated points on its perimeter. On a
circle, any point one chooses has a ‘twin’ across the
circle precisely distance 2R away. It follows that the
diameter of the circle is 2r:

Diameter = 2R

Circumference

The circumference of a circle is the total length of its
perimeter. This is in fact where the definition of π
originates:

Circumference = 2πR

Area

It’s straightforward to show, although not using
trigonometry alone, that the area of a circle is

A = πR2 .
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Arc Length

In terms of θ, the distance along a circular perimeter
is given by

S = Rθ ,

where S is called arc length. Let θ = 2π for the arc
length to recover the circumference.

Inscription Problem

Let ABC be a triangle with right angle A and hy-
potenuse |BC| as shown in Figure 1.7. If the inscribed
circle of radius R touches the hypotenuse at D, show
that:

|CD| = |AC|+ |BC| − |AB|
2

Figure 1.7: Inscribed Circle in Right Triangle

By inspecting the Figure, there are two ways to
write the radius of the circle:

R = |AB| − |BD|
R = |AC| − |CD|

Eliminating R tells us

|AB| − |BD| = |AC| − |CD| .

Replace |BD| using

|BD| = |BC| − |CD| ,

and solve for |CD| to get the answer.

2.2 Parameterized Circle

A triangle having a fixed hypotenuse with
continuously-adjustable opposite and adjacent sides
is all one needs to trace out a circle. By letting θ
sweep from 0 to 2π, the endpoint of the hypotenuse,
having location (x, y) in the plane, is described by:

x (θ) = h+R cos (θ) (1.7)

y (θ) = k +R sin (θ) (1.8)

The above represents the parameterized equation
of a circle. To quickly recover Equation (1.6), solve
for cos (θ), sin (θ), respectively, and exploit Equation
(1.5).

2.3 Unit Circle

A circle centered at the origin with unit radius, i.e.
(h, k) = (0, 0) and R = 1, is called the unit circle.
The unit circle is a special case where the adjacent
side is equal to cos (θ) and the opposite side is equal
to sin (θ). In the Cartesian plane, the unit circle is:

x2 + y2 = 1

The unit circle is most useful as a data structure
to help remember the sine and cosine values of key
angles, as shown in Figure 1.8.
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Figure 1.8: Unit circle.

2.4 Tangent Line

In the general sense, a tangent line is a straight line
that touches a curve (locally) in one place, and the
slope of the curve at the point of contact equals the
slope of the line. When it comes to circles, the line is
relatively straightforward to analyze.

Consider the unit circle (radius one, centered at
the origin) with a point (x0, y0) selected somewhere
on the perimeter. The slope of the ‘position line’
from the origin to (x0, y0) is naturally y0, x0, which
is identically tan (θ):

tan (θ) =
y0
x0

The tangent line to the unit circle at (x0, y0) has
slope −x0/y0, and is sketched in Figure 1.9. By stan-
dard straight line analysis, the equation of the tan-
gent line obeys

y − y0
x− x0

= −x0

y0
.

More concisely, the same equation can be written

xx0 + yy0 = 1 . (1.9)

It just happens that the length of the tangent
line from (x0, y0) to its intersection with the x-axis is

equal to tan (θ). To prove this, note that the line’s
intersection with the x-axis occurs at (1/x0, 0), and
then construct the distance

√
(x0 − 1/x0)

2
+ y20 ,

which simplifies to x0/y0, the definition of tan (θ) on
the unit circle.

y0

x0

tan(θ)

(1/x0, 0)

cot(θ)
(0, 1/y0)

θ x

y

Figure 1.9: Unit circle with tangent line.
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2.5 Cotangent

The cotangent (of angle θ) is defined as

cot (θ) =
1

tan (θ)
=

cos (θ)

sin (θ)
. (1.10)

On the unit circle, cot (θ) is the segment of the
tangent line extending from (0, 1/y0) to (x0, y0). To
establish this, much like the tangent case, simplify
the quantity √

(1/y0 − y0)
2
+ x2 ,

which comes out to the ratio x0/y0, the definition of
cot (θ) on the unit circle.

2.6 Secant

Continuing with Figure 1.9, the distance from the ori-
gin to the point (1/x0, 0) is called the secant. This is
not to be confused with a ‘secant line’, which is the
extension of a chord through the circle.

To relate the secant to the existing items of
trigonometry, observe from the Figure that

(cot (θ) + tan (θ)) sin (θ) =
1

x0
,

which, using Equation (1.4) and Equation (1.5), sim-
plifies to

1

cos (θ)
=

1

x0
.

Since x0 is already claimed as the cosine of theta, we
have:

sec (θ) =
1

cos (θ)
(1.11)

2.7 Cosecant

The distance from the origin to the point (0, 1/y0) is
called the cosecant.

Much like the secant case, observe from the Figure
that

(cot (θ) + tan (θ)) cos (θ) =
1

y0
,

which simplifies to

1

sin (θ)
=

1

y0
.

Since x0 is already claimed as the sine of theta, we
have:

csc (θ) =
1

sin (θ)
(1.12)

2.8 Periodicity

Due to the confined domain [0 : 2π) of the θ-variable,
it follows that quantities like sin (θ), cos (θ), tan (θ)
are only unique in this interval. It’s just fine, how-
ever, to feed θ-values outside the standard domain.
Before θ = 0 or after θ = 2π, everything repeats via

sin (θ ± 2nπ) = sin (θ) (1.13)

cos (θ ± 2nπ) = cos (θ) (1.14)

tan (θ ± 2nπ) = tan (θ) , (1.15)

where n is any integer. This property is called peri-
odicity.

2.9 Phase

A phase shift occurs when any quantity is added to
θ.

