
Shade Ranking

MANUSCRIPT

William F. Barnes
∗

March 4, 2024

Contents

1 Introduction 1

1.1 Database Uniqueness Problem 1

1.2 Notion of Rank 2

2 Prototype Ranking Function 2

2.1 Delta Compliment 2

2.2 Element-wise Product 2

2.3 Ranking Coefficients 2

2.4 Computing the Rank 2

2.5 Implementation 3

2.6 Results 3

3 Grand Ranking Function 3

3.1 Hue Factor 3

3.2 Black-White Factor 3

3.3 Greyscale Factor 4

3.4 Grand Rank Factor 4

3.5 Results: Black, White, Grey 4

3.6 Results: Total Database 4

4 Generalized Rank 5

4.1 Vividness 6

4.2 General Rank Factor 6

4.3 Palette-Based Ranking 6

1 Introduction

Modern displays implement at least 2553 ≈ 1.7× 107

unique shades in RGB color space, which is an order
of magnitude greater than the number of words in
the English language. One may suspect, then, that a
‘named’ color occupies more than one location in the
RGB volume.

For instance, we agree that the combination
(255, 0, 0) is unequivocally red. However, by consult-
ing any1 mainstream RGB color-name tool, one also
finds that variations such as (239, 4, 5), (235, 14, 15),
and many others - also classify as ‘red’.

1.1 Database Uniqueness Problem

Suppose you are tasked with gathering a comprehen-
sive database of color records, with each record con-
sisting of a label and the RGB triplet representing
that color. For this study, we work with≈ 104 records
traced to fair-use publication.

When merging color databases, a problem arises
among colors whose label is the same among sources,
but whose RGB values are different. To show some
real data, the following values for ‘red’ may end up
in the database:

"red", 131, 43, 41

"red", 238, 0, 0

"red", 196, 2, 51

"red", 237, 41, 57

"red", 205, 0, 0

"red", 237, 28, 36

"red", 242, 0, 60

"red", 254, 39, 18

"red", 255, 0, 0

"red", 238, 32, 77

"red", 139, 0, 0

"red", 229, 0, 0

While each of the above may technically be ‘red’,
with some appearing quite close to the ‘pure’ tone
(255, 0, 0), we acknowledge the list is completely un-
ordered.

∗Copyright © 2014-2024 by William F. Barnes. All rights reserved. Unauthorized retention, duplication, distribution, or
modification is not permitted.

1https://www.color-blindness.com/color-name-hue/

1

The collision of labels poses a new problem: as-
suming the finished database is scanned from top
to bottom by a program, it may be required that
(255, 0, 0) occur at the top of the list. That is, there
is no natural reason to define ‘red’ as whatever record
occurs first. Priority ought to be given to (255, 0, 0).

Moreover, whatever solution is applied to the ‘red’
should do something to sort all other contenders, for
if (255, 0, 0) was not present, the next-best choice
should be discerned.

The so-called uniqueness problem problem is
present for not only red, but also for green, blue,
cyan, magenta, yellow, and any other shade that has
duplicated definition.

Of course, one may manually rearrange the
database so as to prioritize pure tones. It would
be more elegant, though, to come up with a tool
that can be applied to an unsorted database, send-
ing all records with overlapping color names through
the same pipeline. The result must have like-named
colors in arranged descending order with the ‘pure’
tones, such as (255, 0, 0), or (0, 255, 255), occurring
at the top of their respective groups.

1.2 Notion of Rank

Reaching for the standard tools of color space, it’s
worth trying to use luminance, saturation, chroma,
etc., as a sorting tool to prioritize pure tones. After
a bit of experimentation (not reviewed here), none of
these turn out to be general enough to handle the full
database. A new quantity is needed.

For lack of an existing term, let us associate rank
with the notion of ‘sorting like-named colors in de-
scending order with the pure tone occurring first’.
The top of the list has the highest rank.

2 Prototype Ranking Function

To advance on the problem, consider any given shade
C = (r, g, b) and normalize by dividing 255 from each
component:

C0 =

(
r

255
,

g

255
,

b

255

)
= (r0, g0, b0)

2.1 Delta Compliment

Next, construct the difference between each pair of
normalized components:

b̃ = |r0 − g0|
r̃ = |g0 − b0|
g̃ = |b0 − r0|

The tilde-variables r̃, g̃, b̃ are defined as the respective
absolute value of each difference pair, and can qual-
itatively be regarded as ‘delta compliments’ to their
r0, g0, b0 counterparts. For example, the pure red
tone (1, 0, 0) minimizes r̃, but maximizes b̃, g̃. Mean-
while though, the full cyan (0, 1, 1) bears the same
result, namely a minimum for r̃ and maxima for b̃,
g̃. Similar statements apply for the pair blue/yellow,
and also for green/magenta.

