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Chapter 1

Taylor Polynomial

1 Introduction

Students are almost universally exposed, at one point
or another, to simple concepts of motion, a study
often called kinematics. Kinematics is a careful ac-
counting of the position, x, of some object (or several
objects) as a function of time t. Governing the evo-
lution of the position is the velocity, v (t), which is
itself governed by the acceleration, a (t).

1.1 Constant Acceleration

To keep things simple, a study of kinematics often
limits the acceleration to be constant, or uniform,

which is convenient for describing many systems, in-
cluding freefall motion near Earth’s surface, or the
motion of charges in a uniform electric field. In such
a case, the student is provided with a hierarchy of
kinematic formulas:

x (t) = x0 + v0t+
1

2
at2 (1.1)

v (t) = v0 + at

a (t) = constant

The initial values x0, v0 correspond to the position
and velocity at time t = 0.

Kinematic Identities

The standard kinematic formulas are reinforced by a
flurry of kinematic identities

x (t) = x0 + vt

x (t) = x0 + v (t) t− 1

2
at2

(v (t))
2
= v20 + 2a∆x ,

where

v (t) =
v0 + v (t)

2
∆x = x (t)− x0 .

Problem 1

3
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Use x (t) = x0 + vt and v (t) = v0 + at to derive
Equation (1.1).

Position Plot

The kinematic equation for position x (t) is quadratic
in the variable t, thus it’s of interest to complete the
square in t and write the position x as

x (t) =

(
x0 −

v20
2a

)
+

a

2

(
t+

v0
a

)2
. (1.2)

The vertex of the motion, occurring at (tvert, xvert),
is calculated by setting t = −v0/a, giving

(tvert, xvert) =

(
−v0
a

, x0 −
v20
2a

)
.

There exists a condition for which the position
returns to x = x0, given by

t∗0 =
−2v0
a

.

Note that if v0/a resolves to a positive number, the
above condition is not met for positive time values.
We may also determine the t-intercepts, correspond-
ing to the point(s) satisfying x = 0:

t∗1,2 =
v0
a

(
1±

√
1− 2x0a

v20

)

The summary of our findings is contained in the fol-
lowing graph, choosing x0 > 0, v0 < 0, a > 0 for the
sake of demonstration:

(
−v0/a, x0 − v20/a

2
)

(x0, 0) (x0, t
∗
0)

t∗1 t∗2 t (time)

x (distance)

Problem 2

Derive Equation (1.2) from Equation (1.1) and
verify the formulas for the vertex and t-intercepts.

Velocity Plot

When the acceleration is uniform, the plot represent-
ing v (t) is that of a straight line. The slope of the
line is defined as the acceleration. Shown below is
a single graph with several lines representing various
trajectories of a common initial velocity.

v0

a > 0

a = 0

a < 0
t (time)

v (distance/time)

2 Uniform Jerk and Beyond

Inevitably during a study of kinematics, one wonders
how things change if acceleration is itself allowed to
vary with time, a phenomenon called jerk.

2.1 Identities

In the case of uniform jerk, represented by j, we may
write

a (t) = a0 + jt ,

perfectly analogous to v = v0 + at in the constant-
acceleration regime. In the same analogy, certain
‘acceleration-jerk’ identities can be written, for in-
stance:

v (t) = v0 + a0t+
1

2
jt2

a (t)
2
= a20 + 2j∆v

2.2 Time-Shift Analysis

All is well until we try to come up with an equation
for position x (t). Going by pattern alone, it seems
that the new ‘jerk’ term will depend on t3, but we
can’t be sure which coefficient to write. Putting this
uncertainty into the unknown coefficient A, we have:

x (t) = x0 + v0t+
1

2
a0t

2 +
1

A
jt3

To proceed, introduce a shift of time such that

t → t+ h ,
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where h can be of any value. Inserting this into the
above gives

x (t+ h) = x0 + v0 (t+ h)

+
1

2
a0 (t+ h)

2
+

1

A
j (t+ h)

3
,

and now the job is to expand all factors involving
(t+ h). Doing so, and then combining like terms in
powers of h, results in something interesting:

x (t+ h) =

(
x0 + v0t+

1

2
a0t

2 +
1

A
jt3
)

+ h

(
v0 + a0t+

3

A
jt2
)

+
1

2
h2

(
a0 +

6

A
jt

)
+

1

6
h3 (j)

From this, we see the only way to correctly recover
the identities already written is to have

A = 6 ,

and no other choice suffices.