Negative Angles

If we replace θ by −θ, the symmetry of the unit circle
demands:

sin (−θ) = − sin (θ) (1.16)

cos (−θ) = cos (θ) (1.17)

tan (−θ) = − tan (θ) (1.18)

Phase Shift Pi

A phase shift of π radians jumps exactly across the
unit circle. Accordingly, we have:

sin (θ ± π) = − sin (θ) (1.19)

cos (θ ± π) = − cos (θ) (1.20)

Phase Shift Pi/2

As they’re defined, it turns out that sin (θ) and cos (θ)
are related by the phase π/2:

sin
(
θ +

π

2

)
= cos (θ) (1.21)

cos
(
θ +

π

2

)
= − sin (θ) (1.22)

sin
(
θ − π

2

)
= − cos (θ) (1.23)

cos
(
θ − π

2

)
= sin (θ) (1.24)

Similar equations apply when θ is replaced with
−θ:

sin
(π
2
− θ
)
= cos (θ) (1.25)

cos
(π
2
− θ
)
= sin (θ) (1.26)
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3 Trigonometric Identities

It turns out that sin (θ), cos (θ), and tan (θ), along
with their reciprocated counterparts, fit into a slew
of equations called trigonometric identities. In prac-
tice, the so-called ‘trig identities’ are bits of algebra
that can be used to elaborate on or simplify a given
situation.

3.1 Fundamental Trig Identities

The fundamental trigonometric identity first docu-
mented as Equation (1.5), namely

sin2 (θ) + cos2 (θ) = 1 ,

can be exploited to yield several more. Divide by
sin2 (θ) or by cos2 (θ) to yield the following:

1 + cot2 (θ) = csc2 (θ) (1.27)

tan2 (θ) + 1 = sec2 (θ) (1.28)

For an interesting sanity check, take the sum of
the two above equations to come up with

(tan (θ) + cot (θ))
2
= csc2 (θ) + sec2 (θ) , (1.29)

which is the summary of Figure 1.9.

3.2 Angle-Sum Formulas

Consider the sum of two angles α, β, as they embed
in the unit circle as shown in Figure 1.10. The tri-
angle swept out by β has adjacent side cos (β) and
opposite side cos (β). Each of these sides is the hy-
potenuse of a pair of right triangles whose sides are
the products denoted in the Figure.

Figure 1.10: Angle-sum analysis.

Expressing sin (α+ β), cos (α+ β) in terms of the
products of individual terms, we find by inspection

the angle-sum formulas:

sin (α+ β) = (1.30)

sin (α) cos (β) + cos (α) sin (β)

cos (α+ β) = (1.31)

cos (α) cos (β)− sin (α) sin (β)

Using these two results, we can easily calculate
the tangent of α+ β:

tan (α± β) =
tan (α)± tan (β)

1∓ tan (α) tan (β)
(1.32)

3.3 Product Formulas

Starting with the angle-sum formulas (1.30), (1.31),
it’s straightforward to derive the product formulas:

2 sin (α) cos (β) = (1.33)

sin (α+ β) + sin (α− β)

2 cos (α) sin (β) = (1.34)

sin (α+ β)− sin (α− β)

2 cos (α) cos (β) = (1.35)

cos (α+ β) + cos (α− β)

2 sin (α) sin (β) = (1.36)

cos (α− β)− cos (α+ β)

3.4 Double-Angle Formulas

Starting with the product formulas, let α = β = θ to
derive the double-angle formulas:

sin (2θ) = 2 sin (θ) cos (θ) (1.37)

cos (2θ) = cos2 (θ)− sin2 (θ) (1.38)

tan (2θ) =
2 tan (θ)

1− tan2 (θ)
(1.39)

3.5 Half-Angle Formulas

Starting with equation (1.38), replace the sin2 (θ)
term and also replace θ → θ/2 to write

cos (θ) = 2 cos2
(
θ

2

)
− 1 .
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From here, it’s a small matter of algebra to generate
the half-angle formulas:

sin

(
θ

2

)
= ±

√
1

2
− cos (θ)

2
(1.40)

cos

(
θ

2

)
= ±

√
1

2
+

cos (θ)

2
(1.41)

tan

(
θ

2

)
=

sin (θ)

1 + cos (θ)
(1.42)

cot

(
θ

2

)
=

sin (θ)

1− cos (θ)
(1.43)

sec

(
θ

2

)
=

2 cos (θ/2)

1 + cos (θ)
(1.44)

3.6 Superposition Relationships

Superposition of Sines

Consider the sum α + β and difference α − β of two
angles. Take the sine and cosine, respectively, of each
quantity and take their product

sin (α+ β) cos (α− β) =

(sin (α) cos (β) + cos (α) sin (β))×
(cos (α) cos (β) + sin (α) sin (β)) ,

simplifying to, after a bit of work,

sin (α+ β) cos (α− β) =
sin (2α)

2
+

sin (2β)

2
.

Refactor the α, β variables to get the first result:

sin (α) + sin (β) = 2 sin

(
α+ β

2

)
cos

(
α− β

2

)
(1.45)

Replace β with −β to get the second superposi-
tion relationship for free:

sin (α)− sin (β) = 2 sin

(
α− β

2

)
cos

(
α+ β

2

)
(1.46)

These are both called superposition relationships.

Superposition of Cosines

Starting with the superposition relationships above,
introduce the phase shifts:

α → α+ π/2

β → β − π/2

Inserting these and simplifying gives two more super-
position relationships for the cosine:

cos (α)− cos (β) = −2 sin

(
α+ β

2

)
sin

(
α− β

2

)
(1.47)

cos (α) + cos (β) = 2 cos

(
α− β

2

)
cos

(
α+ β

2

)
(1.48)

4 Inverse Trigonometry

For each quantity sin (θ), cos (θ), tan (θ), csc (θ),
sec (θ), cot (θ), there exists an inverse trigonometric
quantity that does the job of ‘solving for’ θ. These
are called the arc-sine, arc-cosine, arc-tangent, and
so on, defined as follows:

arcsin (sin (θ)) = θ (1.49)

arccos (cos (θ)) = θ (1.50)

arctan (tan (θ)) = θ (1.51)

arccsc (csc (θ)) = θ (1.52)

arcsec (sec (θ)) = θ (1.53)

arccot (cot (θ)) = θ (1.54)

Inverse Trig Nomenclature

Confusingly enough, there is another way to write
arcsin (θ), arccos (θ), etc., using the nomenclature

sin−1 (θ) = arcsin (θ)

cos−1 (θ) = arccos (θ) ,

and so on. This overloading of notation does not
mean at all, for instance, that the arcsin (θ) is equal
to the reciprocal of sin (θ).

