Riemannian Geometry

William F. Barnes

January 9, 2022



Contents

(L Riemannian Geometry| 3
lon and Tensors| . . . . . . ... e 3

I1.1 Tensor Symmetry|. . . . . . oL 3
1.2 Hinstein Summation Conventionl . . . . . . . . . . . . . . e 4

1.3 Contractionl . . . . . . . . . e e 4

1.4 Metric Tensorl. . . . . . . . . . e 5
L5 Coordinate Transformationl . . . . . . . . . . . . . . e 6

2 Basis Vectorsl . . . . . . . e 7
2.1 Divergencel . . . . . . . e e 7

2.2 Gradientl. . . . . . . . . e 7
B3 Cull . . . o 9

B8 Covarlant Derivativel . . . . . . . . . . L 10
B.1  Motivationl . . . . . . . . e 10

3.2 Vector Derivativel . . . . . . . . o 10

3.3 Scalar Derivativel . . . . . . . . . . e 11

3.4 lensor Derivativel. . . . . . . . . . . . e 12

8.5 lorsion Tensor] . . . . . . . . . e 12

3.6 Metric Compatibility]. . . . . . . . . . . e 13

3 onnection Coefficientsl . . . . . . . . . . . ... 13

13.8 Vector Calculus Operators|. . . . . . . . . . .« o 14

4 Flat Manifoldsl . . . . . . . . . . e 15
4.1 Cartesian Coordinates| . . . . . . . . . . .. Lo 15

|4.2 Cylindrical Coordinates| . . . . . ... ... ... ... ... ... ........... 15
[£3 Spherical Coordinates . . . . . . .. ... ... .. 17

4.4 Parabolic Coordinatesl . . . . . . . . . . .. 18

4.5 Hyperspherical Coordinates| . . . . . . . .. ... . o 21
b____Affine Parameterl . . . . . . . .. e 22
.1 Proper Time| . . . . . . . o e 22

5.2 Minkowski Space| . . . . . ... 22

6 seodesic quation| . . . . . . . L oL 24
6.1 arallel Transport| . . . . . . . . o o 24

6.2 Derivation by Parallel Transport| . . . . . . ... ... oo o000 25

6.3 Derivation by Covariant Derivativel . . . . . . . . ... ... .. o000 25

6.4 Derivation by Variations|. . . . . . . . . . . .. 25
65 NulTGeodesic] - « -« « v v v oo 26

6.6 Problemsl . . . . . . . . e 27

M Curvatirel - . . o o oo 30
[(.1 __ Riemann Curvature Tensor| . . . . . . . . . . . . . . . . e 30

[7.2 Parallel Transport Analysis| . . . . . .. ... ... ... . ... 30

7.3 seodesic Deviation Analysis| . . . . . . . . . .. 31

econd Derivative Analysis| . . . . . . . . .. Lo 32

[7.5 Properties of the Riemann Curvature lensor| . . . . . .. ... .. ... ... ..... 32




CONTENTS CONTENTS

[[.6 Rica Tensor and Ricci Scalarl . . . . . . . ... ... o 33
[t.7 Einstein Tensorl . . . . . . . . . . . . 34
18 Weak Curvature] . . . . . . . . . . e 35
1. Perturbed Flat Metrid . . . . . . . . . .. . 35
B2 Acceleration from Curvaturd . . . .. .. ... ... o Lo 36
9 Curved Manifoldsl. . . . . . . . . . 37
9.1 Two-Sphere| . . . . . . e 37
19.2 Non-Round Two-Sphere| . . . . . . . . . o o 37
19.3 Three-Sphere| . . . . . . . 38
9.4 Hyperbolic Coordinates| . . . . . . . . . . . . . . e 39
[0 Symmetry and Invarfance] . . . . . . ... ... 41
10.1 illing’s Equation| . . . . . . .. 41
[10.2  Invariant Quantities| . . . . . . . . . Lo 42
110.3  Conformal Killing Equation| . . . . . . . .. ... . oo 0o o 42
[04  Problemd . . . . . . . . . 43



Chapter 1

Riemannian Geometry

Introduction

Ordinary calculus yields a plethora of useful results for science and engineering: areas, arc lengths, volumes,
trajectories, etc. Most of this is possible without ever having to concern whether the space on which
calculations take place may somehow affect the results, yet careful consideration shows there is indeed more
to the story of calculus.

A popular illustration of this has us consider a colony of ants unknowingly living on a large beach ball.
Curious members might trace out a triangle on the surface, only to discover the interior angles sum to greater
than 180°. If similar ants lived on a horseback saddle and attempted to trace a triangle, they would discover
the sum of interior angles being less than 180°. Moreover, each group of ants would notice that parallel lines
generally fail to remain parallel when extended.

Without ever ‘lifting off” the surface, we see it’s still possible to deduce that something isn’t quite ‘flat’
about a particular surface. We formally define curved space or a curved manifold as any locally flat and
differentiable surface where Euclidean geometry doesn’t work.

The precise framework in which curved manifolds are handled depends on the application. Here, we
develop a major branch of calculus on manifolds called Riemannian geometry.

1 Index Notation and Tensors

Recall that any (ordinary) vector needs just one index to register its components, and a matrix needs two
indices (with vectors as a special case). Going beyond this, it’s conceivable to work with mathematical
objects that have any number of indices, called tensors, of which vectors and matrices are special cases.

Let us trade the arrow symbol (or any other formatting) from vectors and matrices in favor of index
notation for tensors. The number and placement of indices determines the type of tensor. For instance, two
ways to express a vector x are:

H = (ml,xz,xg, . ,zN) type (1,0) tensor

x, = (x1,%2,23,...,ZN) type (0,1) tensor
In analogy to column- and row-vectors, z# is called contravariant, and x,, is called covariant. Note these are
not the same: the up- or down-placement of the index matters.
A two-index tensor A has three possible types (2,0), (1, 1), (0,2), represented by A", AY, A,,, respec-
tively.
1.1 Tensor Symmetry

A tensor (of any type) is symmetric in a pair of indices if it obeys

A = AVF



1. INDEX NOTATION AND TENSORS CHAPTER 1. RIEMANNIAN GEOMETRY

and is antisymmetric if it obeys
ARV = —AVF

A general tensor may be expressed in terms of symmetric and antisymmetric parts
1 v v, 1 17 v
AP = (A A) 4 o (A — A7)
where introducing the condensed notation
(pv) 1 v v [pv] 1 v v
A = 2 (A 4 A AW = 3 (A = AT

it follows that
AW = Av) o Alwv]
1.2 Einstein Summation Convention

From elementary linear algebra, recall that a matrix acting on an appropriately-sized vector will yield a new
vector, i.e., the AZ = b calculation. In tensor language, this operation reads:

VoV
Azt =

The above statement must be thoroughly unpacked. The right side is a list of vector components referenced
by v. On the left, the p-index appears in both the up- and down-positions, which means it is summed over
and eliminated. This hidden sum maneuver is called the FEinstein summation convention. Explicitly, the
above really means

Azt NSz o A2 =2

which is equivalent to the ‘ordinary’ action of a matrix acting on a vector. Repeated indices should only
appear once in the up-position and once in the down-position, with no exceptions. All indices must still
balance before and after a summation.

1.3 Contraction

The act of equating an up-index and a down-index is called contraction, and triggers a sum over that index.
For example, consider a type (1,1) tensor product z*x,. Setting p = v implies:

atr, = alay + 2zs + o+ 2Nay = 52

The scalar result is a real or complex tensor of type (0,0) loosely represented as S2, formally called the
norm. For ordinary vectors, this is equivalent to the dot product.

Problem 1
Which of the following two-index tensors represents the trace of a matrix?

Af AV AFH A AL A2
Solution 1

A=Al +AZ4---=Tr(A)
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1.4 Metric Tensor

Calculus on manifolds concerns with the differential line element d.S at position 7 on the surface. In Cartesian
space, the Pythagorean theorem tells us dS? = dx? + dy?, whereas for polar coordinates we have dS? =
dr? 4+ r2df?, and so on. In general, a differential interval in N dimensions is given by

datdz, = de'dey + dadey + - + daNday = dS?.

A natural question is, which new tensor would come into play in order for the line element to be propor-
tional to dz*dx”? This motivates defining the metric tensor, generally written g,,, and arises via:

dS? = dz*dzx, = guvdatdr”
The metric generally functions to lower the index of another tensor, as for our case
Juvdxt =dx, .
Conversely, the inverse metric tensor g*” is used to raise an index according to
gdx, = dz" .
It follows that the metric can raise or lower any index on most objects having at least one index:
G Al = A7 9" Ay = A

Problem 2
Show that a contraction between metric tensors yields a delta function in the remaining indices:

9apg™ = 03

Solution 2
Calculating dS? = dzPdxp = g%V dw, gopdx®, we find gopg”’ = 6).