2.3 Time-Shifted Kinematics

To tighten up the analysis above, define new coeffi-
cients of motion xt, vt, and at such that:

xt = x0 + v0t+
1

2
a0t

2 +
1

6
jt3

vt = v0 + a0t+
1

2
jt2

at = a0 + jt

Then, the time-shifted position x (t+ h) can be writ-
ten in condensed form that buries the explicit t-
dependence in favor of h:

x (t+ h) = xt + vth+
1

2
ath

2 +
1

6
jh3 (1.3)

This result kills two birds with one stone. Firstly,
we arrive at a fully-adjustable equation of kinemat-
ics with any t as the ‘initial’ time value, shifting the
burden of evolution to h.

Secondly, we see the additional ‘uniform jerk
term’ in the role of kinematics arrives unambiguously
as (1/6) jt3:

x (t) = x0 + v0t+
1

2
a0t

2 +
1

6
jt3

Inverse Relations

It’s worthwhile to take the time-shifted kinematic
identities for xt, vt, etc., and solve instead for x0, v0,
etc., thereby inverting the set of equations. Starting
with the a-terms and working back, we find:

a0 = at − jt

v0 = vt − att+
1

2
jt2

x0 = xt − vtt+
1

2
att

2 − 1

6
jt3

That is, the inverted version differs by the original up
to a minus sign on the effective time variable.

2.4 Uniform Snap

Having cracked the problem of uniform jerk, one won-
ders next what happens if jerk is allowed to vary in
time, a situation describing snap. Indeed, if we intro-
duce a uniform snap constant k, we have

j (t) = j0 + kt ,

and the whole argument repeats. Then, there must
be some fourth-order correction to the position such
that

x (t) = x0 + v0t+
1

2
a0t

2 +
1

6
j0t

3 +
1

B
kt4 .

Problem 1
Use time-shift analysis to figure out B = 24, and

then appropriately append xt, x0, vt, v0, etc.

2.5 Pattern of Coefficients

Looking at the equation x (t) and the coefficient ac-
companying each term, we can’t help but try to see
a pattern to these. Each coefficient originates from
expanding powers of (t+ h)

n
, discovered using either

brute force or referring to Pascal’s triangle.
Delving into polynomial expansion, one inevitably

discovers the handiness of the factorial operator, ( ! )
which is a way to express the product of descending
integers starting with N :

N ! = N (N − 1) (N − 2) · · · (2) (1) ,

with the limit case

0! = 1 .

With this, the coefficients in the kinematic equation
for x (t) can be written in tighter fashion:

x (t) = x0 + v0t+
1

2!
a0t

2 +
1

3!
j0t

3 +
1

4!
kt4
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3 Change of Base Point

To explore an application of time-shift analysis, con-
sider a trajectory characterized by coefficients

x0 = −3 v0 = 1
a0
2

= −3

j0
3!

=
−1

2

k

4!
=

5

16
,

such that

x (t) = −3 + t− 3t2 − 1

2
t3 +

5

16
t4 ,

plotted as follows:

−6 −4 −2 2 4 6

−20

−16

−12

−8

−4

4

t

x

As written, the equation for x (t) is suited such that
the ‘origin in time’ is t = 0.