4.1 Inverse Reciprocal Identities

Some handy identities we can establish early are:

arcsin (1/x) = arccsc (x) (1.55)

arccsc (1/x) = arcsin (x) (1.56)

arccos (1/x) = arcsec (x) (1.57)

arcsec (1/x) = arccos (x) (1.58)

arctan (1/x) = arccot (x) (1.59)

arccot (1/x) = arctan (x) (1.60)

To prove any of the above will demonstrate how
to handle the rest. Choosing the arctan case,

A = arctan (1/x)

B = arccot (x) ,

and then

tan (A) = 1/x

cot (B) = x .

From this we see tan (A) = tan (B), meaning A = B,
and the proof is done.
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4.2 Inverse Triangle Identities

Arccosine

Consider a right triangle with hypotenuse 1, adjacent
side x, and opposite side

√
1− x2. (This is just the

unit circle centered at the origin.) From this, we can
gather

x = cos (θ)

arccos (x) = θ

sin (arccos (x)) = sin (θ) ,

resulting in:

sin (arccos (x)) =
√

1− x2 (1.61)

Divide through by x to get a second result:

tan (arccos (x)) =

√
1− x2

x
(1.62)

Arcsine

Now we modify the triangle slightly. Suppose the hy-
potenuse of another right triangle is 1, and the oppo-
site side is x, making the adjacent equal to

√
1− x2.

From this, we can gather

x = sin (θ)

arcsin (x) = θ

cos (arcsin (x)) = cos (θ) ,

resulting in:

cos (arcsin (x)) =
√
1− x2 (1.63)

Similarly we can establish:

tan (arcsin (x)) =
x√

1− x2
(1.64)

Arctangent

Consider a new right triangle with hypotenuse√
x2 + 1, adjacent side 1, and opposite side x. For

this case, we have

x = tan (θ)

arctan (x) = θ ,

implying

cos (arctan (x)) = cos (θ)

sin (arctan (x)) = sin (θ) .

From these, conclude:

cos (arctan (x)) =
1√

x2 + 1
(1.65)

sin (arctan (x)) =
x√

x2 + 1
(1.66)

Arccosecant

The reciprocal trig quantities are a little harder to
analyze. For the arc-cosecant, consider a right trian-
gle with hypotenuse x, opposite side 1, and adjacent
side

√
x2 − 1. Following this, we find:

x = csc (θ)

arccsc (x) = θ ,

implying

sin (arccsc (x)) = sin (θ)

cos (arccsc (x)) = cos (θ) .

From these, conclude:

sin (arccsc (x)) =
1

x
(1.67)

cos (arccsc (x)) =

√
x2 − 1

x
(1.68)

tan (arccsc (x)) =
1√

x2 − 1
(1.69)

Arcsecant

To handle the arc-secant case, swap the role of the
opposite and adjacent sides in the right triangle used
for the arc-cosecant case:

sin (arcsec (x)) =

√
x2 − 1

x
(1.70)

cos (arcsec (x)) =
1

x
(1.71)

tan (arcsec (x)) =
√
x2 − 1 (1.72)

Arccotangent

To complete the ensemble, consider a right triangle
with hypotenuse

√
x2 + 1, opposite side 1, and adja-

cent side x. Running through the standard exercise
gives three new results:

tan (arccot (x)) =
1

x
(1.73)

sin (arccot (x)) =
1√

x2 + 1
(1.74)

cos (arccot (x)) =
x√

x2 + 1
(1.75)

5 Trigonometry Tables

Trigonometry tables are lists of data containing key
values of sin (θ), cos (θ). Contained in the tables that
follow are the data generated by a trip around the
unit circle.
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5.1 Standard Trigonometry Tables

First Quadrant

Angle (rad) Angle (◦) sin(θ) cos(θ) tan(θ) csc(θ) sec(θ) cot(θ)
0 0 0 1 0 ∓∞ 1 ∓∞

π/16 11.25 0.195 0.981 0.198 5.142 1.020 5.081
π/8 22.5 0.383 0.924 0.414 2.610 1.086 2.414
3π/16 33.75 0.556 0.831 0.671 1.795 1.202 1.486
π/4 45 0.707 0.707 1 1.414 1.414 1
5π/16 56.25 0.831 0.556 1.496 1.202 1.795 0.671
3π/8 67.5 0.924 0.383 2.414 1.086 2.610 0.414
7π/16 78.75 0.981 0.195 5.081 1.020 5.142 0.198
π/2 90 1 0 ±∞ 1 ±∞ 0

Second Quadrant

Angle (rad) Angle (◦) sin(θ) cos(θ) tan(θ) csc(θ) sec(θ) cot(θ)
9π/16 101.25 0.981 -0.195 -5.081 1.020 -5.142 -0.198
5π/8 112.5 0.924 -0.383 -2.414 1.086 -2.610 -0.414

11π/16 123.75 0.831 -0.556 -1.496 1.202 -1.795 -0.671
3π/4 135 0.707 -0.707 -1 1.414 -1.414 -1

13π/16 146.25 0.556 -0.831 -0.671 1.795 -1.202 -1.486
7π/8 157.5 0.383 -0.924 -0.414 2.610 -1.086 -2.414