2.2 Element-wise Product

Starting with a normalized color vector

C0 = (r0, g0, b0) ,

let us seek to transform C0 into a new vector C ′
0 by

rescaling each component in the least assuming way,
i.e.

C ′
0 = (r′0, g

′
0, b

′
0) = (αr0, βg0, γb0) ,

where the coefficients α, β, γ carry of the information
of how each component r0, g0, b0 is modified.

The combination (αr0, βg0, γb0) has a name called
the element-wise product, thus we can separate the
color components from the unknown coefficients us-
ing the notation

C ′
0 = C0 ◦ Y = (r0, g0, b0) ◦ (α, β, γ) ,

where the vector Y contains the components α, β, γ:

Y = (α, β, γ)

2.3 Ranking Coefficients

Now we must decide what the ranking coefficients α,
β, γ actually do. Using only the data on hand, and
knowing that When components begin to mix, the
ranking coefficients tend to decrease, let us try

2α = g̃ + b̃ = |b0 − r0|+ |r0 − g0|
2β = b̃+ r̃ = |r0 − g0|+ |g0 − b0|
2γ = r̃ + g̃ = |g0 − b0|+ |b0 − r0| ,

where α ‘leans heavy’ on r0, and a similar comment
applies to the pairs β, g0 and γ, b0.

Of course, there are many ways to pose the rank-
ing coefficients, but the decision we’ve made is per-
haps one of the simplest nontrivial ones.

2

2.4 Computing the Rank

Using the rank-aware vector C ′
0 = C0 ◦ Y , the next

task is to turn this into a single number N , the color’s
final rank. One’s first instinct may be to calculate
square of the vector’s magnitude, i.e.

C ′
0 · C ′

0 = r′0r
′
0 + g′0g

′
0 + b′0b

′
0 .

Note though that the terms on the right now involve
the square of the ranking coefficients.

A less aggressive result is attained by projecting
C ′

0 onto the unaltered vector C0 such that

N = C0 · C ′
0 = C0 · C0 ◦ Y

= r20α+ g20β + b20γ ,

which can be framed by standard scalar products be-
tween vectors:

N =
(
r20, g

2
0 , b

2
0

)
· (α, β, γ)

=
1

2

(
r20, g

2
0 , b

2
0

)
·
(
g̃ + b̃, b̃+ r̃, r̃ + g̃

)
Finally, note that the rank N can be uniformly

scaled by a constant k without affecting the rela-
tive ranking between any two shades. For our answer
then, let us export the final rank as the number:

N =
k

2

(
r20, g

2
0 , b

2
0

)
·
(
g̃ + b̃, b̃+ r̃, r̃ + g̃

)
, (1)

where k shall be called the ranking constant.

2.5 Implementation

The role of rank enters the database sorting problem
as equation (1).

Supposing some program has prepared an isolated
array of color records, each competing for the same
label, such as ‘red’, we send that array to a standard
QuickSort routine and receive the rank-sorted result.
In pseudocode notation, the code that does this work
is listed below.

Rank (rgb)

(rgb0) = (rgb)/255

drg = Abs(r0 - g0)

dgb = Abs(g0 - b0)

dbr = Abs(b0 - r0)

return k * .5 * (

r0^2 * (drg+dbr) +

g0^2 * (dgb+drg) +

b0^2 * (dgb+dbr))

QSort (Low, High, dat())

If (Low < High)

piv = Part(Low, High, dat())

QSort(Low, piv - 1, dat())

QSort(piv + 1, High, dat())

Part (Low, High, dat())

piv = Rank(dat(High).Clr)

i = Low - 1

For j = Low To High - 1

tmp = Rank(dat(j).Clr) - piv

If (tmp >= 0)

i = i + 1

Swap dat(i), dat(j)

Swap dat(i + 1), dat(High)

return i + 1

2.6 Results

We check for efficacy by sampling the outputted
database. Following are the top few records for the
RGB-CMY hexlet, which have emerged sorted in ac-
cordance with our wishes.