A change of base point is analogous to choosing a
new origin, i.e. to replace the point that does t = 0’s
job with something else. In light of time-shift analy-
sis, this amounts to letting, say, tp = 2, and then let-
ting h do the evolution as the effective time variable.
The hard work entails calculating the coefficients xt,
vt, etc.:

xt =

(
x0 + v0t+

a0
2
t2 +

j0
6
t3 +

k

24
t4
) ∣∣∣∣

2

= −12

vt =

(
v0 + a0t+

j0
2
t2 +

k0
6
t3
) ∣∣∣∣

2

= −7

at =

(
a0 + j0t+

k0
2
t2
) ∣∣∣∣

2

= 3

jt = (j0 + k0t)

∣∣∣∣
2

= 12

k =
15

2

A new equation is written

x (tp + h) = −12− 7h+
3

2
h2 + 2h3 +

5

16
h4 ,

were the tp-dependence is hidden in the numeric co-
efficients. The plot of this is in all ways identical to
the original as shown:

−6 −4 −2 2 4 6

−20

−16

−12

−8

−4

4

+h−h

t

x

3.1 Reverting

For a sanity check, one may reverse-work the previ-
ous example, which is to start with the x (h)-equation
and recover the original version x (t). A brutal way
to do this is to let h = t− 2, and then simplify.

Alternatively, use symbolic apparatus to recover
the same result using inverse relations

j0 = (jt − kt)

∣∣∣∣
2

a0 =

(
at − jtt+

1

2
kt2
) ∣∣∣∣

2

v0 =

(
vt − att+

1

2
jtt

2 − 1

6
kt3
) ∣∣∣∣

2

x0 =

(
xt − vtt+

1

2
att

2 − 1

6
jtt

3 +
1

24
kt4
) ∣∣∣∣

2

,

and the original numbers pop back out.

4 Taylor Polynomial

The change of base point procedure can be general-
ized. Supposing we choose a fixed point in time t = tp
and allow to h change with time, the quantity tp + h
becomes the effective time t:

t = tp + h

With this, a general kinematic equation for x (tp + h)
can be written:

x (t) = xtp + vtp (t− tp)

+
1

2
atp (t− tp)

2
+

1

6
jtp (t− tp)

3
+ · · ·
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Introducing a generalized notation to represent
the velocity, acceleration, jerk, and so on, let us make
the associations

xtp → x
(0)
tp

vtp → x
(1)
tp

atp → x
(2)
tp

jtp → x
(3)
tp

ktp → x
(4)
tp ,

and so on. On the left we’ve run out of ‘named’ items
after snap, thus the general symbol x

(q)
tp is utilized to

denote the qth coefficient.

4.1 Generalized Kinematic Equation

In condensed form, x (t) can be written in a most
general way using summation notation

x (t) = xtp +

n∑
q=1

1

q!
x
(q)
tp (t− tp)

q
, (1.4)

which we’ll call the Taylor polynomial. The upper
limit n can be any number, depending on the total
number of motion coefficients in play.

4.2 Generalized Coefficients

In the Taylor polynomial, note that tp can be taken
as any point in the domain of x (t), and the equation
‘adjusts’ accordingly. To pay for this, for any given
tp, we have to calculate all of the ‘slope terms’, which
looks like(

x0 + v0t+
a0
2
t2 +

j0
6
t3 +

k0
24

t4 + · · ·
) ∣∣∣∣

tp

= xtp(
v0 + a0t+

j0
2
t2 +

k0
6
t3 + · · ·

) ∣∣∣∣
tp

= vtp(
a0 + j0t+

k0
2
t2 + · · ·

) ∣∣∣∣
tp

= atp

(j0 + k0t+ · · · )
∣∣∣∣
tp

= jtp ,

remembering that each of the terms xtp , vtp , etc.,

represent x
(0)
tp , x

(1)
tp , etc.

4.3 Inverse Coefficients

The inverse relations to the above, namely the struc-
ture that isolates x0, v0, etc., can be expressed by:

j0 = (jt − ktt+ · · · )
∣∣∣∣
tp

a0 =

(
at − jtt+

kt
2
t2 − · · ·

) ∣∣∣∣
tp

v0 =

(
vt − att+

jt
2
t2 − kt

6
t3 + · · ·

) ∣∣∣∣
tp

x0 =

(
xt − vtt+

at
2
t2 − jt

6
t3 +

kt
24

t4 − · · ·
) ∣∣∣∣

tp

4.4 Velocity

Consistent with the way x (t) is written, we can write
a similar formula for the velocity v (t):

v (t) = vtp +

n∑
q=2

1

(q − 1)!
x
(q)
tp (t− tp)

q−1

By a shift of index q − 1 = r, this reads

v (t) = vtp +

n∑
r=1

1

r!
x
(r+1)
tp (t− tp)

r
,

which can be shortened once more by making the as-
sociation

v
(r)
tp = x

(r+1)
tp .