15π/16 168.75 0.195 -0.981 -0.198 5.142 -1.020 -5.081
π 180 0 -1 0 ±∞ -1 ∓∞

Third Quadrant

Angle (rad) Angle (◦) sin(θ) cos(θ) tan(θ) csc(θ) sec(θ) cot(θ)
17π/16 191.25 -0.195 -0.981 0.198 -5.142 -1.020 5.081
9π/8 202.5 -0.383 -0.924 0.414 -2.610 -1.086 2.414
19π/16 213.75 -0.556 -0.831 0.671 -1.795 -1.202 1.486
5π/4 225 -0.707 -0.707 1 -1.414 -1.414 1
21π/16 236.25 -0.831 -0.556 1.496 -1.202 -1.795 0.671
11π/8 247.5 -0.924 -0.383 2.414 -1.086 -2.610 0.414
23π/16 258.75 -0.981 -0.195 5.081 -1.020 -5.142 0.198
3π/2 270 -1 0 ±∞ -1 ∓∞ 0

Fourth Quadrant

Angle (rad) Angle (◦) sin(θ) cos(θ) tan(θ) csc(θ) sec(θ) cot(θ)
25π/16 281.25 -0.981 0.195 -5.081 -1.020 5.142 -0.198
13π/8 292.5 -0.924 0.383 -2.414 -1.086 2.610 -0.414
27π/16 303.75 -0.831 0.556 -1.496 -1.202 1.795 -0.671
7π/4 315 -0.707 0.707 -1 -1.414 1.414 -1
29π/16 326.25 -0.556 0.831 -0.671 -1.795 1.202 -1.486
15π/8 337.5 -0.383 0.924 -0.414 -2.610 1.086 -2.414
31π/16 348.75 -0.195 0.981 -0.198 -5.142 1.020 -5.081
2π 360 0 1 0 ∓∞ 1 ∓∞
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5.2 Generating Trigonometry Tables

A scientific calculator should be able to generate val-
ues for sin (θ), cos (θ), and tan (θ) in degrees or ra-
dians. Sticking just with tables for a moment, there
arises the question of, what if we need information for
a value not explicitly listed, i.e., what’s the cosine of
83 degrees? Although slightly ahead of the standard
trigonometry regimen, we can explore two answers to
this question.

Trigonometry from Polynomials

As it turns out, it’s possible to show that the sine
and cosine can be calculated exactly for any θ using
the expansions:

sin (θ) = θ − θ3

3!
+

θ5

5!
− θ7

7!
+ · · ·

cos (θ) = 1− θ2

2!
+

θ4

4!
− θ6

6!
+ · · ·

The expansions on the right obey all of the rules of the
sine and cosine, respectively. From these, all other
quantities can be generated. Note that θ must occur
in radians, not degrees.

With the key terms sin (θ), cos (θ) in hand, all of
the others can be derived from these as a matter of
definition.

Small-Angle Approximation

To prepare for a second means of generating
trigonometry tables, particularly intermediate values
in an existing table, we’ll need to borrow ahead from
calculus and write the so-called ‘small-angle approx-
imation’. In essence, note that for very small angles
θ, the sine and cosine become:

sin (θ) ≈ θ −
�
�
�
�θ3

3!
+ · · ·

cos (θ) ≈ 1−
�
�
�
�θ2

2!
+ · · · ,

or move concisely,

θ small: sin (θ) ≈ θ

θ small: cos (θ) ≈ 1 .

The small angle approximation can be discov-
ered a number of ways, not necessarily from calcu-
lus. However, the notation surely couches best in a
calculus framework.

Trig Tables by Interpolation

Now, recall the so-called angle-sum formulas via
Equations (1.30), (1.31), namely

sin (α+ β) =

sin (α) cos (β) + cos (α) sin (β)

cos (α+ β) =

cos (α) cos (β)− sin (α) sin (β) ,

and put the following restrictions on α, β:

0 ≤ α < 2π

|β| ≪ α

In other words, α is treated like a regular angle, and
β is a very small angle. Using the small-angle ap-
proximation on β, the above can be approximately
restated:

sin (α+ β) ≈ sin (α) + cos (α)β (1.76)

cos (α+ β) ≈ cos (α)− sin (α)β (1.77)

To run through an example, suppose we want the
cosine of 83 degrees. Step one is to look at the clos-
est entry in the existing trigonometry table, where
we find

cos

(
7π

16

)
= cos (78.75◦) = 0.195 .

The difference between 83 degrees and 78.75 degrees
is assigned to β:

β = 83◦ − 78.75◦ = 4.25◦ = 0.0742 rad

With β in radians, we can plug into Equation (1.77)
straightforwardly:

cos (83◦) ≈ cos (78.75◦)− sin (78.75◦) (0.0742)

cos (83◦) ≈ 0.1223

For a sanity check the ‘exact’ value of cos (83◦)
is about 0.1219. Of course, had we chosen a smaller
β to begin with, the approximation would be more
accurate. In this same spirit, by choosing β in small
increments, trigonometry tables of any size can be
calculated with enough patience or resources.

Example 1
Given sin (20◦) = 0.342 and cos (20◦) = 0.940,

estimate sin (22◦) and cos (22◦).
Let

α = 20◦ = 20◦
( π

180◦

)
= 0.349

β = 2◦ = 2◦
( π

180◦

)
= 0.0349 ,

so then:

sin (22◦) ≈ 0.342 + 0.0349 (0.940) ≈ 0.375

cos (22◦) ≈ 0.940 + 0.0349 (0.342) ≈ 0.928
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Insanity Check

As a matter of brutal curiosity, it’s worth checking
(once, if ever) that the polynomial expansions for
sin (θ), cos (θ) obey the fundamental identity

sin2 (θ) + cos2 (θ) = 1 .

This chore involves squaring two infinite polynomi-
als, a technically impossible task, but the idea is to
spot a pattern in the algebra so the work doesn’t go
forever.

For a shorthand notation let S = sin (θ), C =
cos (θ), and square each of these separately:

S2 = S

(
x− x3

3!
+

x5

5!
− x7

7!
− · · ·

)
= (1)x2 −

(
2

3!