Problem 3
Consider two tensors X*” and V* given by
2 01 -1
-1 0 3 2
nr o Hr— (_ —
XH = 110 o0 VHE=(-1,2,0,-2),
-2 1 1 =2
respectively. Using the metric
-1 0 0 O
|10 1 0 0
=109 0 1 0"
0 0 0 1
find the following quantities (i) X[, (ii) X}/, (iii) X ) (i) Xy (v) X3, (vi) VIV, (vii) V,XH.
Solution 3
-2 0 1 -1 -2 0 -1 1
1 0 3 2 -1 0 3 2
Bo— v _
Xy = 1 10 O X = -1 1 0 0
2 1 1 -2 -2 1 1 =2
2 -1/2 0 =3/2 0o -1/2 0 -1/2
(uv) -1/2 0 2 3/2 |1/2 0 1 1/2
X 0 2 0 1/2 Xwl =10 -1 o ~-1/2
—3/2 3/2 1/2 -2 1/2 -1/2 1/2 0
X =4 VRV, =17 V, XM = (4,-2,5,7)
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1.5 Coordinate Transformation

As part of a the formal definition of a tensor, let us demand that under a general set of coordinate transfor-
mations, a tensor must obey an analog to the AZ¥ = b calculation from linear algebra. In the most general
case possible we would have a tensor A of type (N, M) undergoing N + M coordinate changes:

PN 9" 9g"~ 9™ 9g" 1N
VitV aqlh aqMN aqu{ aqugw Vi Un

Strictly, any object not obeying the above is not a tensor. For the simple case of one-index vectors V# and
V.., the transformation law reads

’ 8ql/ 8q”
[ — H ;= —
v = GoV Vi = Vo
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2 Basis Vectors

Let S denote the position vector on a manifold parameterized by generalized coordinates ¢!, ¢2, ¢°, ..., ¢",
where N is the number of dimensions on the manifold. (Note that the physical units of any given ¢* are not
limited to length.) Denoting the differential line element vector as dS, the chain rule dictates

- a8 | 98 s N .
dS:—ldq +87(]2dq +"'+&]7qu za(u)dq”,
thus partial derivate terms are interpreted as (non-normalized) basis vectors d@(,) such that

. as

a(l") = 8qy, .

It follows that any tangent vector V on a manifold must admit an expansion in terms of basis vectors
according to

V =V"a,,,
or without vector symbols at all,
0
V=v# .
g

Note the right side is not equivalent to the normalized expression
V= vhag,) -
The square of the differential line element dS? is given by ds - dg, or
as? = (i - @) da"da, = (@) - ) da"da”
simultaneously implying:
() - a®) = 5; () Ay = v aw . g = g

Problem 1
Consider two vectors U and V. Use the metric tensor to prove UV, = UgV".

Solution 1

UVo =Usg®’V7gya = UsV" (9°P gya) = UgV 765 = UsV'?

2.1 Divergence

The divergence of a vector field, also known as a contravariant (1,0) tensor A* (¢*), is a contraction across

the derivative of each component

A+
agr —

which resolves to a scalar. Let u = {1, 2,3} to reproduce the three-dimensional case.

2.2 Gradient
The gradient of a scalar field f (z#) or f (¢*) is a vector of partial derivatives with respect to each variable.
In a normalized basis, this is

Vf= d(#)ﬁ

)
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or in the generalized representation:

am 9f

) Of
— oW = o | g
Vf=ar n) |Gk ‘ 8q“ Ber

Ot

By switching to vector-free notation, note we always assume non-normalized basis vectors:

of

Oul = B

Observe that the gradient operation converts a scalar (0,0) tensor into a covariant (0,1) vector. We may
instead transform into a contravariant (1,0) vector with the up-index gradient operator:

oMf=g"o.f

Problem 2
Calculate the gradient of the function

[ (2, y) =Iny/ax? +y?

and convert the result to polar coordinates obeying

x =rcosd y=rsinf.
Solution 2
x Y T Y
,u,f (x2+y2’x2+y2> 1’2+y2 Y x2_’_y2
ox oy 1 ox dy
Vi=g Vet g, =1 Vo= 56"+ 5V =

From vector calculus, we know that the gradient operation converts a scalar into a vector (a one-index
tensor). Unfortunately higher-order derivatives don’t generally result in tensors at face value, as illustrated
by calculating two gradients 0,0, f with respect to a primed coordinate system as

¢~ 0 8qﬁﬂ _0q” aqﬁ n 0q™ 0%¢° 87]“
907 8¢~ \0¢” 0% ) = 007 007 %) ¥ 3a o7 0P

OOy f =
which clearly violates the tensor transformation rule. (The last term shouldn’t be there.)
Problem 3
Consider the covariant vector field V,(¢*). Under general coordinate transformations ¢* — ¢/, show

that the quantity 0 [, V3] transforms as a type (0, 2) tensor.

Solution 3

& [

X
!

1 0 0
5] =5 (0.V5 - 95Va) = 2<5 Vé—aqg/VQ

9q" 9 (0g",,\ d¢" 9 (d¢",,
aqa/ 8(]‘“’ 6(15/ v 8(151 8(]'“’ aqa/ v

gt 0q¥ dgHt Oq” gt
WV =

g
+ (8(]0/ aqﬁ/ - aqﬁ/ aqa/ a Vl/

o 8(][“'] Bq[ﬁ'] ©
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2.3 Curl

The vector product or cross product between two vectors is generalized to N dimensions using the Levi-
Ciivita symbol €;;. If the indices 4, 7, k are an even permutation of the sequence 1,2, 3, then € = 1. For odd
permutations, ¢ = —1, and for any two equal indices, € = 0. Note ¢;;; is not a tensor and ignores the up- or
down-placement of indices. To generalize to higher dimensions, add more indices next to i, j, k.

For a 3D example, the cross product reads

and the curl of a vector is

or
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3 Covariant Derivative

Let us continue considering an N-dimensional manifold S mapped by generalized coordinates ¢, having line
element

- " 53 .
ct gy 4 =g dd”
and corresponding metric
Guv = () - Q) -
The fun stops relatively early, however. Right away we find that the divergence of a rank (1,0) tensor
V5 is not a tensor. Take two representations of V as observed in two coordinate systems

’ aq“l
VH = —=—V*#
A+ ’
and differentiate with respect to ¢* to find
9 0 [ag” dq” 9g" dq" 9*q”
o, v = Ly = Ly ) LA gy L TD
oq¥ dg¥" \ Ogm dq¥’ Ogt Ag¥" dq¥ dq+

which would have transformed as a tensor if it weren’t for that second term.

3.1 Motivation

The fact that a tangent vector’s divergence is not a tensor motivates the covariant derivative operator D,
to act on V# and force the result to be a tensor:

The operator D, must include a new term that can subtract off any non-tensorial components by construc-

tion. We then propose
D,V =9,VF 4+ TV,

where the factors Fffﬁ are called Christoffel symbols. By testing coordinate transformations (see below), it’s

readily shown that I' cannot be a tensor. To prove this, we calculate D,/ V* to find

DV/VM/ - aV/VH/ + (F/)ﬁ//)\/ V)\/
_ 8(]1/ 6q// i aqy 82q// N
oq”" ogr dq”" 0q” dg* VAT DgA
_ dq” dg" VH 9¢" 0%¢” VA 4 ()2 87(16@@ AN
dq” gt v g™ Hg¥ dg> By dq” dg™ dg*

Ly, 2

The quantity in parentheses must resolve to 9, V#* +I'! /\VA by the tensor transformation law, revealing the
restriction on I' to be
e _ 000000 00 0 g
BY 7 9gB g dgr VN 9gB dgY Bgv I

which is unambiguously not a tensor (the second term gives it away).

3.2 Vector Derivative

To reinforce the motivation for the covariant derivative, we write the divergence of a vector V', namely

0y (V¥ ) = 0y (VF) ) + V"0y (d()

10
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and observe that the derivative of @, involves a second derivative of the position vector 7, analogous to an
acceleration-like term that points toward the center of curvature, which may be well-off the manifold itself.
We correct for this by replacing the last term with

VIO, (Ggny) = TlsV i) -

Problem 1
Solve for the components of Fﬁﬁ in terms of position S on the manifold and the basis vectors @*) and
interpret the result. That is, eliminate any reference to V' in the above.

Solution 1

TsV0a ) = Vro, (dg)

1V (0 T = - VP, (6)

00 V7 = a0, (ds)

0
S C) B
F;w =a aqua(y)
ro—gm. 9 9&

a - —_—
224 aqu 8ql/

From ordinary calculus, recall that derivatives of S with respect to ¢* and ¢¥ commute, implying a
symmetry in the lower index of I':
. =17

% I

Problem 2
Find a formula for D, V# purely in terms of partial derivatives and basis vectors. (No Christoffel symbols.)

Solution 2
8y (V¥ i) = 0, (V*) g + V74
@) -9, (V) = (9,7 + V7)) -,
a.o, (V*a,,) = D,V*
Problem 3

Check if the covariant derivative follows similar rules to ordinary calculus for two tensors U and V.

Solution 3

Do (U* + V") = DoU* + Do V¥
Do (UPVY) = (DoU”) V¥ + U (Do V")
Dy (43,) = (DA),

pav

3.3 Scalar Derivative

A scalar field is represented by a type (0,0) tensor f = U,V®. Applying the covariant derivative to such a

field, we have
D,f =(D,U) VS +U, (D, VY) .

11
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To handle the covariant derivative on a down-index, momentarily introduce a modified Christoffel symbol r
as follows:

D, f = (aVUa + fﬁaUﬁ) VO 4 Uy (9,V + T2 VF)
=VOUs + Ua0, V* + 5, UsV + TS,U V7
=0,f +UgV® (fﬁa + Ffa)
Of course, the derivative of a scalar field can not be subject to the same distortions as a tensor field.
Simultaneously conclude that
Dyf =0,f Do =-Tla,

and as a corollary, the covariant derivative on a down-index reads:

DV, =0,V, —T5 Vs

3.4 Tensor Derivative

We have seen that the covariant derivative on an up-index introduces a factor of I', and on a down-index we
get —I'. This pattern extends generally as illustrated:

Do T = 95T +Th ;T + T, T
DUy = 8aU/w - FZMUPV - FZYVUN’Y
DoV} =0V} +Th V) —TLVE,

You are encouraged to check that the V/-equation with p = v is consistent with the covariant derivative of
a scalar field.