4.5 Slope of a Polynomial

The relationship between x (t) and v (t) applies, in a
sense, to any polynomial. Given a polynomial y (t)
with arbitrary coefficients

y (t) = A+Bt+ Ct2 +Dt3 + · · · ,

we’re still free to interpret A, B, etc., as kinematic
coefficients, i.e.

A = x0

B = v0

C = a0/2!

D = j0/3!

E = k0/4! ,

etc., and suddenly the problem looks like kinematics
again.

If the term y (t) is in all respects equivalent to a
position x (t), then the slope of y (t) must be equiv-
alent to the velocity v (t). Using the Taylor polyno-
mial, the velocity is trivial to write:

v (t) = v0 + a0t+
1

2!
j0t

2 +
1

3!
k0t

3 + · · ·
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Restoring the original coefficients, we find a formula

for the slope y
(1)
t of the function y (t):

y
(1)
t = B + 2Ct+ 3Dt2 + 4Et3 + · · ·

5 Area Under a Polynomial

5.1 Displacement as Area

Recalling the uniform-acceleration regime, the plot of
the velocity v (t) is a straight line in time with initial
value v0.

Inevitably, one should become curious about the
area contained above the t-axis and under v (t). Do-
ing this exercise using geometry, we find, at time t,
the area A to be the sum of two parts, a rectangle
and a triangle, having respective areas

Arectangle = tv0

Atriangle =
1

2
t∆v ,

where
∆v = v (t)− v0 .

Taking the sum of each area, and also replacing
v (t) with v0 + at2/2, we find

Atotal = v0t+
1

2
at2 ,

which is exactly equal to the displacement x (t)−x0.
Evidently, for uniform acceleration at least, the area
under the velocity plot equals the displacement:

Atotal = x (t)− x0

Riemann Sum (Optional)

Extending the idea of displacement-area-equivalence,
it takes little to imagine that the displacement x (t)−
x0 is equal to the area under the velocity v (t) plot
whether or not the velocity is linear. This is typically
justified using a Riemann sum, which approximates
a general v (t) as many conjoined straight lines such
that

x (t)− x0 = lim
N→∞

N∑
q=1

v
(
t∗q
)
∆tq ,

where
∆tq = tq − tq−1 ,

and t∗q is a value within the interval ∆tq.
In the general case, students of calculus learn to

fashion the Riemann sum into a formal integral, and
then the whole discussion shifts to techniques of solv-
ing integrals.

5.2 Exploiting Taylor Polynomial

Using the results painfully gained in this study by
plain algebra, we can step around the calculus-based
method for calculating the area under a polynomial
curve. Going for the general case, suppose you’re
handed a polynomial with arbitrary coefficients:

y (t) = A+Bt+ Ct2 +Dt3 + · · ·

The key is to make the association y (t) ↔ v (t),
which means to interpret y (t) as the velocity of some
so-far undetermined curve x (t). The coefficients A,
B, C, etc., must be put into familiar terms, where
borrowing the whole kinematics apparatus, we have

A = v0

B = a0

C = j0/2!

D = k0/3! ,

and so on.
Then, without any new thinking at all, we already

know what x (t) should look like in terms of kinematic
coefficients, which is

x (t)− x0 = v0t+
1

2!
a0t

2 +
1

3!
j0t

3 +
1

4!
k0t

4 + · · · .

Replacing the kinematic coefficients with the original
unknowns, the result

x (t)− x0 = At+
1

2
Bt2 +

1

3
Ct3 +

1

4
Dt4 + · · ·

emerges, and like magic, the problem is solved.

Example

For an example, let us exploit the Taylor polynomial
to calculate the area under the curve

y (t) = (2 + 3t)
2
.

Begin by expanding y (t) to get

y (t) = 4 + 12t+ 9t2 ,

from which we discern

v0 = 4

a0 = 12

1

2
j = 9 .