)
x4 +

(
2

5!
+

1

3!3!

)
x6

−
(
2

7!
+

2

3!5!

)
x8 + · · ·

C2 = C

(
1− x2

2!
+

x4

4!
− x6

6!
− · · ·

)
= 1−

(
2

2!

)
x2 +

(
2

4!
+

1

2!2!

)
x4

−
(
2

6!
+

2

2!4!

)
x6

+

(
2

8!
+

2

2!6!
+

1

4!4!

)
x8 − · · ·

This is a mess, but the results for S2, C2 share a
few similarities. First, there is a 1 on the right side
of the C2 quantity, which means all other terms in
the sum must cancel the entire right side of the S2

sum. Looking at the powers in x, we see both sums
have only even powers (not surprisingly), and more-
over their signs are equal and opposite.

For the fundamental trig identity to hold, it must
be that all of the coefficients attached to similar
power of x are equal. Checking this, we indeed find:

(1) =

(
2

2!

)
= 1(

2

3!

)
=

(
2

4!
+

1

2!2!

)
=

1

3(
2

5!
+

1

3!3!

)
=

(
2

6!
+

2

2!4!

)
=

2

45(
2

7!
+

2

3!5!

)
=

(
2

8!
+

2

2!6!
+

1

4!4!

)
=

1

315

Finally, piece it all together to write

sin2 (θ) = θ2 − 1

3
θ4 +

2

45
θ6 − 1

315
θ8 + · · ·

cos2 (θ) = 1− θ2 +
1

3
θ4 − 2

45
θ6 +

1

315
θ8 − · · · ,

summing together to one.

5.3 Trigonometry Plots

Using trigonometry tables as a database allows for
graphing the values of sin (θ), cos (θ), etc, in near-
continuous fashion. The following plots in the Carte-
sian plane represent the continuous limit of trigonom-
etry tables:

Sine, Cosine, Tangent

−2π− 3π
2

−π −π
2

π
2

π 3π
2

2π

−1

−0.5

0.5

1

θ

y

Figure 1.11: y = sin (θ).

−2π −3π
2

−π −π
2

π
2

π 3π
2

2π

−1

−0.5

0.5

1

θ

y

Figure 1.12: y = cos (θ).
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−3π
2 −π

−π
2

π
2 π

3π
2

−4

−2

2

4

θ

y

Figure 1.13: y = tan (θ).

Cosecant, Secant, Cotangent

−3π
2 −π

−π
2

π
2 π

3π
2

−4

−2

2

4

θ

y

Figure 1.14: y = csc (θ) = 1/ sin (θ).
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−π
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θ

y

Figure 1.15: y = sec (θ) = 1/ cos (θ).
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−π −π
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π
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π 3π
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−2

2

4

θ

y

Figure 1.16: y = cot (θ) = 1/ tan (θ).

5.4 Inverse Trigonometry Analysis

The inverse trigonometric quantities are a little more
awkward to deal with, i.e. to generate correspond-
ing inverse trigonometry tables. For reasons that
ultimately come from computational efficiency argu-
ments, none of which we’ll repeat here, it makes sense
to get everything in terms of the arctangent.

Arcsine, Arccosine

Recall Equations (1.65), (1.66) and invert these to
solve for the arcsine and arccosine, respectively:

arcsin (x) = arctan

(
x√

1− x2

)
, x2 ≤ 1

arccos (x) = arctan

(√
1− x2

x

)
, 0 < x ≤ 1

The arcsine-equation is valid |x| ≤ 1, which happens
to be the cover all cases one may throw at the arcsine.

The arccosine equation is valid as-is for |x| > 0,
and needs a correction to cover the whole domain. It
turns out that

arccos (x) = π + arctan

(√
1− x2

x

)
, −1 ≤ x < 0

does the job for |x| < 0, which is easy to verify. Nei-
ther equation for the arccosine handles the exact case
x = 0, which by definition corresponds to π/2.

The summary of our findings is listed in the table
below and also in Figures 1.17, 1.18.



5. TRIGONOMETRY TABLES 17

x arcsin(x) arccos(x)
-1.0 −π/2 π
-0.8 -0.9273 2.4981
-0.6 -0.6435 2.1859
-0.4 -0.4115 2.9845
-0.2 -0.2014 2.3698
0.0 0 π/2
0.2 0.2014 1.3694
0.4 0.4115 1.1593
0.6 0.6435 0.9273
0.8 0.9273 0.6435
1.0 π/2 0

−1 −0.5 0.5 1

−π
2

−π
4

π
4

π
2

x

θ

Figure 1.17: θ = arcsin (x), |x| ≤ 1.

−1 −0.5 0.5 1

π
4

π
2

3π
4

π

x

θ

Figure 1.18: θ = arccos (x), |x| ≤ 1.

Arccosecant, Arcsecant

For the arccosecant and arcsecant we repeat a similar
analysis to the above starting with Equations (1.69),

(1.72). This exercise results in:

arccsc (x) = arctan

(
1√

x2 − 1

)
, x > 0

arccsc (x) = − arctan

(
1√

x2 − 1

)
, x < 0

arcsec (x) = arctan
(√

x2 − 1
)
, x > 1

arcsec (x) = π − arctan
(√

x2 − 1
)
, x < −1

The summary of our findings is listed in the table
below and also in Figures 1.17, 1.18.

x arccsc(x) arcsec(x)
−∞ 0 π/2
-100 -0.0100 1.5808
-3.2 -0.3178 1.8886
-1.6 -0.6751 2.2459
-1.2 -0.9851 2.5559
-1.0 −π/2 π
0.0
1.0 π/2 0
1.2 0.9851 0.5857
1.6 0.6751 0.8957
3.2 0.3178 1.2530
100 0.0100 1.5808
∞ 0 π/2

−10 −8 −6 −4 −2 2 4 6 8 10

−π
2

−π
4

π
4

π
2

x

θ

Figure 1.19: θ = arccsc (x), |x| ≥ 1.
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−10 −8 −6 −4 −2 2 4 6 8 10
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π
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π
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Figure 1.20: θ = arcsec (x), |x| ≥ 1.