Problem 4
Show that if A4, = —A,, is an antisymmetric type (0, 2) tensor, all connection coefficients cancel out of
D [MAVP] =0 [MAVP] :

Solution 4

1

D [uAup} = g (DuAup + DpA/w + DVApu - DMAI)V - D/)Aw - D’/AMP)
1
= g (D#Aup + DpAlw + DvApu)

- auAup - FZWAW - FZpAw
+ E?pA,“, — FZMAW — FZVA,W
+ 0y Apu = FZpA’YH - quAm

= auAup + 6pA/w + 8VApu

=0 [HAVP}

3.5 Torsion Tensor

The torsion, defined as T}, =T, — 'Y, qualifies as a tensor. To prove this, we calculate

i

/H/ /H/
vy = FV/'Y/ -T

v
~ 9¢" 9q™ 9¢” B 9¢" 9¢° 9g~ 4
0qP Oqv’ g~ P 9qB dqr Oqv P
_ 9¢" 8¢~ dg° 3
8B Oq¥' dgv " P’

12



3. COVARIANT DERIVATIVE CHAPTER 1. RIEMANNIAN GEOMETRY

which adheres to the transformation law for tensors. In most subjects, particularly general relativity, the
torsion is assumed to be zero unless heavily disclaimed.

If the above is violated, the reason would trace back to non-commuting dot products between basis
vectors on the manifold. This notion isn’t realistic (i.e. not needed to derive any known useful physics),
although efforts have been made using torsion to understand quantum spin.

3.6 Metric Compatibility

The metric compatibility condition states that the covariant derivative of the metric is automatically zero at
all points on the manifold:
Dag;w =0

Problem 5
Show that the inverse relation
Dag"” =0

also holds by considering the product Dq (guv97")-

Solution 5

Do (9w9"") = gjwDag”” + 9" Daguw
Do (8)) = gwDag”” + 97" -0
g"* Dy, (53) — g“ngDag"’”
0=Dyg"

3.7 Connection Coefficients

The Christoffel symbols I' have another label called connection coefficients. Using the metric compatibility
relation Dyg,,, = 0 along with the symmetry requirement I'j, = 'Y, we may solve for each component of
T.
Begin by explicitly writing the compatibility relation in terms of I', and then write two permutations of
the same equation in the indices a, u, and v:
0= aagp,u - Fgug’yv - FZa/glVY
0= augau - FZag“/u - quga'y
0= augua - F:/wg'ya - Pzagu'y
Subtracting the second two equations from the first, find
0= 8&9#1/ - 8Vgau - a,ugua + 21—‘7“/9&7 ’
which has only one instance of I'. Isolating this, we have
1
Ffw = igpa (augua + 8ugoc,u - aag;w) .

Problem 6
Using the rise-over-run notion of the derivative, find an expression for &YI‘ﬁB based at a specific point
¢" (p) on the manifold.

Solution 6
Start with

s (0" () = Ths (¢ (1)
q (p') —q" (p)
Dhs (@ () = Ths (¢ (9) = (" (#) — 4" () DT,

— .1,

13
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where if we define shorthand such shat
I (¢ (p) =Tl (p) q" (') = q" (p) = b, -
the tighter expression reads:

Tog () =g (0) = by 05105

3.8 Vector Calculus Operators

The covariant derivative is a starting point for several useful identities. First multiply through by @) - ()
to write the divergence on a manifold:

=

V.V = (5<”> : a'(u)) D, V" =D, V"

Multiply instead by @) x d(y) to get the generalized curl:

—

VxV= (c‘i(”) X &’(#)) D, V#

The Laplacian operator V-V = V2 = A involves two derivatives of a scalar field f. The ‘inner’ derivative
is easy because we found D, f = 9, f. To continue, assume that vector V' above is really a gradient of some
scalar function f, as in V# = D*f. The Laplacian operator on a manifold is therefore expressed by any of:

AfZVQfZDuD”fZQ“”DMDVfZ (5(;0 .g(u)> D,D,f

14
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4 Flat Manifolds

A flat manifold is defined as any space where Euclidean geometry works: triangles have 7 internal radians, a
circle obeys A = w2, and so on. It should be emphasized that simply because a coordinate system involves
‘curvy’ coordinates (i.e. anything but Cartesian), the manifold may still be flat. Saving the problem of
objective curvature detection for the next section, we pause here to write the properties of flat manifolds.

As usual, we work with an N-dimensional manifold S mapped by generalized coordinates ¢’, having line
element

and corresponding metric

4.1 Cartesian Coordinates

A three-dimensional flat space is easily represented by the Cartesian position vector
S=zityj+zk.
In this coordinate system, the line element is
d§:dI%+dy3+dzl%,

with corresponding interval
dS? = da® + dy? + d2* .

The Cartesian metric for flat space has its own symbol 1 whose components are trivial to read from ds
or dS?:
Nup =1 Nuw = 01 p=v

In block (not matrix!) form, the Cartesian metric reads

O = O
= o O

1
Nuv = 0
0

Needless to mention that all connection coefficients I'; which depend on derivatives of 7, are zero in Cartesian
coordinates.

4.2 Cylindrical Coordinates

Starting with Cartesian coordinates, we choose a polar representation of the zy-plane and leave the z-
component unchanged to get cylindrical coordinates

—

S:rerzlAc,
where:

r=+/z2+y? 7 =cosfi+sindj %zé

Our first reflex should be to derive the differential line element dS and the interval dS? for this system,

resulting in . R .
dS=dr#+rdd0+dzk dS? = dr? + r2do? + d22 .

Basis vectors for this system are inferred from ds , namely

i
&
Il
T

(_i(r) =7 5:(9) = Té
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and using @, - a® = d},, we also have
am =y a”=r"14 a? =k.

Components of the metric are inferred from dS?, or equivalently, Gy * () = Guv, Which turn out to be

gr’r‘zl 900:T2 gzz:17

or with raised indices,
grr =1 906 _ 7"72 gzz -1.
Of course, we could have used the tensor transformation law

dq* 0q°
u'v' = 8q# 6 7 = 7 Nap

to derive the components of g,, from the Cartesian metric. In the above, the primed indices refer to
parameters r, 6, z, whereas the unprimed indices are for x, y, and z.

If the components of a vector V= V#d,) = vtag,) are handed to you in the form V", V9 V= use the
metric to lower the index via V, = g, V":

‘/;:VT %:r2v9 ‘/szz
To isolate v*, calculate V. acy) to get
vt =V v =7V v =V

Connection coefficients can be cumbersome to calculate blindly, however most components of I" resolve
to zero for common coordinate systems, with cylindrical coordinates mapping flat space being the first
almost-trivial cases. Using either of

- 0 0 z 1 .
FZV =a". aiqf‘ﬁq” FZV = §gp (augua + augau - aag/w) )
your effort should distill to
1 \
[y = - 00 = —T-

Problem 1

Using index notation, write the gradient of a scalar function f in flat space mapped by cylindrical
coordinates. Also find the divergence and the curl of a vector V' = V#d,) = v*a(,) in the same system.
Finish off by finding the Laplacian operator.

Solution 1

Vf= -'(u)affg +%%6+2f
V-V =0V +8V’+0.V*+T} V’“:%%(WH%%UM%UZ
VxV= (igevz - gzve) 74 (aazvr - grvz> 0A+% (;r (ro?) — aaevr) 2
vir= g (V) + e 5
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4.3 Spherical Coordinates

A three-dimensional flat space mapped by spherical coordinates is parameterized in terms of two angles and
one radius as R
S=rr=rsinfcos¢i+rsinfsingj+rcosdk,

r=y\r? 4y 422,

Normalized basis vectors are calculated from S according to:

where

—1

fzﬁ- @ :sianosqb%—i—sin@sinqu’—l—cos&l;;
or | 0r
- -1

~ oS oS s . ~ . 7.

9:%- 20 =cosfcospi+cosfsing j—sinfk
- =1

~ 08 |08 A A

gb_a—(b- 87(15 = —singi+cos¢ )

From S , we also calculate the differential line element dS and the interval dS? to get
dS = dr 7+ rdf 0 + rsin0do ¢ dS? = dr® + r? d0? + r?sin® 0 d¢?
telling us the basis vectors for this system are
gy =7 d(g) =rf a(g) :rsin@qg,
and d,, cav) = d,, gives
am =¢ a® =r-19 a) = (r sin@)f1 b.
Components of the metric are inferred from dS?, or equivalently, G(y) * G(y) = guv, Which turn out to be
Grr =1 goo =1° 9o =17sin’ 0,
or with raised indices,
g =1 goo — 2 g*® = (Tz sin2 9)*1

Of course, we could have used the tensor transformation law

_ 0q” 9qP
u'v = WWUQB

to derive the components of g,, from the Cartesian metric. In the above, the primed indices refer to
parameters r, 0, ¢, whereas the unprimed indices are for x, y, and z.

If the components of a vector V= V#a(,) = vta(,) are handed to you in the form V", VO V9 use the
metric to lower the index via V,, = g, V":

V,=V" Vog=r>V* Vy=1r’sin® 0 V?
To isolate v*, calculate V. ag,) to get
vt =V" o =rv? v? =rsing Ve

Problem 2
Calculate all nonzero connection coefficients in flat space mapped by spherical coordinates.
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Solution 2
o, —r¢ — 1 o = — 7, = —rsin®f
6 ré = 06 r oo rsm
Fg¢ = —sinfcosf Ff;e = cot 6
Problem 3

Using index notation, write the gradient of a scalar function f in flat space mapped by spherical coordi-
nates. Also find the divergence and the curl of a vector V' = V*#d(,) = v"a(,) in the same system. Finish off
by finding the Laplacian operator.