Assembling the quantity x (t)− x0 from these coeffi-
cients, we simply write

x (t)− x0 = 4t+ 6t2 + 3t3 ,

and the problem is solved.
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6 Euler Exponential

From equation (1.4), it’s interesting to conceive of the
situation where all ‘slope terms’ are the same num-
ber, i.e.

x
(q)
tp = x

(0)
tp = xtp ,

which assumes (without loss of generality) that time
is a dimensionless variable. This has similar conse-
quence for x0, v0, a0, and so on, for these are now
identical after adjusting for units of time.

From this, we have

x (t) = xtp

∞∑
q=0

1

q!
(t− tp)

q
,

and choosing xtp = 1 and tp = 0 for a moment, we
can have a look at this special x (t) in the following
plot:

−1 1 2 3 4

5

10

15

20

25

t

x

Taking a Limit

To proceed, pluck out the q = 0-term and q = 1-term
from the sum:

x (t) = xtp + xtp · (t− tp) + xtp

∞∑
q=2

1

q!
(t− tp)

q

Now, to invoke a new restriction on the above, let
us insist that the quantity t − tp become arbitrarily
small, approaching but not reaching zero. In the ab-
solute limit t = tp, the above reduces to the tautology
x (t) = xt. Just ‘before’ that though, when t − tp is
a very small number, the entire sum starting from
q = 2 can be dismissed as negligible, leaving only the
low-order terms:

x (t) = lim
t→tp

xtp + xtp · (t− tp)
���������
+xtp

∞∑
q=2

1

q!
(t− tp)

q

Then, after some quick algebra, we have:

x (t)

xtp

= lim
t→tp

(1 + (t− tp))

6.1 Euler’s Constant

From the plot of x (t), the behavior of the curve seems
much less like a polynomial and much more like an
exponential. In this spirit, propose such a form for
x (t) namely

x (t) = x0 e
t ,

where e is a yet-undetermined constant named to
foreshadow the result. In terms of the same constant,
it follows that

xtp = x0 e
tp .

Combining this with the above limit analysis, we
have

x (t)

xtp

= et−tp = lim
t→tp

(1 + (t− tp))

or
e = lim

u→0
(1 + u)

1/u
,

where we have set

u = t− tp ,

calling for one more substitution

v =
1

u
,

so that the limit of u going to zero is replaced with
the limit of v going to infinity. Finally, we get

e = lim
v→∞

(
1 +

1

v

)v

, (1.5)

the ‘standard’ formula for Euler’s constant, evaluat-
ing to, approximately,

e ≈ 2.7182818284590 . . . .

6.2 Exponential Growth

To summarize so far, we write the Euler exponential
as a polynomial such that

et =

∞∑
q=0

tq

q!
,

which was motivated by setting all slope terms x
(q)
tp to

be equal. Instead, let us instead insist that, in Equa-
tion (1.4), that the ratio of ascending coefficients is a
constant α:

xtp = x
(0)
tp = αqx

(q)
tp
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Proceeding as we did before, there is now a factor
of α joining the t-variable

x (t) = xtp

∞∑
q=0

1

q!
αq (t− tp)

q
,

obeying the limit

x (t)

xtp

= lim
t→tp

(1 + α (t− tp)) .

Then, using the same substitutions u, v as above
leads to another definition of Euler’s constant:

eα = lim
v→∞

(
1 +

α

v

)v
(1.6)

As in infinite sum, we take, as a final result:

eαt =

∞∑
q=0

(αt)
q

q!
(1.7)

Setting α → −α, we have another relation to handle
backward evolution in time:

e−αt =

∞∑
q=0

(−αt)
q

q!
(1.8)

6.3 Hyperbolic Curves

Two noteworthy combinations of the the Euler ex-
ponential equations (1.7), (1.8) can be constructed,
namely the hyperbolic cosine and the hyperbolic sine,
given by, respectively:

cosh (αt) =
eαt + e−αt

2
(1.9)

sinh (αt) =
eαt − e−αt

2
(1.10)