"red", 255, 0, 0

"red~2", 238, 32, 77

"red~3", 237, 41, 57

"red~4", 254, 39, 18

"red~5", 242, 0, 60

"green", 0, 255, 0

"green~2", 102, 176, 50

"green~3", 28, 172, 120

"green~4", 0, 238, 0

"green~5", 0, 168, 119

"blue", 0, 0, 255

"blue~2", 99, 45, 233

"blue~3", 31, 117, 254

"blue~4", 2, 71, 254

"blue~5", 0, 135, 189

"cyan", 0, 255, 255

"cyan~2", 0, 255, 254

"cyan~3", 0, 205, 205

"cyan~4", 0, 183, 235

"cyan~5", 0, 238, 238

"magenta", 255, 0, 255

"magenta~2", 255, 0, 254

"magenta~3", 255, 0, 144

"magenta~4", 208, 65, 126

"magenta~5", 202, 31, 123

"yellow", 255, 255, 0

"yellow~2", 255, 254, 0

"yellow~3", 205, 205, 0

"yellow~4", 255, 239, 0

"yellow~5", 255, 211, 0

3

3 Grand Ranking Function

Now we address an oversight of the ranking apparatus
developed above, which is to admit that the rank-
ing function solves the uniqueness problem for col-
ors based on hue alone, but happens to ignore white,
black, or any shade of grey.

3.1 Hue Factor

Start by reclassifying the rank equation (1) to signify
its emphasis on hue, relabeling the rank number N
to hue factor NH,

NH =
1

2

(
r20, g

2
0 , b

2
0

)
·
(
g̃ + b̃, b̃+ r̃, r̃ + g̃

)
with ranking constant k = 1.

3.2 Black-White Factor

Next, introduce a black-white factor NB that
ranks all occurences of ‘white’ under the value
(255, 255, 255), while simultaneously ranking all
‘black’ under the value (0, 0, 0).

For a normalized input C0 = (r0, g0, b0,), we first
jot down the normalized average intensity

IA =
r0 + g0 + b0

3
,

and then divine the following form for NB :

NB = |cos (2πIA)|q

Any suitable NB , not necessarily limited to the
cosine function, must exhibit maxima at IA = 0 and
IA = 1. The ‘sharpness’ of the function is determined
by q, tuned at q = 0.5 for this study.

3.3 Greyscale Factor

The black-white factor makes a mess out of any
database colors related to grey, as shades resembling
black or white each achieve high rank.

The fix for this is a greyscale factor, which aims
to emphasize a ‘quintessential grey’ corresponding to
IA = 0.5, and then ranking downward from there. To
this end, we introduce the term NG and write:

NG = 1− |2IA − 1|

3.4 Grand Rank Factor

With three contributions to the rank in hand, namely
NH , NB , NG, the next job is combine these into a sin-
gle grand rank. The calculation must ‘weigh’ each of

the contributing factors that lets each thrive in its
regime.

For instance, when ranking a list of ‘yellow’
shades, we want NH to do the heavy lifting, as NB

and NG will produce no meaningful input. Mean-
while, when sifting through greys, we don’t need NH

getting in the way, and so on.
Proceed by introducing three simultaneous weight

factors defined as

WH = (1−NB) (1−NG)

WB = (1−NG) (1−NH)

WG = (1−NH) (1−NB) ,

along with the numeric offset N0:

N0 = (1−NH) (1−NB) (1−NG)

At this stage, it’s important to point out that each of
NH , NB , NG are defined to be already normalized,
meaning their outputs must be confined between zero
and one, inclusive.

The grand rank factor NG is

NG = k

(
WHNH +WBNB +WGNG −N0

WH +WB +WG

)
, (2)

rectifying the shortcomings of equation (1). The out-
put is normalized by construction.

Ranking Constant

As done with the prototype rank function NH , t’s
harmless to throw a global constant k onto the result
does doesn’t affect the relative rank. The ranking
constant k is like an auxiliary dimension of its own,
which has the qualitative effect of redirecting the con-
tour of maximal purity.

3.5 Results: Black, White, Grey

In addition to the pure tones, the grand ranking func-
tion properly handles black, white, grey:

"black", 0, 0, 0

"black~2", 1, 1, 1

"black~3", 20, 20, 20

"black~4", 30, 30, 30

"black~5", 35, 35, 35

"white", 255, 255, 255

"white~2", 254, 254, 254

"white~3", 245, 245, 242

"white~4", 235, 235, 242

"white~5", 237, 237, 237

4

"grey", 128, 128, 128

"grey~2", 127, 127, 127

"grey~3", 126, 126, 126

"grey~4", 130, 130, 130

"grey~5", 125, 125, 125

"grey~6", 3, 3, 3

"grey~7", 252, 252, 252

"grey~8", 5, 5, 5

"grey~9", 250, 250, 250

"grey~10", 133, 133, 133

3.6 Results: Total Database

A qualitative look at the the sorted database is worth
having. To establish a point of comparison, Figure
1 shows each color in the database listed alphabeti-
cally by label. Beyond their labels being alphabet-
ized, there is no ‘global’ rule governing the overall
pattern in the Figure.