Solution 3

- . of . 10f , 1 of -
Vf:a(u)aufzi +7@9+rsin937¢

. 2V
V-V=0V" 40V’ +0,V°+=—+V’cot

:ia(TQUT)—i— 1 8(sm@ )+ L 9 v®

r2 Or rsin @ 00 rsind 8¢>
(6 X ‘7) =sinf IpV? +2cosd V¢ — —(%Ve
1 0 0 4
_rsin€<89 (51119v ) 3¢U>
(ﬁ X ‘7)9 = rsm@ad)vr —2sinfV? —rsinb (8 V¢)

1/ 1 0 0
S o ¢
7 (sin9 a¢” or (ro )>

(6 x ‘7)¢ — 10,V 4 2V0 — %agvr

YN
7«(@7«(”’)@9”>

,Of 10 (. 6f 1 9%f
20 il — —J
vf_?" 20r ( 8r>+r289 (S 39)+r2sin208¢>2

4.4 Parabolic Coordinates

Starting with two-dimensional Cartesian coordinates, we choose a parabolic representation of the zy-plane
S=uzi + yj ,

where the parabolic coordinates u, v are defined by

DN | =

Problem 4
Find the equation of a circle of radius r centered at the origin.

Solution 4

18
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1
7’2:;1:2—|—y2:u2v2—|—1(u4—|—v4—2u2v2)
wv?  u? +0? 1
2 4 4
2r = u? 4 v?

(u? +0%)°

Normalized basis vectors are calculated from § according to

0S5 |8S vi+uj 95 |as
U= —:--|\— = — V= — - |—
du | Ou VuZ + 02 v | v
where solving for 7, j respectively, we have
VU4 UV UU—v0

7=

and therefore S becomes

vu2 + 0?2 I = VuZ + 02’

The next job is to calculate the line element dS, which entails first discovering

udv — vdu vdu — udv

di = ———— do =

u? + v? u? + v?

and by careful substitution into

the line element becomes .
dS =vu?+v? (dutd+dvd),

where clearly the interval dS2 resolves to

dS? = (u® +v?) (du® + dv?) .

U,

Of course, dS? can be calculated much more easily while avoiding any mention of 4, ¥ by starting with

dx? + dy?, but the path we chose is more instructive.

From dS we infer the basis vectors for this system obeying d,, - a® = oy

d'(u):\/u2+v2fc (i(v):\/u2+v2ﬁ

u a:(,u) _ v

g —

‘/U2+’U2 */U2+U2

Components of the metric are inferred from dS?, or equivalently, () * () = guv, which turn out to be

2 2
Guu =u" +
or with raised indices,

uu — VU
u? + v?

S
\
S
\

19
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4. FLAT MANIFOLDS CHAPTER 1. RIEMANNIAN GEOMETRY

Of course, we could have used the tensor transformation law

~ 9q~ 9¢°
u'v' = aqw WUQB

to derive the components of g,, from the Cartesian metric. In the above, the primed indices refer to
parameters u, v, whereas the unprimed indices are for x and y.

If the components of a vector W = WHa(,) = w'a, are handed to you in the form W*, W", use the
metric to lower the index via W, = g, W":

W, = (u2 + v2) w W, = (u2 + v2) wv
To isolate w*, calculate w - gy to get

w = VuZ +02 W w’ = vVu2+v2W".

Problem 5
Calculate all nonzero connection coefficients in two-dimensional flat space mapped by parabolic coordi-
nates.

Solution 5
U v
e =79 —__~ e, =, =—-——-
uu uv w2 + 2 uv VY w2 ¥ 02
¢ — —u v — —v
vy U2 + U2 uu u2 + U2
Problem 6

Using index notation, write the gradient of a scalar function f in flat space mapped by parabolic coordi-
nates. Also find the divergence and the curl of a vector W = W*#d,y = w"a(,) in the same system. Finish
off by finding the Laplacian operator.

Solution 6
- 1 of .  of .
Vi=a®Wo, f=—— (2L =L
f=a"o.f e <8uu+8vv)
Lo N 1
V-W =D,WH=g**D,W, = e (OWy + 0, Wy,)
1
= (8u (\/ u? + v? w“) + Oy (\/ u? + v? w”))
V) W| =@ x dgy| DW" = DW? ~ DW"
— W — 0,W — 2 (e )
u“+v
1 o*f  O*f
2 [ —— —_— —_—
V= u? + v? <6u2 * 81}2)
Problem 7
Consider flat space mapped by three-dimensional parabolic coordinates:
1
T = UV Cos ¢ Yy = uvsin ¢ z:g(u2—v2)

Show that surfaces of constant u and v are confocal paraboloids that open upward and downward, respec-
tively.
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Solution 7
2 +y? = u? 2z = u? — v?
1z +y* 1/, 22+y?
Zy = = —v Zy == |u* — ——
2 u? 2 v2
Problem 8
Determine all components of the metric in flat space mapped by three-dimensional parabolic coordinates.
Solution 8
9q" dq" 9q¥ 9¢¥ 9q* 9q* 24 42
wu = [ . A ez A — N2z = U v
g oq* Oq* g g™ Oq* gy aq* Oq* K
Gov = u2 + U2 Joop = ’LL2’U2
Problem 9
Find the Laplacian operator in flat space mapped by three-dimensional parabolic coordinates.
Solution 9
1 1 1 1
Vif=——= =0, (ud, = 0y (v 0y —— 0
F= e (u (wduf) + (v f)>+u2v2 oS

4.5 Hyperspherical Coordinates

It’s totally reasonable to conceive of a four-dimensional flat space permitting a metric that extends from the
three-dimensional case, namely

10 0 0
|01 0 0
=10 0 1 0
00 01
In so-called hyperspherical coordinates, the position vector needs a radius and three angles as follows:
T =TCosy y = rsiny cosf
z = rsiny sinf cos ¢ w = rsiny sin f sin ¢

To calculate the interval
dS? = dx® + dy? + d2* + dw? |

one may engage in the tedious task of computing the sum of the squares of each differential, however the

tensor transformation law
_ 9q™ 0¢°

Gu'v' dg’ dg”’ Nap
is much more elegant (yet almost as tedious). Carrying this out, we find
Grr =1 Gop =17
goo = r*sin’ 1) Gop = r2sin 1 sin? 6 .
Then, the interval is
ds? = gudgtdq” = dr? + 1% dp? 4+ r? sin? ¢ d6? + r? sin® ¢ sin” 0 d¢? .
Of course, one may lock the radius r such that dr = 0, reducing the interval to
dS? = r? (dyp? + sin 1 d6? + sin ¢ sin® 0 do?) |

which is a three-dimensional manifold. It should be noted that such a three-sphere should not be assumed
flat space.
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5 Affine Parameter

The coordinates ¢ (A) on a manifold may be parameterized in terms of (nearly) any variable A without
‘physical’ consequence. Some choices of A however are more natural than others, with the most natural
parameterization being arc length on the manifold, already named dS. Any term that is proportional to the
arc length

dS o d\

is called an affine parameter.

5.1 Proper Time

Borrowing notation from special relativity, we shall relate dS to ¢ dr, where c is the speed of light on the
manifold, and 7 is called the proper time. One notational annoyance we must adopt is a minus sign connecting
the proper time to the arc length as

ds? = —c*dr?,

in accordance with conventions from special relativity. (Some texts have all signs in the metric flipped so as
to avoid introducing a minus sign in this moment.)
On a manifold, the derivative of the position vector ¢g* with respect to the proper time 7 is called the
proper velocity vector, denoted U*. A second derivative gives the proper acceleration:
2
_ dg” d ., dq"

m _
v dr dr dr?

The differential interval dS? in terms of proper time and property velocity is
dS? = dq,dg" = g,,dg"dq" = g, U"U" d7? |
telling us the norm of the proper velocity vector is a constant called an invariant:
UrU, = g, UMU" = —c*

We may also solve for dr in terms of generalized coordinates:

1
dr = E V —gwjdqﬂqu

5.2 Minkowski Space

Let us include time ¢ as the zeroth component of the Cartesian position vector ¢* = z, ¢ =y, ¢> = 2z, such
that ¢ = ct, where c is a normalization constant interpreted as the speed of light on the manifold. The flat
metric tensor 7, is known to have zero mixed terms with any nyy = 1 if A > 1. By tradition from special
relativity, the time component of the metric 7g¢ includes a minus sign, namely

10 0 0
o 100
=109 0 1 0

0 00 1

The Minkowski interval dS? resolves to

dS? = =2 dt* + da? + dy? + d2? = -2 dt® + d7? .

Applying dS? = —c? dr? to the Minkowski interval, we may solve for dt/dr in terms of d7?/dt?> = v?,

2
o dr 2 2

2 5 2 2 7,2 -2
—c“dr® = —c* dt dr — c =c"—v
g + dt?

22
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dt 1

dr — /1- 2/ =7

resulting in the famed ‘gamma factor’ that captures time dilation. In light of the gamma factor, the position
vector ¢ and proper velocity dg”/dr are

q" = (ct, T) U" = (ye,vv) ,

where the relation U*U,, = —c? is readily satisfied.

Going a step further, let us suppose that the position vector g traces the path of a particle of mass m.
Multiplying m into the proper velocity vector gives us the proper momentum

P =mU" = m (ye,y0) = (yme,p) ,

whose norm is P* P, = —m?2c?. Using this, we find

—m2 = —m2y2? + m2o?

(7mc2)2 = p*c? + mic!
ymc® = E = \/p2c® + m2ct .

For reasons that are especially obvious from special relativity, identify the left side of the result as the total
energy F of the particle. While at rest (v =0, p =0, v = 1), the energy famously reduces to
Ey =mdc®.

On the other hand, we may still talk about the energy and momentum of a massless particle moving at speed
¢, also known as a photon, whose energy is the product

E, =pc.

E
c
to cover each case.

Multiply the mass m into the proper acceleration to write the proper force

d d

The proper momentum may be written

FHF =m—UHt = — pH
de dr ’
where a contraction with U, resolves to zero, as
d m d m d
FrU, =mU,—U' = —— (U'U,) = —— (=c?) =0.
n=mUngrU" =5 3 UM = 5547 (=€)

Unpacking the definition of F*, the proper force looks like:

23
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6 Geodesic Equation

The notion of geodesics enters the game to play among among tensors, the metric, and the covariant derivative
in order to properly understand geometry in curved space. Specifically, the geodesic equation on a manifold
is the generalization of the zero-acceleration case in flat space.