Simultaneous to these we can get the originals back
by taking the sum and difference of each:

eαt = cosh (αt) + sinh (αt)

e−αt = cosh (αt)− sinh (αt)

Furthermore, given the infinite expansion of et,
the hyperbolic functions can be written in open form:

cosh (t) = 1 +
t2

2!
+

t4

4!
+

t6

6!
+ · · · (1.11)

sinh (t) = t+
t3

3!
+

t5

5!
+

t7

7!
+ · · · (1.12)

It’s straightforward to show from the above that
the pair of hyperbolic functions obey, for a dimen-
sionless variable t,

(cosh (t))
2 − (sinh (t))

2
= 1 . (1.13)

This is somewhat like the standard identity from
trigonometry if it weren’t for the negative sign. In
fact, a whole slew of ‘hyperbolic trigonometry’ iden-
tities can be derived that are analogous to the ‘ordi-
nary’ trig identities.

6.4 Natural Logarithm

Consider the curious quantity

y (x) = lim
x→0

nx − 1

x
, (1.14)

plotted as follows:

x

y

From the plot of Equation (1.14), we see the point
at x = 0 is probably a removeable singularity, which
is to say we can come up with an answer for y (0)
given how y behaves in that neighborhood.

Proceed by solving for n to write

n = lim
x→0

(1 + xy)
1/x

,

which is starting to look like the derivation of Euler’s
constant. By Equation (1.6), the right side evaluates
to ey, telling us

y (0) = loge (n) ,

and for a final answer we take:

ln (n) = lim
x→0

nx − 1

x

The missing point in the plot of y (x) is the natural
log of n.
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7 Periodic Curves

Consider the generalized (infinite) Taylor polynomial
given as Equation (1.4) with tp = 0:

x (t) =

∞∑
q=0

1

q!
x
(q)
0 tq

Next, consider a shift of variables t → t+w such that

x (t+ w) =

∞∑
q=0

1

q!
x
(q)
0 (t+ w)

q
,

which, up to w replacing h to avoid confusion, resem-
bles the setup for time-shifted kinematics that led to
Equation (1.4) originally.

For a familiar but nontrivial exercise, one can ex-
pand the right side in powers of w to write a gener-
alization of Equation (1.3), particularly

x (t+ w) =

∞∑
q=0

1

q!
x
(q)
t wq . (1.15)

A similarly-familiar exercise involves solving for

the coefficients x
(q)
t , which in this case turn out as

x
(0)
0 + x

(1)
0 t+ x

(2)
0

t2

2
+ x

(3)
0

t3

6
+ · · · = x

(0)
t

x
(1)
0 + x

(2)
0 t+ x

(3)
0

t2

2
+ x

(4)
0

t3

6
+ · · · = x

(1)
t

x
(2)
0 + x

(3)
0 t+ x

(4)
0

t2

2
+ x

(5)
0

t3

6
+ · · · = x

(2)
t ,

and so on, which, just to remind, are the same as xt,
vt, at, etc in kinematics-style notation.

From the above list, multiply each equation by
ascending powers of w such that each has the same
units of time, and then sum all terms vertically to get
a curious identity:

x
(0)
t + wx

(1)
t + w2x

(2)
t + · · · =

+ x
(0)
0 + wx

(1)
0 + w2x

(2)
0 + · · ·

+ t
(
x
(1)
0 + wx

(2)
0 + w2x

(3)
0 + · · ·

)
+

t2

2

(
x
(2)
0 + wx

(3)
0 + w2x

(4)
0 + · · ·

)
+

t3

6

(
x
(3)
0 + wx

(4)
0 + w2x

(5)
0 + · · ·

)
+ · · ·

7.1 Periodicity Condition

Suppose, for all times t in the domain of x (t), the
property

x (t+ w) = x (t)

always holds, called the periodicity condition. Im-
mediately true, too, is the stronger statement for all
orders of slope terms:

x
(q)
t+w = x

(q)
t

All we need is the special case of the periodicity con-
dition

x (w) = x (0) = x0

and subsequently

x(q)
w = x

(q)
0 .

