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Chapter 1

Probability and
Statistics

1 Events and Probability

Probability theory is a branch of mathematics for
studying systems with inherent randomness or un-
certainty. It works closely with statistics, another
branch of mathematics concerned with the organiza-
tion and interpretation of data, along with combina-
torics, a formal method of counting.

Systems that exhibit random or pattern-less be-
havior contain a stochastic component. Typical
stochastic processes may include flipping a coin,
drawing a card from a deck, rolling a dice, or play-

ing darts while blindfolded. A stochastic event is any
data generated by a stochastic process, and the set
of all possible stochastic events is called the system’s
sample space.

1.1 Events

Elementary Events

Events that are considered elementary carry one
‘unit’ of information, loosely speaking. A coin land-
ing on ‘heads’, or a dice landing on 3 qualify as ele-
mentary events.

Compound Events

Simple events that occur in groups are called com-
pound events. Drawing a Queen of Hearts from a
deck of cards carries two units information, and may
be interpreted in several ways: ‘draw a Queen AND
a heart’, or ‘draw a Queen OR a Heart’, or perhaps
‘draw NOT a Diamond’. Such events are compound
for this reason.

Compound Event Notation

Borrowing the familiar symbols from elementary
logic, we denote the word ‘AND’ with the ‘cap’ sym-
bol ∩, equivalent to multiplication ( · ). Meanwhile,
the word ‘OR’ uses the ‘cup’ symbol ∪, or sometimes
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4 CHAPTER 1. PROBABILITY AND STATISTICS

just a plus sign ( + ). The ‘NOT’ operator is ab-
breviated by a dash above the symbol, as in ‘NOT’
A = Ā. Any event that is infinitely improbable, im-
possible, or undefined is denoted by the ‘Empty set’
symbol, ∅. In summary:

A AND B = A ·B = A ∩B

A OR B = A+B = A ∪B

NOT A = Ā

Empty set = ∅

The logic of probabilistic analysis is the same as ‘or-
dinary’ logic. For instance, the philosophical axiom
‘nothing can be and not be simultaneously’ is con-
tained in the statement:

A ∩ Ā = ∅

State

The state of a system, loosely defined, is any par-
ticular configuration of the variables used to describe
that system. For instance, a snapshot of a chessboard
contains the present state of the game. Any event
taking place in a system usually changes its state.
If the system is to evolve in time, as would a game
of chess, then future states evolves from the present
state according to some rules or model of evolution.

1.2 Probability

Statistical Probability

A stochastic process that iterates over a very large
or infinite number of trials will produce data points
randomly distributed among the space of all possible
data points for that process. For all events of type A,
the ratio of occurrences NA over all N events is called
the statistical probability of event A, defined as:

P (A) = lim
N→∞

NA

N
(1.1)

P (A) strictly has values between 0 and 1, inclusive.

Normalization Conditions

All other events B, C, etc., are represented by the
symbol Ā (‘NOT’ A), and obey:

NA +NĀ = N (1.2)

P
(
Ā
)
+ P (A) = 1 (1.3)

Classical Probability

A definition that skirts around the invocation of
N → ∞ is called the classical probability. For in-
stance, it does not require an infinite number of rolls
on a six-sided dice to know the chances of landing
on 3 are one out of six, as this quality is built into
the dice itself. Classical systems like dice or play-
ing cards are most succinctly analyzed using classical
probability.

Counting States

In probability and statistics, it’s often necessary to
know the total number of states available to a system,
sometimes requiring rigorous combinatorial consider-
ation.

Example 1

The last four digits of a phone number have the
format ABCD, where each letter represents any inte-
ger from 0 to 9, inclusive. What is the probability of
randomly guessing the number 7766?

Right away, we know how to list all possible states
of the password, starting from 0000 and ending at
9999 in numerical order. With N = 1000 passwords,
the probability of randomly choosing the correct pass-
word NA = 7766 is:

P (7766) =
1

N
=

1

10000

Example 2

A bank account password has format ABCD,
where each letter represents any integer from 0 to
3, inclusive. What is the probability of randomly
guessing the password?

All two-digit arrangements solved by AB are con-
tained in:

ω =00, 01, 02, 03,

10, 11, 12, 13,

20, 21, 22, 23,

30, 31, 32, 33

From here, observe that all four-digit arrangements
are contained on an ω×ω grid having N = 162 = 256
total members, or

P (NA) =
1

N
=

1

256
.
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1.3 Mutually Exclusive Events

A pair of mutually exclusive events A and B are those
that cannot occur simultaneously. Their coincidence
can only belong to the empty set as

A ∩B = ∅ .