Arctangent, Arccotangent

Finally we get to the case of arctangent and its re-
ciprocal. There are numerous methods for grinding
out the arctangent of any angle, one being called the
Taylor expansion, a trick from calculus, which works
in the domain x2 < 1:

arctan (x) = x− x3

3
+

x5

5
− x7

7
+ · · ·

The Taylor expansion still leaves the question of
what to do about the case x2 > 1. For this, it’s
straightforward to show using trigonometric identi-
ties that

arctan (x) =
π

2
− arctan

(
1

x

)

holds for any x, which turns the problem of say, cal-
culating the arctangent of 4 into a problem of cal-
culating the arctangent of 1/4. Taken together, the
pair of above equations can be used to calculate any
arctangent value.

For the arccotangent, invert Equation (1.73) to
write

arcccot (x) = arctan

(
1

x

)
,

which can make direct use of the work previously
done with the arctangent.

The summary of our findings is listed in the table
below and also in Figures 1.21, 1.22.

x arctan(x) arccot(x)
−∞ −π/2 0
-100 -1.5608 -0.0099
-4.0 -1.3258 -0.2450
-1.6 -1.0122 -0.5586
-0.4 -0.3805 -1.1903
0.0 0 ∓π/2
0.4 0.3805 1.1903
1.6 1.0122 0.5586
4.0 1.3258 0.2450
100 1.5608 0.0099
∞ π/2 0

−5 −2.5 2.5 5

−π
2

−π
4

π
4

π
2

x

θ

Figure 1.21: θ = arctan (x)

−5 −2.5 2.5 5

−π
2

−π
4

π
4

π
2

x

θ

Figure 1.22: θ = arccot (x)

6 Trigonometry and Geometry

6.1 Law of Cosines

Trigonometry allows one to answer an age-old
question from geometry which seeks to find a
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Pythagorean-like theorem for any arbitrarily-shaped
triangle. This is answered by a special formula called
the law of cosines.

b

a
c

α

β

γ

Figure 1.23: Arbitrary triangle.

Consider a triangle with three sides and three an-
gles as labeled in Figure 1.23. Proceed by choos-
ing any vertex, such as where sides a, c come to-
gether, and draw a line that intersects the third side,
i.e. side b, at a ninety-degree angle. Note that β
is not changed despite being omitted from Figure
1.24. Note too that side b is now broken into the
sum b1 + b2 = b.

b1

b2

a
c

α

γ

Figure 1.24: Arbitrary triangle with line intersecting
side b at a right angle.

From standard trigonometry analysis, we can
write a few true statements from the latter Figure:

a cos (γ) = b1

c cos (α) = b2

a sin (γ) = c sin (α)

Proceed by reconstructing the sum b1 + b2:

a cos (γ) + c cos (α) = b ,

and square both sides:

a2 cos2 (γ) + c2 cos2 (α) + 2ac cos (γ) cos (α) = b2

Next make the replacements

cos2 (γ) = 1− sin2 (γ)

cos2 (α) = 1− sin2 (α)

and simplify like mad.

At the end, arrive at the all-powerful law of
cosines:

a2 + c2 − 2ac cos (β) = b2 (1.78)

By symmetry, since we could have sliced the trian-
gle two more ways, there two more expressions of the
same law:

b2 + c2 − 2bc cos (α) = a2 (1.79)

a2 + b2 − 2ab cos (γ) = c2 (1.80)

6.2 Inscribed Angle

A tricky analysis starts with a circle of any radius R
with a diameter AB = 2R as shown in Figure 1.25.
Choose a point C on the perimeter and draw lines
from C to A, B to form an inscribed triangle. (Ignore
all interior labels in the Figure until they’re invoked.)

A B

C

P

θ
2θϕ

θ

Figure 1.25: Inscribed angle.

ACB is a Right Angle

First, it’s possible to prove that ∠ACB is always a
right angle. Place the origin at A so that point C is
located at (x, y), and denote the line AC as a variable
r such that:

r cos (ϕ) = x

r sin (ϕ) = y

r2 = x2 + y2

Using these variables, the circle itself obeys

(x−R)
2
+ y2 = R2 ,

readily simplifying as:

r2 = 2xR

r = 2R cos (ϕ)

r = 2R sin
(π
2
− ϕ

)
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The idea now is to assume the thing we want to
prove, i.e. that ∠ACB = π/2, and make sure no con-
tradiction arises. Going with this, observe from the
Figure that

r = 2R sin (θ) ,

and eliminating r gives

2R sin
(π
2
− ϕ

)
= 2R sin (θ) ,

which can only mean

θ + ϕ =
π

2
,

and no contradiction arises.

PCB Equals Theta

If the center of the circle is located at P , then the
length PC is equal to length PB, both of which equal
the radius R. This qualifies PCB as an isosceles tri-
angle, having two equal sides, which also means two
equal angles:

∠PCB = θ = ∠PBC

APC Equals Twice Theta

Using the properties of the isosceles triangle, the (un-
labeled) angle BPC obeys

∠BPC + 2θ = π .

Being a straight line, the total angle across APB
needs to be π, which means

∠APC + ∠BPC = π .

Eliminating π−∠BPC from each equation yields the
result we want:

∠APC = 2θ

6.3 Law of Sines

There is another relationship called the law of sines
that is obeyed by all triangles.

c

a

b

β

α

γ

Figure 1.26: Arbitrary triangle.