6.1 Parallel Transport

The Christoffel symbols I' arose from the need to ensure that the covariant derivative always delivers a
tensor. Now we reinforce their existence by employing a less formal but more physically concrete analysis
called parallel transport, which entails keeping the components of a constant vector V* fixed while undergoing
a change in base point ¢*.
To demonstrate parallel transport and its implications, consider a flat two-dimensional manifold mapped
by polar coordinates via
F=rcosfi+rsindj.

A vector V obeys the contraction
2 2
|V|2 = gMUV/JVV = Grr (Vr)2 =+ goo (Ve) = g,uuv'uvy = (VT)Q + r? (Va) 5

where g,, = 1 and ggg = r? have been used. It follows that
T 6 ]- .
V" =|V]cos¢ VO =|V|=sing,
r

where ¢ is the angle made between V and its base point position vector 7.

The base point of V' may be parallel-transported in two independent ways, namely along the pure 7-
direction, or purely in 6, resulting in a vector V with the same magnitude. For small displacements in r and
0 respectively, we write

V= ‘f/‘cosqﬁ vl = ’f/‘ r—|—1Ar sin ¢
VTZ‘V’COS(¢—A6‘) VQZ‘V’%SiH@_AQ)

From the above equations containing a sin ¢ term, we may eliminate said term and both magnitudes ’f/‘

and |V| to solve for V? in terms of V?:

Repeating a similar exercise to solve for V", we have
V= ‘f/‘ (cos ¢ cos Af + sin psin AG) = V" + VO A
Observe that the components of the parallel-transported vector adhere to a pattern, namely
ViR VE— (D), VY dg”

where the (?)5/3 object acts suspiciously like a Christoffel symbol. By comparison to I‘ﬁﬁ in 2D polar

coordinates, it happens that the factors 1/r and —r are precisely equal to Ffa and I'j,. In summary, we
uncover a Calculus 101-eqsue derivative formula

VIR VI T VY dg”

reaffirming that the Christoffel symbols track the ‘slope’ in the coordinate system on which V is placed.
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6.2 Derivation by Parallel Transport

Recalling the star conclusion from parallel transport analysis, note that the proper velocity vector U must
obey B
Ut~ U* +Th,U" dg°

under a small change of base point. If we rearrange and divide through by the proper time to write

Uk — [k

re,uru’
dr s ’
this limits to the geodesic equation:
d d?qt dq dqf@
= —U"+T,U"U" 0=
dr * dr? ”ﬁ dr dr

6.3 Derivation by Covariant Derivative
A stronger argument for the geodesic equation arises by setting the covariant derivative of a parallel-
transported vector V# (\) to zero. Doing so, we find

D dg”
0=Dy\Vr= 7 vi="LD, Vi =vVD,Vr =V o, VI £ T, VIV

dX dX
which resolves to the previous result for the special case V# (\) = U* (7). Note for scalar fields f, D\V* is
the dot product between the tangent vector and the gradient (directional derivative).
To discover a restriction on the parameter A, continue assuming the form V#* = dg#/dX and apply the
chain rule:

P | detdg’ _dr d (drdgt | (dr\* L, de'do?
d)2 vB g\ dx — dhdr \d\ dr d\ vB dr dr

drdg* d (dr dr\* (¢ ., dg*
- —_— P + JR— - =
d\ dr dr \ d\ d\ vB dr dr
dg” [ dA 22\
S +0
d\ \dr dr?
o (PA/dr?)
(dX\/dr)?

To get zero on the right side, the second derivative of A must vanish, thus any A o 7 is an affine parameter
that satisfies the geodesic equation.

6.4 Derivation by Variations

Between two points 7; and 7¢, the integral of cdr, i.e. the action is extremized:

dg* dgq”
S = / ch—/ v~ dT

Next introduce small variations in generalized coordinates and in the metric as

0
q’y — q’Y + 6(]7 gul/ — guu + 6(1787(]79/“/ 9

where each d-term is considered small, and the product of two or more such terms is negligible. On the left
side of the equation we have S — S + 0S5. Note all variations are zero at the endpoints 7; and 7.
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The square root term inside the integral is approximately

R dr dr

dg* dg¥ agm, dg* dg¥ dogt CRL” B CHL“ dog”
0q% dr dr I =ar dr I ar dr

and since c? is greater than all terms under the square root, we use the approximation

A
2 _ Ame— =
c c= 5

and cancel a factor of S from each side of the equation to get

1 (7 gy dg* dg” dogh dq dg* déq”
08 = — dq* 21 — y— .
S 26_/7_ ( g~ dr dr * G dr dr TG dr dr

For notational convenience, respectively label the first, second, and third terms as §.57, 4S5, and §.55.
Integrate 653 by parts, ie., [udv = uv‘ — [ v du by letting:

_,, 4" du — L9 da” d’q"
U= Iy YT Tar Tdr I
déq”
dv = q dr v =04q"
dr
Since the boundary term is zero by construction, §.S3 evaluates to

dgay dg” dg* d*q"
083 = —— - o .

5T / (d”dT dr Ik g

Repeat the calculation for §.5; to get

dgya dg* dg” d*q"
55 = oS

2 / (du dar dr e

to show that the total 6.5 is

d?¢* 1 /(0 0 0 dg* dg”
/ dr (34%) | gua— ) e
2\ 0g~ gt oq” dr dr
Finally we invoke the argument that 45 goes to zero for the ‘true’ path of motion on the manifold, thus
the quantity in square brackets equals zero. Contracting the equation with g°® gives

dqu + (89;;1} _ 891/@ _ agau) (dq# dqu)
2 .

~dr? 0q” Ogh 0q¥ dr dr

Of course, the terms involving the metric combine to equal the Christoffel symbols I'f,,, (surely you spotted
it). The result is the geodesic equation:

d?q? , dg" dg”

dr? B dr dr

0=

6.5 Null Geodesics
Recall that the differential interval on a manifold can be written

dS?

a2 guUMU" =U"U, = —
T

It turns out that nontrivial results can follow from setting dS? = dr2 = 0, called a null geodesic:

0= g UrU" = U*U,
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6.6 Problems
Parallel Transport

Problem 1

Consider a vector field V# that has unit length and points in the positive x direction everywhere. Find
an expression for V in two-dimensional plane polar coordinates, and then show that its covariant derivative
is zero.

Solution 1

Vrzaaivw—i—%i = cosf

x y

V(g:aiq(’var@iqu: -1 d x _ —sinf
Ox dy V91—a2/r2dz \ /22 442 T

D.V" =D, V% =DgV" = DgV? =0

Problem 2

Consider a spherical shell that embeds a circle C' at constant latitude 6y. At ¢ = 0 the vector V# has
components V¢ =0, V¢ = 1. Compute the components of V#* as a function of ¢ as it is parallel-transported
around C.

Solution 2
dVF  dg®
= —— 4 L TH V¥ ={0
ave dve
0:%7V¢Sin9c059 O:%JrVecotH
v d?ve
0= 402 + cos? 0o V? 0:7d¢>2 + cos? Oy V¢
VY% = sinfy - sin[¢ - cos 6] V¢ = cos[¢ - cosbp]
Geodesics on a Plane
Geodesics in the Cartesian plane are expressed by
x (A) = aX+ xg y(A) =bA+yo,

where A is a dimensionless parameter. In 2D plane polar coordinates, variables (z,y) relate to (r,8) by
T =rcosf y=rsind.

Thus, straight lines in polar coordinates look like

b)\-l-yo)

r () = /(@A +20)> + (bA + 90)° 9Q)Ztm{l(ak+x0

Using what we know about I'f, in two-dimensional polar coordinates, the geodesic equation yields two
bits of information:

d?r (w>2 d20  2dr df
—7r = =0

e Y —o B e i
d\? dX d\? + rdA d\
Problem 3
Show that 7(A\) and 8(\) given above are solutions to the geodesic equation for 2D plane polar coordinates.
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Solution 3
7A/_‘1(‘1)\4‘%)‘*‘b(b)\‘Fyo) o — bxo — ayo
n r B 72
o a? + b? B (7'/)2 s 276’
r r r
9 o r?(a?+b%) = (a(aX+x0) + b (DA + yo))2 a?y2 + b2 a3 — 2abxoyo
r—r(0) = 3 — 3 =0
r

Geodesics on a Two-Sphere

Problem 4
On the surface of a spherical shell, prove that any nontrivial path with constant 6 is only geodesic on the
equator.

Solution 4

20 do\? , T
d7_2—51n90059<d7_) =0 Onlytruelfe—g.

Problem 5
On the surface of a spherical shell, prove that any path with constant ¢ (longitude) is a geodesic.

Solution 5
A vector ¥ that traces a circular arc on the shell at constant ¢ is

¥=rsinf 7+ rcosf o,

where in contravariant form, we have
T r : 0 1 6
Vi=v" =rsinf V% = -0’ =cosf.
r

Applying the geodesic equation to each component, we discover

avr dv?
0 +ThV? =0 0 +T5, V" =0.

Geodesics in Minkowski Space

The geodesic equation in Minkowski space reduces to

92 gt
" _q.
or?
where
q" = (ct,7) .

As per usual in classical mechanics, integrate twice with respect to (proper) time to gain and equation for
q" (1):
" (1) = aff + Uf'r
Of course, the normalization condition

— = 0w Uy Uy

Ug::l:\/CQ—i-(_jo-(jo.
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Problem 6
Show that a particle would require v = ¢ to follow null geodesics in Minkowski space.