To proceed, take that messy identity we wrote
above and set t = w. The zero-order terms cancel
right away due to periodicity:

0 = w
(
x
(1)
0 + wx

(2)
0 + w2x

(3)
0 + · · ·

)
+

w2

2

(
x
(2)
0 + wx

(3)
0 + w2x

(4)
0 + · · ·

)
+

w3

6

(
x
(3)
0 + wx

(4)
0 + w2x

(5)
0 + · · ·

)
+ · · · ,

For this to be true in the general case, it must be
that the parenthesized terms cannot all be positive,
and cannot all be negative, else divergence would oc-
cur. Whatever the above is trying to say, let us call
it the periodicity constraint. After a bit of algebra,
it’s possible to cook the periodicity constraint down
to a double sum

0 =

∞∑
k=1

x
(k)
0 wkJk ,

where

Jk =

k∑
j=1

1

j!

for brevity.
To anticipate the next move, break the outer k-

sum into two parts: one sum for even k, denoted ke,
and another sum for odd k, denoted ko:

0 =

( ∞∑
even k

x
(ke)
0 wkeJe

)
+

( ∞∑
odd k

x
(ko)
0 wkoJo

)
Now, the periodicity condition must also work

when w is swapped with −w, or any integer mul-
tiple of w for that matter. Going with w → −w, we
see that the ‘even’ sum on the left would be com-
pletely unchanged by this, whereas the ‘odd’ sum on
the right would gain a global minus sign. In other
words, using generic labels, we have a situation with

Even + Odd = 0

Even−Odd = 0 ,
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which is only true if

Even = Odd = 0 .

Each parenthesized sum above, ‘odd’ and ‘even’, must
separately equal zero.

7.2 Cosine and Sine

Separated into even and odd terms, the periodicity
constraint encourages, but does not outright demand,

that the x
(k)
0 -terms have alternating signs and all the

same magnitude. To be definitive, let us have

1 = x
(0)
0 = x

(4)
0 = x

(8)
0 = · · ·

−1 = x
(2)
0 = x

(6)
0 = x

(10)
0 = · · ·

for the even terms, and

1 = x
(1)
0 = x

(5)
0 = x

(9)
0 = · · ·

−1 = x
(3)
0 = x

(7)
0 = x

(11)
0 = · · ·

for the odd terms.
These results let us write two cases for the result-

ing x (t), namely

cos (t) = 1− t2

2!
+

t4

4!
− t6

6!
+ · · · (1.16)

sin (t) = t− t3

3!
+

t5

5!
− t7

7!
+ · · · , (1.17)

where of course, the variable t can be replaced by the
combination αt as done previously.

8 Laws of Motion

Consider a pair of polynomials, one called U (x) de-
pending on x (t), and the other called T (v) depending
on v (t). These symbols may ring familiar as energy
terms, which will indeed turn out true. As Taylor
polynomials, the formulae for U and T are:

U (x) = Uxp
+

n∑
q=1

1

q!
U (q)
xp

(x− xp)
q

T (v) = Tvp +

n∑
q=1

1

q!
T (q)
vp (v − vp)

q

8.1 Conservation of Energy

Now suppose we are interested in the sum of T and
U , a quantity labled E such that

E = T (v) + U (x) .

To make things interesting, suppose E is a constant
in time, which would mean

T (v) + U (x) = Tvp + Uxp
.

By doing this, we have just enforced a powerful no-
tion called conservation of energy.

With the above, take the sum of the T - and U -
equations to get

0 =

n∑
q=1

1

q!
U (q)
xp

∆xq +

n∑
q=1

1

q!
T (q)
vp ∆vq ,

where:

∆x = x− xp

∆v = v − vp

Writing out the first term in each sum and rearrang-
ing a bit gives

0 =
(
U (1)
xp

∆x+ T (1)
vp ∆v

)
+

n∑
q=2

1

q!

(
U (q)
xp

∆xq + T (q)
vp ∆vq

)
.

8.2 First-order Equations

Now we explore the regime where both ∆x and ∆v
are ‘small intervals‘ such that higher powers of these
quantities tend to diminish. From this we may ig-
nore the remaining summation and keep the low-
order terms already plucked out. If x and v are to be
related by kinematics, it should follow that

∆x ≈ vp∆t

must hold for a similarly-small interval

∆t = t− tp .