Quick Derivation

Consider a triangle with three sides and three angles
as labeled in Figure 1.26. Using the same process
that led to Figure Figure 1.24, choose any vertex and
draw a line perpendicular to the side opposite the
vertex. We already did this once to yield

a sin (γ) = c sin (α)

in deriving the law of cosines. This can be repeated
for each vertex to yield two more similar relations:

c sin (β) = b sin (γ)

b sin (α) = a sin (β)

Taking all three of the above equations together
yields the (weakest statement of) the law of sines:

sin (α)

a
=

sin (β)

b
=

sin (γ)

c
(1.81)

Area-Based Derivation

A second derivation of the law of sines writes the
total area T of triangle ABC three different ways.
Analyzing similarly as above, we can write:

T =
1

2
ac sin (β) =

1

2
ab sin (γ)

T =
1

2
ba sin (γ) =

1

2
bc sin (α)

T =
1

2
ca sin (β) =

1

2
cb sin (α)

With these, we can not only re-derive Equation
(1.81) but we can also interpret the law of sines as it
relates to the area of the triangle:

2T

abc
=

sin (α)

a
=

sin (β)

b
=

sin (γ)

c
(1.82)

Circumcircle

Imagine the arbitrary triangle being enclosed by a
carefully-placed circle so that all three vertices lie on
the circle’s perimeter. This is called a circumcircle,
silly enough, but is nonetheless shown in Figure 1.82.
Generally, such a circle has a radius R with a center
point that may or may not lie within the confines of
the triangle.
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c

a
b

β

α

γ

A

B

C

Figure 1.27: Arbitrary triangle with circumcircle.

Circumcircle Analysis

It turns out that the radius R of the circumcircle
inscribing an arbitrary triangle relates to the law of
sines. To prove this, start with any vertex, such as
B, and draw a line through the circle’s center until
it intercepts the other side at point Q, i.e. draw a
diameter 2R of the circle. Also, draw lines of length
R from points A and C to the center of the circle as
shown in Figure 1.28.

β1
β2

α1

α2

γ1 γ2

A

B

C

Q

2β1

ϕ

Figure 1.28: Arbitrary triangle with detailed circum-
circle.

The angles α, β γ are now partitioned (not bi-
sected) according to

α = α1 + α2

β = β1 + β2

γ = γ1 + γ2 .

By doing this work, the Figure highlights three isosce-
les triangles, each having two sides of length R and

two identical angles:

α1 = γ2

β1 = α2

γ1 = β2

Phi Equals Gamma

To proceed, recall from inscribed angle analysis to
notice that ∠BAQ is exactly a right angle, and thus
the angle ϕ = ∠BQA relates to β1 by

ϕ+ β1 =
π

2
.

This is enough to establish an important relationship
between γ and ϕ via

γ = γ1 + γ2 = β2 + α1 = (β − β1) + (α− α2)

= α+ β − 2β1 = π − γ − 2β1

γ = −γ + 2ϕ ,

finally revealing
ϕ = γ .

Third Derivation

With ϕ = γ known, refer back to Figures 1.27, 1.28
to notice we can now write

2R sin (γ) = c ,

or
1

2R
=

sin (γ)

c
.

By symmetry, we could do the entire analysis twice
more to land at yet another expression for the law of
sines:

1

2R
=

sin (α)

a
=

sin (β)

b
=

sin (γ)

c
(1.83)

Taking Equations (1.82), (1.83) together, we get
a nifty formula for the area for a circle in terms of its
sides and circumcircle radius:

Area = T =
abc

4R

6.4 Triangle Inequality

There is an important property of triangles called the
triangle inequality, stating that the sum of two side
lengths is always greater than or equal to the remain-
ing length. That is, for a triangle of sides x, y, z, it
follows that

z ≤ x+ y

x ≤ y + z

y ≤ z + x
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B C

D

A

Figure 1.29: Triangle inequality.

To prove this, consider the triangle ABC depicted
in Figure 1.29. Choose point D On the line through
AB such that an isosceles triangle is formed with
two equal lengths AC and AD. Then, angle BCD
has greater measure than ACD, which means BD is
greater than BC:

BD > BC

Next, note that

BD = AB +AD ,

which means

BD = AB +AC .

Reading right to left, we have that the sum AB+AC
equals BD, which we found is greater than BC. Thus
we have

AB +AC > BC ,

completing the proof.

7 Polar Coordinate System

Recall momentarily the Cartesian coordinate system
is the lattice on which all points in the plane are hung.
There is no point in the plane that does not have a
unique coordinate, and every coordinate corresponds
to some point in the plane. As it turns out, there is
another system called polar coordinates that can do
the same job as Cartesian coordinates - to cover the
plane completely.

7.1 Motivation

The polar coordinate system is built from the appara-
tus of trigonometry. Consider the unit circle centered
at the origin represented by

x = cos (θ)

y = sin (θ) ,

or
x2 + y2 = 1 .

By choosing any θ, (even those outside the stan-
dard domain), the point (x, y) lands somewhere in
the plane a distance 1 from the origin.

Suppose next that the unit circle is replaced by
any other circle of radius r, also centered at the ori-
gin. In the same way that θ allows freedom in the
angular dimension, the varying radius allows for free-
dom in the radial dimension. For this reason, one can
see that every point (x, y) in the Cartesian plane cor-
responds to some ordered pair (r, θ).

The mapping from (x, y) to (r, θ) defines the polar
coordinate system:

x (r, θ) = r cos (θ) (1.84)

y (r, θ) = r sin (θ) (1.85)

The x (r, θ), y (r, θ) notation is there to remind us
that x and y each depend on two variables as sug-
gested in Figure 1.30.

(x, y)

r

θ

Figure 1.30: Polar coordinate system.

Radial and Angular Coordinates

In terms of x and y, the r- and θ-variables
are straightforwardly isolated. Squaring Equations
(1.84), polarcoordsy and taking their sum and square
root gives the formula for r

r =
√
x2 + y2 . (1.86)

Note that the ± symbol is omitted from the front of
the square root symbol. This is to mean that there
is no such thing as negative distance from the origin
when using polar coordinates.