Solution 6

0=n,U'U" = 2442 =0
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7 Curvature

7.1 Riemann Curvature Tensor

So far, we have no tool to discern if a manifold is truly curved versus truly flat. For instance you might
discover that the Earth is at least cylindrical by walking consistently westward, but can we do something
that does not involve walking around the whole surface? That answer, of course, is yes.

The new idea is to parallel-transport a vector V on a given manifold in a closed circuit without walking
around the whole manifold. If the orientation of the vector is unchanged after a trip around the circuit, the
space is measurably flat. On the other hand, distortion in V' can only be caused by curved space.

7.2 Parallel Transport Analysis
Our starting place is the geodesic equation in the form
0=dV’+1%,d¢"V".

Abbreviating V* (¢* () as V? (j), we write a general first-order expansion for the vector V' evaluated at

any point:

i qye
dgt

dg"

v =ve o)+

v

J
=V*(j) _|_/ (—FZVV") dg"
J

Implementing the above result on the parallelogram (a,b), (a + da,b), (a + da,b+ 6b), (a,b+ ob), we
have:

a+da
VP (1) =V7?(0) +/ (=I%, () V¥ (b)) dg*

a

b+0b

VP(2)=Vr(1)+ (=I%, (a+6a) V¥ (a + da)) dg*

a

VP@B)=V*(2)+ (=7, (b+6b) V" (b + 6b)) dg"

—

a+da

b
VP (0 =VP(3)+ /b o (=I%, (@) V" (a)) dg*

The total change in V is the sum of the four paths, i.e. §V» =V?(0') — V*(0):
a+da
VP = / (T8, (b+6b) V¥ (b+ 6b) — T, (b) V¥ (b)) dg*
" st
+ / (I‘ﬁu (a) V¥ (a) — e, (a+6a) V¥ (a+ 5a)) dg" .
b

We next evaluate §V* to lowest order to get

9

0q”
a+da b b+6b o

~ v 2 (TP vV B w_—_ (TP VY Y

N/a W 57 (V) da /b bt 5 TV da

o) ” 9 v
=~ 6@“5()’»/87‘]7 (FZVV ) — 5a“5bwa—q# (FQUV )
~ 6akobY (0,15, VY +T1%,0,VY — 9,0, V" —T%,0,V") .

a+éa b+6b
SVP ~ / 507 2o, vy dgr - / sar -2 (T0, V) dg
a b

g7
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Replacing the derivatives of V', the total change in V' becomes

SV & 6asb? (9,10, V7 +T0, (~T7 V) = 8,00,V —T%, (-T%, V7))
~ 6a" b7V (9,10, —T0 T" — 8,0, +T0,I" ) .

purv- yo YU po

In flat space, the parenthesized quantity evaluates to zero. Deduce that any information on curved space is
stored in the Riemann curvature tensor:

— p oA P TA
RE, = 0,10, =01, + 10,0, — T\

o uv K- vo

7.3 Geodesic Deviation Analysis

Consider a family of geodesics characterized by ¢” (7, s), where 7 is an affine parameter and s is a perpen-
dicular arc length parameter. Define the (small) deviation vector SP such that

@’ —q”+5°,

where S? is perpendicular to the (tangent) four-velocity U? = dg” /dr at any point ¢”. The geodesic equation
under deviations ¢” — ¢” + S” appears as
d* (q° + %)
dr?

d(¢" +S*)d(q” +S”)

dr dr =0

£, (¢ + )
Subtracting off the un-deviated geodesic equation (S? = 0), the above boils down to

d2sr dsv
— +2I'Y UV —— + U*UYS°9,1" =0,
dr2 2 dr + wy

where the chain rule and geodesic equation interpret the first term:

—dQSp _ 4 vuto,S*) =-17,0U0"0,5° +U*U"0,0,5”
dr2 - E ( o ) - 1t ot + vOpu .
To proceed, define the relative velocity and relative acceleration as

VP = iSp =U’D,S* AP = iV”7
dr dr

and substitute V' into A to write
AP = (U*D\U°) D,S* +U°U*D, D, S,

and since the parenthesized quantity is identically the geodesic equation, the first term vanishes. Computing
out the second term, we have

AP =U°U" (9, (D,S") + T, D,S" —T7,D.S)
= UU" (8,055 + 9, (I%,87) + 1%, D,S” — T, D,S")
= UrU°SY (=0,T0, + 8,4, +T0.TY, —T2,T7 )

YT ov Y po
=UrU?SYR?

opY I

which is nicely represented in terms of the Riemann curvature tensor, therefore this analysis is alternative
derivation of Rf,,. Keep in mind A” is not an equation of motion, rather it tracks adjacent geodesics as a
bundle.
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7.4 Second Derivative Analysis

A delicate ‘probe’ for curvature on a manifold checks for second-order changes in a vector whose derivatives
are computed in alternating order. That is, by calculating D, D,V, — D, D, V,, any nonzero result indicates
curved space. Carrying this out for the first term, we find

DVDNVU =0, (DMVU) - Fz[;u (DPVU) - Fﬁo (DMV/J)
=0, (0,Vo —T0,V,) = T2, (0,Ve = Tp,Va) =T, (9,V, =T, V) -
The second term has the first two indices swapped, so we have
A A
D,D,Vy =0, (0, Vs —=17,V,) = T%, (6,3‘/0 — FPUV,\) — I, (8VV,, — F,,pV,\) ,
where taking the difference AV,,,, = D, D,V, — D, D,V, gives
A A
AVypuo = 0, T, V,) — 0, (FZUVP) + 1 (&,Vp — FVPV,\) I (6NVP — FW)V,\)
Avu/w = au (Fﬁa) Vp =0y (Fﬁa) Vp + F;pw (_FI)J\/)VA) - FI;U (_Fl);ﬂv’\)
A A
AVVMU = <aﬂrgu - 8VFZ<7 + FZ/\FUU - Fg)\ruo> VP )
and the parenthesized term is none other than the Riemann curvature tensor. In summary, we have found
D,D,Vy — D,,D,V, = R}V, .
A vector in flat space cannot have two separate answers for the second derivate when taken in swapped
directions, but curved space evidently permits it.

7.5 Properties of the Riemann Curvature Tensor

As a four-index object, the Riemann curvature tensor in general has 4* = 256 individual components. Due

to certain symmetries in R/, though, the number of independent components is reduced significantly.

Following are four properties you are encouraged to verify:

e R.p4, is antisymmetric in the last two indices:

Rapyp = —Rappy

R s+, is antisymmetric in the first two indices:
Rapgyp = —Rpavp
e R.gy, is symmetric when exchanging pairs of indices:
Rapgyp = Rypagp
e The Riemann curvature tensor obeys a cyclic algebraic identity:

R(x,375 + Ra'yéﬂ + Ra'y[% =0

Derivatives of the Riemann curvature tensor obey the Bianchi identity:

DaR,B’y(Se + DﬂR'yaée + D'yRa,Bée =0

Using the above symmetries, it can be shown that the number of independent components in the Riemann
curvature tensor goes from d* to
d? (d* - 1)
N=—_"2
12
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where d is the number of dimensions. For example, d = 1 can’t possibly involve curvature, and we corre-
spondingly find Ry11; = 0. In two dimensions, there is only one independent component of the Riemann
tensor, namely Rgip1 # 0.

Problem 1
Calculate the RZQ »-component of the Riemann curvature tensor for a three-dimensional flat space mapped
by spherical coordinates.

Solution 1
Ry = 065y — 05Ty +ToaT3s — TxTy
_ 6 6 1r 0 ¢
= 00T — 0sPhg + 15, T — T54T5,
1
= 0g (—sinfcosd) — = (rsin®@) — (—sin b cos ) cot
r
= —cos20 +sin® 0 — sin? 6 + cos? 6 = 0
Problem 2

Show that a spherical shell of fixed radius is a curved space by calculating Rie e Also calculate ng

Solution 2

Rigs = 005y — 05Ty + ToaT3s — ToaTo,

= 00T, *%*%* TooThs
= 0y (—sinfcosf) — (—sinb cos ) cot 6

= —cos? 0 + sin® 0 + cos? 6 = sin? 6

¢ _ ¢ [} ¢ A
Ry 40 —/ﬁge/_ 0o 4y "’W‘ N e

= —fpcotl —cot’0 =1

7.6 Ricci Tensor and Ricci Scalar

Despite its symmetries, Rf , is still an unruly type (1,3) tensor. A contraction over the top and bottom-

middle indices yields a more accessible object called the Ricci tensor
Ry, = Rlptpu = gaﬁRa#ﬁV )

which tracks the growth rate of volume elements on a manifold.
Curvature information can be projected into a scalar by contracting the Ricci tensor indices via

g“l/RuV = Rﬁ =R,

which resolves to the Ricci scalar. Note that R is generally to equivalent to the ‘mean’ curvature or the
Gaussian curvature on the manifold. (In two dimensions, it turns out that R is twice the Gaussian curvature.)

Problem 3
Calculate the necessary components of the Ricci tensor to find the Ricci scalar for a spherical shell of

fixed radius.

Solution 3
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Rog = g’ Raogo = 9% Rooso = 9% (9gaRise) = 9°° <9¢¢R3¢9> = (9°°900) Rigo

=1

Rys = 9°° Ragse = 9" Rogoe = 9%° (90aR39s) = 9°° (900 R5%0s) = (9°°g00) Ry
= sin?0

Ra¢ = R¢9 =0

. 1 sd 2
R=g" Ruy:geeR‘gg +g¢¢R¢¢=ﬁ+7r2 27 2

Problem 4
Calculate the necessary components of the Ricci tensor to find the Ricci scalar for a spherical shell of
variable radius.