For a few points of comparison, Figure 2 shows
the same database sorted by HSV-saturation, with
the most saturated colors at the top. Similar plots in
Figures 3, 4 show the color database sorted by HCY-
chroma, and luminosity, respectively.

With the eye trained on Figures 1-4, we may con-
trast these to depictions of the rank-sorted database.
Trying the ‘prototype’ rank, represented by equation
(1), produces Figure 5. Immediately we see this does
not resemble any previous Figure, hinting that rank is
not redundant to the ‘usual’ color space dimensions.
Toward the bottom of Figure 5 are shades of black,
white, and grey dancing around without guidance.

Finally depicted in Figure 6 is the grand rank-
sorted database according to equation (2)which we
take as the ‘final answer’ to the sorting problem. At
the top of the sorted list are pure tones for red, green,
blue, cyan, magenta, yellow, white, black, and grey.
There is some trend going downward in Figure 6,
somewhat akin to HSV-saturation or HCY-chroma,
however the differences outnumber the similarities.

Figure 1: Color database unsorted.

Figure 2: Color database sorted by HSV-saturation.

Figure 3: Color database sorted by HCY-chroma.

Figure 4: Color database sorted by luminosity.

5

Figure 5: Color database sorted by hue-rank NH.

Figure 6: Color database sorted by grand rank NG .

4 Generalized Rank

Having completed its main job, the grand rank fac-
tor represented by equation (2) can be modified or
altogether replaced for various ends.

4.1 Vividness

Colors that are bright, bold, vibrant, etc., tend to
stand out as being vivid. These terms don’t tend to
map to one color dimension alone, namely satura-
tion, chroma, or luminosity. In a sense, vividness is
captured by all three of these.

The ranking apparatus has its own opinion on
‘vividness’. Introduce the rank factor

NV = k

(
r̃ + g̃ + b̃

r0 + g0 + b0

)
(3)

as a replacement to equation (1) or equation (2).
Sorting the color database on this leads to Figure
7.

Figure 7: Color database sorted by vividness NV .

4.2 General Rank Factor

In building equation (2) , the factors representing
the RGB-CMY hexlet, along with those weighing the
presence of black/white and grey, can be generalized
into arbitrary terms {Nj}. In total, there can be not
just three, but any number M of these factors.

The generalization of equation (2) thus reads

NR = k

(∑M
j=1 WjNj −N0∑M

j=1 Wj

)
, (4)

where

N0 =

M∏
j=1

1−Nj ,

and

Wj =

M∏
n=1

1−Nn ̸=j .

Generalized Rank Factors

The rank factors {Nj} appearing in equation (4) are
defined such that

0 ≤ Nj ≤ 1 ,

where j = 1, . . . ,M . Beyond this, each Nj can take
any form one desires.

4.3 Palette-Based Ranking

A trick made easy by the ranking apparatus is
database sorting by palette. For instance, suppose we
sample M = 3 shades from The Starry Night by Vin-
cent van Gogh, (1889). Choosing three shades that

6

represent the whole painting (Figure 8), we take:

Q1 = (219, 144, 28)

= Carrot orange

Q2 = (72, 136, 200)

= Cyan-blue azure

Q3 = (23, 54, 121)

= St. Patrick’s blue

Figure 8: The Starry Night, Vincent van Gogh,
(1889).

To proceed, we need to construct N1,2,3 such that
a given database color C is compared to Q1,2,3 and
assigned the appropriate rank. The ‘closer’ C is to
any of Q1,2,3, the higher the rank. To this end, let

Nj take the form

Nj = 1−

√
(∆Rj)

2
+ (∆Gj)

2
+ (∆Bj)

2

255
√
3

,

where:

∆Rj = CR −QjR

∆Gj = CG −QjG

∆Bj = CB −QjB

Sorting the color database this way gives rise to
Figure 9. Ranked highest are shades mostly likely to
occur in the original work, whereas those unlikely to
occur are ranked lowest.

Figure 9: Color database sorted by likeness to palette
used in The Starry Night.

7

	Introduction
	Database Uniqueness Problem
	Notion of Rank

	Prototype Ranking Function
	Delta Compliment
	Element-wise Product
	Ranking Coefficients
	Computing the Rank
	Implementation
	Results

	Grand Ranking Function
	Hue Factor
	Black-White Factor
	Greyscale Factor
	Grand Rank Factor
	Results: Black, White, Grey
	Results: Total Database

	Generalized Rank
	Vividness
	General Rank Factor
	Palette-Based Ranking