Boiling all this down, we transform the above down
to

0 = U (1)
xp

vp∆t+ T (1)
vp ∆v .

From the first-order energy equation we may write

U (1)
xp

vp = −T (1)
vp

∆v

∆t
,

which is suggestive of two proportionality relation-
ships

U (1)
xp

∝ ∆v

∆t

T (1)
vp ∝ vp .
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Mass

Introducing a proportionality constantm while main-
taining the negative sign between the two terms, we
conclude from the above that:

−U (1)
xp

= m
∆v

∆t
(1.18)

T (1)
vp = mvp (1.19)

In order for the quantities E, T , U to have units of
energy, the constant m can only have units of mass.

8.3 Newton’s Second Law

Equation (1.18) is a special case of Newton’s second
law, which is concisely written:

−U (1)
xp

= mx
(2)
tp

In general, the left side represents the force, de-
noted F . In the general case, force is mass times
acceleration:

F = m
∆v

∆t

8.4 Potential Energy

The relationship

F = −U (1)
xp

is a special case of energy-conserving systems, where
U (x) is the potential energy of the system:

U (x) = potential energy

8.5 Kinetic Energy

The second result T
(1)
vp = mvp relates the linear mo-

mentum to the slope of T (v), which we identify as
the kinetic energy. Knowing the slope of T (vp) is
simply mvp, it’s easy to see that the kinetic energy is
generally given by

T (v) =
1

2
mv2 .

Working the same result in the other direction, we
further deduce

T (2)
vp = m ,

and all higher T
(q)
vp are zero.

Total Energy

To summarize, we have that the total energy of a
body in a so-far unspecified potential is constant:

E =
1

2
mv2 + Uxp

+

n∑
q=1

1

q!
U (q)
xp

(x− xp)
q

8.6 Mechanical Equilibrium

Since U (x) is arbitrarily-shaped, one can imagine lo-
cating a special xp that corresponds to an extreme of
U , i.e. a local peak or a valley in its profile. In such
a case, the slope of U is zero at that point

U (1)
xp

= 0 ,

corresponding to mechanical equilibrium.

Small Oscillations

Small displacements from xp are characterized by
x − xp being a small quantity. As before, we argue
that higher-order terms in the above sum are negli-
gible, however truncating the series too soon leaves a
tautology supporting no motion at all:

E =
�

�
�1

2
mv2 + Uxp +

���������n∑
q=1

1

q!
U (q)
xp

(x− xp)
q

In light of U
(1)
xp being zero, the lowest nonzero term

in the sum corresponds to q = 2, thus we have, for
small displacements from xp:

E − Uxp
=

1

2
mv2 +

1

2
U (2)
xp

(x− xp)
2

The sign on U
(2)
xp determines the stability of mo-

tion around xp. For U
(2)
xp < 0, displacement from xp

causes v to grow extremely quickly and the approxi-
mation breaks down.

Hooke’s Law

When xp corresponds to an extreme point with

U
(2)
xp > 0, the system exhibits small oscillations cen-

tered on xp. The potential energy term

U (x) =
1

2
U (2)
xp

(x− xp)
2

can be treated as arising by a spring force centered
centered at xp

f (x) = −U (2)
xp

(x− xp) ,

with U
(2)
xp being the effective spring constant. Using

Newton’s second law on this situation gives an equa-
tion for the subsequent motion:

mx
(2)
tp = −U (2)

xp
(x− xp)

This particular form is also called Hooke’s law for
springs.
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8.7 Freefall in Gravity

Using energy considerations, we can make sense of
the standard kinematic identity

v2 = v20 + 2a∆x .

Supposing the motion represented is for a body of
mass m, multiply through by m/2 and also expand
∆x = x− x0 to get, after simplifying:

1

2
mv20 −max0 =

1

2
mv2 −max

By letting a = −g for freefall acceleration, we
conclude that the gravitational potential energy for a
body near Earth’s surface is given by

Ugrav (x) = mgx ,

where x is measured vertically from the ground.
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