Solution 4

R, = Rgg = Ry = Rro = Rogr = Rrp = Ryr = Rop = Ry =0

7.7 Einstein Tensor

The next available question is, which jumbling of R-objects has zero covariant derivative? Preemptively
calling the result G*”, begin by requiring

D,G"" =0 D,G}, =0.
To proceed, raise the fourth index across the Bianchi identity by multiplying through by ¢°” to get

DoR?,. + D,Rf, . + D,R’, =0

nuve vae e )

and also raise the last index by multiplying through by g®¢, causing a contraction on a:
Do Ry + DRy + DyRES, =0

Let v = p to invoke yet another contraction, and also exploit the symmetry properties of the Riemann
curvature tensor to adjust index position and minus signs, eventually landing at

~D, R\ + D, RS — DRI = 0.

Observe the first and third terms are equal, and the second term is the divergence of the Ricci scalar.
Seeking a total derivative, we write
D R”—ED R=D R”—1 "D,R=D R”—1 "R| =0
vily, 2 " - vty 29/1, v - v m 29,1, — Y,
where the parenthesized term is the (1, 1) form of the Finstein tensor. Shuffling indices a little, the take-away
result is that

1
GH — R _ QQWR

has zero derivative on a manifold.
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8 Weak Curvature

8.1 Perturbed Flat Metric

A manifold that is essentially flat while exhibiting slight curvature admits a metric

uv = Nuv + huu s

where all components of h are much less than 7. The up-index version of the metric is not simply n** 4+ h*",
instead the best we can write is
g =t 4+ HW

for some nontrivial tensor H.
To gain some traction, insert both versions of g into the delta function:
05 = 9" 9po
%:%Jr 0" hpe + H"P1py + H" hp
0= g“phpa + H#pnpo

0=n7"g""hps + H" npey™5;
H" = —g""n°" Ry

Thus, the expression for g*” reads
g =" = g""n"" hyo

which of course contains a factor of g"”, so we may re-insert the expression containing H:
g y
g = — (P + HP) %V h e
= 77#” - (77#’) - guanophaa) noyhpa
= g~ B (P HE) RERY
=" — W 4 hPPRY + HMREKY,
=" — W + WPh — hHCRE R — H“Bhghfihz
=" — W + WPh — hECRE R + h“’ghghghz -0 (5)

The same result can be derived by expanding g and H as a power series in a parameter A that we set to
one at the end:

uv = Nuv + )\hm/
Y \FIRY N2 Y L NS EMY 4.
HY = )\H(l) + A H(z) +A H(3) +
Setting up a similar calculation as before, we have

nz

Iy = gvog

00t = (o + M) (W + NHY + X2 HL + NP HY + )

0 = 94 A (W o HE ) + X2 (oo HES + o HE )
08 (oo Y 4 mo HES,) 4 X4 (0 (4))

where each parenthesized term is independently zero. Solving for each H(;) in order delivers the same
expansion coefficients:

py v py Hmppv v
HYY = —h* HYy = —HUSR, = W' hy

H{y = —H{ hy = —h"*h hy etc.
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8.2 Acceleration from Curvature
Consider a perturbed Minkowski space admitting a metric
I = N + Py -
In the low-velocity non-relativistic limit, the proper velocity is approximately
U* =~ (¢,0,0,0) ,
which embeds the approximation dr ~ dt. Meanwhile, the geodesic equation tells us

d?q

T T TLUU =0,

where I'fy, is given by (retaining only first-order terms in h)
Iy, = L mvo, ~ oL HY O, h
00—_59 u900~—§77 v oo -

Putting this all together, we find
B
a2 9 " Ovhoo ,
where the g = 0 channel tells us that hgy has no time derivative. In vector form, the remaining spatial
components are
d?q B c?
a2 2
This was done with no mention of external forces, yet an acceleration still arises due solely to the curvature
on the manifold. If this smells like gravity to you, you're on the right track! More generally, the above can
be written

Vhoo -

2
ho() = —§V($) s

where V () is the gravitational potential. Finally, note that the 00-component of the (0,2) Ricci tensor is
readily shown to obey, to first order,

1 1
Roo = 0,1k, = —gaﬂauhoo = —§V2h00 )
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9 Curved Manifolds

9.1 Two-Sphere

We have seen that embedding a sphere z2 + 32 + 22 = r? in three-dimensional space while fixing the radius
results in a two-dimensional curved manifold that is ‘unaware’ of a third dimension. This is captured in

non-vanishing components of the Riemann curvature tensor Rf,,, which gives way to the Ricci scalar,

namely R = 2/r? for a two-sphere. The square of the line element (a.k.a. the interval) falls out of flat
three-dimensional spherical coordinates by setting dr = 0:

dS? = r? (df® + sin® 0 d¢?)

Using dS?, it’s trivial to explore lines of constant ¢ or constant #. For a line connecting the two poles of
the sphere, we set dp =0 and let 0 < 6 < 7, as in

S%:/dS:r/ do = mr.
0

Meanwhile, on the equator we have 8 = 7/2 and 0 < ¢ < 27

27
So, :/dS:TW/ d¢ = 2mr
27 Jo
Problem 1

Borrowing results from flat three-dimensional spherical coordinates, fix the radius » and write down the
metric, all surviving connection coefficients, and the Laplacian operator in two-dimensional spherical space.

Solution 1
goo = r? Jpp = r2sin? 0
ngb = —sinfcosf er = cot
10 (. 0f 1 0%f
2p __ — 7 ZJ ZJ
ViI= 1550 (Slnaae)) T o sinZ6 047

9.2 Non-Round Two-Sphere

If we maintain the axial symmetry of the two-sphere while generalizing the profile from trigonometric func-
tions sin @, cosf to a more general pair f (), g (0), we begin with

x=rf(0)cosg y=rf(0)sin¢o z=rg(0) .
The interval dS? = dx? + dy? + dz? becomes

di\* . (dg) 2
2 of (& ag 2, .2 2
dsc=r <<d9) +<d9 do* +rof (6)° do= .
In the same way that sin 6, cosf are related by trigonometric identities, f (6), g (6) shall be defined to obey
2 2
ﬁ + dﬁ — ]_ ,
de de
45 = 12 (d92 +f(6)> d¢2> .

Lines of constant ¢ that connect the two poles of the sphere still obey d¢p =0 and 0 < 6 < 7, so we again

have .
S¢0:/dS:r/ df = 7r.
0
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For a trip around the equator, we set z =0, § = 7/2, and let 0 < ¢ < 27 to integrate the arc length:
s m T
Sa :/dS:rf<f)/ dg =2rrf ()
2/ Jo 2
Problem 2

The Earth is not a perfectly round sphere. Instead, the polar radius, measured to be r4, = 6357 km, is
slightly less than the equatorial radius, measured as rg, = 6378 km. Supposing the surface of the earth is
modeled by

f(0) =sin6 (1 +esin®0) ,

what values of r and € would best represent the data?

Solution 2

27 (6357 km) = 277

27 (6378 km) :%T%(l +e)

L6378
T 6357
6378
= 221% 1 ~0.0033
€~ 6357
r = 6357 km

9.3 Three-Sphere

A hypersphere of four dimensions with fixed radius becomes a curved three-dimensional manifold. It can be
shown that such a manifold has an interval (a slight variation from the one we found previously)

dS? = dh* + sin® 0 dyp? + cos? 0 dp? |
with corresponding metric components
goo =1 Gy = sin 0 Gpp = c0s2 0.

Using our established methods, the surviving connection coefficients are

I‘fw = —sinfcosf 1"3)4) = sin 6 cos 0
ngw = Fie = cot 6 F& = er = —cotf.

After some careful algebra, the components of the Ricci tensor turn out to be
Rgp =2 Ryy = 2sin% 6 Ryy = 2cos? 6,

or more compactly,
R, =29, .

The Ricci scalar is
R=g"R,, =2¢" g, =2-3=6.
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9.4 Hyperbolic Coordinates

A two-dimensional space with negative curvature can be studied by considering a three-dimensional space
space parameterized by a radius and two angles

x = rsinh ) cos ¢ y = rsinhysin ¢ z = rcosh

with R
S=zxit+yj+zk.
Note first that 2 + y? + 22 is not equivalent to r?. Computing this out, we find

\/$2+y2+22:T\/COShQ’(/J—f—Sinhz’l/J7

which of course reduces to r for spherical coordinates. Proceed by finding basis vectors from S according to:

f_aj' 875; _sinhwcoscﬁ—l—sinhwsin(b;—&—coshwlzi
or | or \/cosh2 ¥ + sinh? ¢
. Si—1 R . R
12)7875 575 ~ coshtcos i+ coshipsing j +sinhi) k
o |0y \/cosh2 1 + sinh? ¢
R L1
~ 08 |08 . A N
(b—a—qS- a—¢ = —sin¢gi+cos¢oj

Solving for i, j’, 1%7 we find

i = \/cosh? ¢ + sinh? ¢ (— sinhy cos o 7 + coshwcosqbi[)) — sinquAS

j’ = \/costh—i—sinth (—sinhwsinaﬁf—i-coshz/)sinqﬂﬁ) —l—cosgzﬁg%

k= \/cosh2 ¥ + sinh? ¢ (cosht/} 7 — sinh ¢ 1&) .

Inserting i, J, k into S , the ¢ and (ﬁ components cancel out, leaving us with

§=r\/cosh2w+sinh2¢f.

Letting H = \/ cosh? ¢ + sinh? ¢, the differential line element is
dS =+ Hdr +#rdH +rH dr

where

2sinh ¢ cosh ¢
dF = 2SOy,
I (0
and 2 sinh ) cosh ¢ inh 1) 1
N S11. COS R Sin A~ 1 N
d = - =R gy B g4 —du i,

which boil dS down to B ) )
dS = Hdr#+rsinhe do ¢ +rdy i) .

The square of the differential line element is the distance interval, which resolves to
dS? = H? dr? + r?sinh® ¢ do? + r? dyp? .