Solve for θ by taking the ratio of the x- and y-
equations, and then make use of the arctangent:

θ = arctan
(y
x

)
(1.87)
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As a consistency check, we should be able to apply
sin () or cos () to both sides of Equation (1.87) to re-
cover the x, y equations. Using the trig identities
(1.65), (1.66), we have

cos (θ) = cos
(
arctan

(y
x

))
=

1√
y2/x2 + 1

=
x

r

and

sin (θ) = sin
(
arctan

(y
x

))
=

y/x√
y2/x2 + 1

=
y

r

as expected.

7.2 Straight Lines

Navigating the plane in polar coordinates works out
differently than when using Cartesian coordinates.
For example, the Cartesian system makes trivial work
out of straight lines, but things get ugly when it
comes to tracing curves, such as circles, i.e.

ycirc = ±
√

R2 − x2 .

On the other hand, straight lines are a bit of a
headache in polar coordinates, whereas ycirc simply
r = R.

For the equation of a straight line in Cartesian
coordinates

y = mx+ b ,

use Equations (1.84), (1.85) for polar coordinates and
the same line becomes

r =
b

sin (θ)−m cos (θ)
. (1.88)

We can keep going, though. Express the slope m
as the tangent of some new angle, say ϕ:

m = tan (ϕ)

With this, r becomes

r =
b cos (ϕ)

sin (θ) cos (ϕ)− cos (θ) sin (ϕ)
=

b cos (ϕ)

sin (θ − ϕ)
.

Replace cos (ϕ) using

cos (ϕ) =
1

1 + tan2 (ϕ)
=

1√
1 +m2

,

and arrive at another equation for the straight line:

r =
b√

1 +m2
csc (θ − arctan (m)) . (1.89)

7.3 Scale and Rotation

In a similar way that the x- and y-directions in Carte-
sian coordinates are independent, i.e. a change in x
is not a change in y, is also true in polar coordinates
r, θ. Instead of vertical and horizontal changes, there
are instead radial changes we’ll call scaling, and an-
gular changes addressed as rotation.

Scaling

The easy case is the radial one, where starting at
some position (x0, y0) in the plane such that

x0 = r0 cos (θ0)

y0 = r0 sin (θ0) ,

we may multiply through by a positive constant λ
to scale each coordinate and move to a new location
(x, y):

x = λx0 = (λr0) cos (θ0)

y = λy0 = (λr0) sin (θ0)

Inspecting this result, we see that the effect of scaling
each coordinate by λ simply modifies the radius via

r = λr0

while leaving the angle the same.

Rotations

A way to move from (x0, y0) to a new location (x, y)
independent of r is to rotate about the origin, which
is to change the θ-variable only. Suppose some angle
ϕ is added to θ such that

(x0, y0) = (r cos (θ) , r sin (θ))

(x, y) = (r cos (θ + ϕ) , r sin (θ + ϕ)) ,

where the top pair is the ϕ = 0 case of the bottom
pair.

The trigonometry terms can be expanded using
the angle-sum formulas (1.30), (1.31), resulting in

x = r cos (θ) cos (ϕ)− r sin (θ) sin (ϕ)

y = r sin (θ) cos (ϕ) + r cos (θ) sin (ϕ) ,

simplifying to a set of equations (some may recognize
as a rotation matrix):

x = x0 cos (ϕ)− y0 sin (ϕ)

y = x0 sin (ϕ) + y0 cos (ϕ)

As a sanity check, one can check the sum

x2 + y2 = x2
0 + y20 ,

which assures the radius doesn’t change under rota-
tions.
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7.4 Offset Circles

A circle offset from the origin is a bit messy in both
Cartesian and polar coordinates. Consider a circle of
radius a centered at the point (x0, y0), i.e.

(x− x0)
2
+ (y − y0)

2
= a2 ,

where (x, y) locates any point on the perimeter as
shown in Figure 1.31.

x

y

(x0, y0)

(x, y)R0

a

r

(0, 0)
θ

Figure 1.31: Offset circle.

Using polar coordinates, we have that the center
of the circle is located by

x0 = R0 cos (θ0)

y0 = R0 sin (θ0) ,

and, of course, a the point (x, y) on the perimeter is
at

x = r cos (θ)

y = r sin (θ) .

Substituting the polar representations for x, y, x0,
y0 into the equation of the offset circle and letting the
algebra cook down results in something reminiscent
of the law of cosines:

r2 +R2
0 − 2rR0 cos (θ − θ0) = a2

Note that θ − θ0 is the angle formed between r and
R0. We can keep going, though. Isolate r using the
quadratic formula and simplify again:

r = R0 cos (θ − θ0)±
√
a2 −R2

0 sin
2 (θ − θ0) (1.90)

7.5 The Involute

A string is wrapped around a circle of radius a. Keep-
ing the string tight, unwind the string and keep track
of its endpoint. The shape traced out is called the
involute as shown in Figure 1.32.

x

y

Figure 1.32: The involute.

Parameterize the unwinding using an angle ϕ,
where ϕ = 0 corresponds to the fully-wrapped string.
In terms of ϕ, the endpoint of the string is given by

x (ϕ) = a cos (ϕ) + aϕ sin (ϕ)

y (ϕ) = a sin (ϕ)− aϕ cos (ϕ) .

With x, y on hand, we can determine the abso-
lute distance from the origin, i.e. the r-parameter for
polar coordinates:

r =
√
x2 + y2 = a

√
1 + ϕ2

The θ-parameter is a little more tricky. Using po-
lar coordinates, start with

r cos (θ) = a cos (ϕ) + aϕ sin (ϕ)

r sin (θ) = a sin (ϕ)− aϕ cos (ϕ) .

Proceed by letting

ϕ = tan (u)

for some new parameter u, which leads to

cos (u) = ±a/r

sin (u) = ±aϕ/r .

Simplifying the above gives a tight relationship
between the variables on hand:

θ = ϕ− u = tan (u)− u

Note that u is confined to the domain (π/2 : π/2).

8 Lissasjous Curves

...
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