Next, fix the radius to 7 = a such that dr = 0. The non-vanishing connection coefficients resemble those
from spherical coordinates with hyperbolic trigonometric functions:

Y

o6 =" sinh ¢ cosh ¢ Fﬁw = coth vy
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The essential component of the Riemann curvature tensor is Ryg¢ye, which comes out to
Rygpe = —a®sinh? 1) .
The nonzero components of the Ricci tensor are Ryy, Rgp, which are
Ryy = —1 Ryy = —sinh® 1) .
Finally, the Ricci scalar for this system turns out to be
R=g""Ryy + g Ryg

-2

a?’

affirming the negative curvature of hyperbolic space.
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10 Symmetry and Invariance

10.1 Killing’s Equation

A key identity arises by analyzing change in the metric along vector field lines on a manifold. For instance,
the metric is homogeneous throughout the Cartesian coordinate system permitting any translation, whereas
the metric in cylindrical coordinates varies with the radius r, so only certain translations leave the metric
unchanged. Here we develop a formal way to discuss what the notion ‘metric is unchanged’ actually means.
Consider a manifold that is host to a vector field K*. At a point pg, take in infinitesimal step along a
contour of K* onto the point p; such that
q¢" (p1) = ¢" (po) + €K™,

where € is a small parameter. The new location ¢ (p1) is interpreted as a change in coordinates from ¢ to ¢
such that

d" (po) = ¢" (p1)

meaning p; becomes the new base point in the shifted system. It follows that the change in the metric g,
obeys

Aguy = g (g (P1)) — Guw (G (po))
where g,,,, is the metric re-calculated in the shifted coordinate system.

The first term on the right side is rather easy, as to first order in €, we have
9w (@ (P1)) = g (4 (po)) + €K7059,0 (¢ (Po)) -

Unpacking the second term requires the tensor transformation law

- _0g” dq°
Guv (¢ (po)) = 9an 9 I (¢ (po))

where the derivative terms are handled by writing ¢* in terms of ¢*, namely
" (po) = " (po) — eK*,
allowing the calculation
9 _ o a
W = (5# — EaﬂK .
So far, the shifted metric g reads, to first order,
Guv (4 (p0)) = (67 — €0, K*) (6] — €0, K”) gag (4 (po))
= 6500905 (4 (p0)) — € (959000 K® + 6} 9030, K*) + O]
= Guv (q (pO)) —€ (guﬂayKﬁ + gauauKa) .
The calculation for Ag,, simplifies as
Agy = € (gukertra)) + K 0pgur — 9uukatPo)) + 9us0u K" + gar 0, *)
=€ (K?0,9, + 9up0 K® + a0, K®) .
To handle the partial derivative of the metric, invoke the identity
0= 0pgur — Fg#gau - ngguﬁ )
and collect like terms to get
Aguy = € (gup (0, K% + T8, K?) + gay (8, K* +T9,K")) ,
where the nested terms are tightly expressed as covariant derivatives:
Aguy = € (98D K" + 9o D, K®) = € (D, K, + D, K,) ,

as the metric compatibility condition allows us to lower the indices on K through the covariant derivative.
The isometric condition Ag,, = 0 leads us to Killing’s equation, where K, is called a Killing vector, named
after Wilhelm Killing:

0=D,K,+D,K,

41



10. SYMMETRY AND INVARIANCE CHAPTER 1. RIEMANNIAN GEOMETRY

10.2 Invariant Quantities
Consider a quantity
Q = K/L UH ’

where U is the proper velocity (tangent vector on the manifold) d¢//dr, and K|, is some vector field. Taking

a full derivative of @ and applying the chain rule, we find
dQ _ dg*
— = —D, (K, U"
dr dr A (Ku.U")

= UNU*DA\K,, + (UMD\U*) K, ,

where the parenthesized is identically the geodesic equation and is thus zero. By symmetry in the indices A,
u, we are left with

Q _ 1

dr 2
1

- §U’\U“ (DAK, + D,K)) ,

(UNUMDAK,, + UMUMD,K)

where the parenthesized quantity is identically Killing’s equation, resolving to zero, provided that K, is a
Killing vector. This notion readily generalizes to tell us each linearly independent Killing vector K; on a
manifold implies an invariant quantity @);.

It’s possible to show that the maximum number of Killing vectors on a manifold of dimension d is equal
to

1 1
N=d+5d(d=1)=3d(d+1),

meaning there are d translational symmetries and d (d — 1) /2 rotations. If time is included as a parameter,
then any constant-velocity shift is also a symmetry called a boost. One special case is the Poincare group,
consisting of all symmetries allowed in Minkowski space having d = 1 + 3, with N = 10 members:

4 Translations + 3 Rotations + 3 Boosts = Poincare Group
Furthermore, it can be shown curved manifolds carrying maximum symmetry have constant scalar (Ricci)
curvature R such that the Riemann tensor may be written

Raﬁ;w = ) (gaugﬁu - gﬁ/_tgow) .

_B
dd—1

10.3 Conformal Killing Equation

A slightly weaker condition than Killing’s equation DuK, + D, K, = 0 is called the conformal killing
equation, namely
DK, + DK, = f (@”) g -

We may show that a quantity @ is still invariant under the conformal killing equation for the case of null
geodesics:

d 1 1 1
g = §UAU“ (DrKy + Dy Ky) = §UAU“f (@) gru = 5 f (¢") I =0
Problem 1
Show that the vector field 5
V=gt
q D
is a conformal Killing vector of Minkowski space.
Solution 1
V:q# d(u) % :q,u = (Ct,I,y,Z)
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0 0 0 0
DV, +DVy= 5=V, + 2=V =z V" v
/ + / aqu + 8q1/ / X aqu +77)\IL aqy
d¢* ¢ A A
- nAVTqH + nAuaqu - 77)\1/6;,, + nAu(SV
= Nuv + Nop
= 2’]7#1/
(@) =2

10.4 Problems
Flat Space Isometry

Problem 2
Show that any direction ¢* is a symmetry direction in flat space mapped by Cartesian coordinates.
(Check for changes in the metric under constant translations.)

Solution 2
0
V== Vr=1 Vi=V*=0
or
Aguy =€ (Vpapglw + guﬁavvﬁ + gcwauva) =0
Problem 3

Show that rotations in 6 are symmetries of flat space mapped by Cartesian coordinates.

Solution 3
0 0
V=x——y— VP=V,=— VY=V, =
Yoy Yoz y y =7
OpVy + 0,V =0
DMVU+DVVM: %VerayVy:lfl:()
Problem 4

Show that rotations in 6 are symmetries of flat space mapped by two-dimensional polar coordinates.

Solution 4
V=_ V=V, =0 vl=1 Vo =12

Ve +0,V, =0
D)V, +D,V, =1 0Vyg+ 0Vp =0
0 Vo+ 09V =2r —2r%/r =0

Minkowski Invariant

Problem 5
Show that the quantity
q.P'=—-Et+7p-%

is invariant along geodesics in Minkowski space.

Solution 5
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Taking a proper time derivative, we find

d Iz dq)‘ H A iz
e (un ) = ﬁDx ((JuP ) =mU"Dj (un )

= mUU"Dyq, + mq, U D\U" .

The second term contains the geodesic equation and vanishes. Due to the symmetry in A, p, the result can
be written

d . m
dr (qu.P") = éUAU“ (Dxgu + Dyay) -
Noting that any position ¢* qualifies as Killing vector in Minkowski space, the term in parentheses resolves

to zero, finishing the calculation:

d
el PH) =
dr (g, P") =0

Two-Sphere Conformal Killing Vectors

Problem 6
The unit two-sphere having differential interval

dS? = db? + sin’ 0 d¢?
has three conformal Killing vectors that can be derived from the translational Killing vectors

0 0 0
X—a—z Y—a—y Z—&

in Cartesian space. Convert X, Y, Z into spherical coordinates to write down X »in spherical coordinates
of unit radius. Check that each resulting vector satisfies the conformal Killing equation.

Solution 6

V" =sinfcos¢p V* +sinfsing VY + cosf V*
Vi = (aq“//aq“) Vi = VY = (cosfcosp VT + cosfsing VY —sinf V=) /r
V® = (—sing V® +cos¢ V¥) /rsinf

Rearranging and adding the first two equations, we find
sin@ V" +rcos@ V% =cosp V: +singp V¥,
which helps solve for V*, V¥, V* (noting that V,, = 9/0¢"):

e d cosfcosgp O sing 0
v _Slnecos¢6r+ r 00 rsinf 0¢
cos@sinqbg cos ¢ E

r d0  rsinf ¢

VY =sinfsin ¢ g +
or

. 0 sinf 0

e

By setting r = 1, we have three conformal Killing vectors with two angular components:

X9:X9:cosecosd) qu:_s%n(g Xy = —sinfsing
sin
Y? =Y, = cosfsin¢ Yd):(s:(i)jz Yy = sinfcos ¢
7% =7y = —sinf 7% =274=0
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The nontrivial conformal Killing equations to verify are
DuWo + DoW,, = [ (") guo DuWo + DW= f(4”) 9us

for each W = X, Y, Z. These work out to be:

2Dy X =2 (89X9 +I‘/§‘§X>\) = —2sin# cos ¢ (12) = (—2sin 0 cos ¢) gge
2Dy Xy =2 (8¢X¢ + FZ,(z)Xg) = —2sinfcos ¢ (sim2 9) = (—2sinf cos @) gse
2DgYy = 2 (39Y9 +%\ZY)\> = —2sinfsin ¢ (12) = (—2sinfsin @) ggg
2DyY, =2 (8¢Y¢ + F¢¢Yé) = —2sinfsin¢ (Sin2 0) = (—2sinfsin @) geg
2Dy Zy = 2 (3929 + 99Z,\> = -2 cost9 ) = (—2cosf) ggo

)=

2Dy Zy =2 (03 Zy + FZ)¢Z9 —2cos 0 (sin®0) = (—2cos ) gge
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