If two events are mutually exclusive, the probability
of either event occurring is the sum of the individual
probabilities:

P (A or B) = P (A ∪B) = P (A) + P (B) (1.4)

Example 3
Calculate the probability of rolling a 3 or a 4 on

a six-sided dice. As mutually exclusive events, we
simply have

P =
1

6
+

1

6
=

1

3
.

Example 4
Calculate the probability that a random three-

card hand drawn from a 52-card deck contains the
Queen of Hearts.

P =
1

52
+

1

52
+

1

52
=

3

52

1.4 Non-Exclusivity

Non-mutually exclusive events are those that cause
‘double counting’ in P (A ∪B), and are adjusted by
subtracting the probability that both occur:

P (A ∪B) = P (A) + P (B)− P (A ∩B) (1.5)

Or, in street terms, the above reads:

P (A or B) = P (A) + P (B)− P (A and B)

Example 5
From a 52-card deck, calculate the probability of

drawing a Heart or a Face card, or one that is both.

P =
13

52
+

12

52
− 3

52
=

22

52

Example 6
A class of 30 students is in session. 16 are study-

ing French, and 21 are studying Spanish. Choosing a
student at random, find the probability that they:

• study French

• study Spanish

• study French and Spanish

• study only French

• study only Spanish

• study French or Spanish

Denote F for French and S for Spanish. Then the
easy ones can be listed off:

P (F ) = 16/30

P (S) = 21/30

If the number of ‘multilingual’ students studying
both French and Spanish is denoted M , then

(16−M) +M + (21−M) = 30

must hold, telling us M = 7, or

P (F ∩ S) = 7/30 .

With M known, the the number of students studying
just one subject can be written:

P (French only) = P (F )− P (F ∩ S) = 9/30

P (Spanish only) = P (S)− P (F ∩ S) = 14/30

Finally, the number of students studying French
or Spanish should equal the total, which is the sum
of those studying French only, Spanish only, or both.
The probability should equal one:

P (F ∪ S) =
9

30
+

14

30
+

7

30
= 1

1.5 Independent Events

Two events A and B that occur simultaneously as the
compound event A∩B are independent if not causally
connected.

In general, the statistical probability for the com-
pound event A ∩B reads

P (A ∩B) = lim
N→∞

1

N
NA∩B ,

where in the N → ∞, limit the quantity NA∩B be-
comes NA · P (B). We deduce that, for independent
events, the compound probability is the product of
the individual probabilities:

P (A ∩B) = P (A)P (B) (1.6)

Example 7
Calculate the probability of two fair coin tosses

each landing on ‘tails’.

P (T ∩ T ) = P (T ) · P (T ) =
1

2
· 1
2
=

1

4

Example 8
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From a 52-card deck, what is the probability of
randomly drawing (i) a Queen, (ii) a Heart, (iii) the
Queen of Hearts?

P (Q) = 1/4

P (H) = 1/13

P (Q ∩H) = P (Q) · P (H) =
1

4
· 1

13
=

1

52

Coworker Problem

Two people are neighbors and travel to the same job.
Person A owns car A, which has a 70% chance of
starting in the morning, and a 30% chance of stalling
(not starting). Person B owns car B with an 80%
chance of starting. If one or both cars start, both
people arrive at work. If neither car starts, they both
miss work. In a span of 100 workdays, how many days
are missed?

Each morning, one of four things happen:

P1 = A starts, B starts

P2 = A starts, B stalls

P3 = A stalls, B starts

P4 = A stalls, B stalls

As independent events, we further have

P1 = (0.7) (0.8) = 0.56

P2 = (0.7) (1− 0.8) = 0.14

P3 = (1− 0.7) (0.8) = 0.24

P4 = (1− 0.7) (1− 0.8) = 0.06 ,

which passes the sanity check

4∑
j=1

Pj = 1 .

The answer to the question is the combined prob-
ability of at least one car starting. For this, we simply
have

P = P1 + P2 + P3 = 0.56 + 0.14 + 0.24 = 0.94 ,

or 94%. Six days are missed of every hundred.

1.6 Conditional Probability

In contrast to independent events, systems may bear
a notion of ‘dependent events’, meaning that event
B can occur only if event A occurs. This is called a
conditional probability, denoted P (B|A), enunciated
‘B given A’. By definition, the probability of event
B occurring given condition A is

P (B|A) = lim
N→∞

1

NA
NA∩B .

The term NA∩B is the number of events B that
occur given event A, which shows up again in the
equation for P (A ∩B):

P (A ∩B) = lim
N→∞

NA∩B

N
.

Divide the two equations and simplify to derive the
statement of conditional probability:

P (A ∩B) = P (B|A)P (A) (1.7)

Note that the above generalizes the case of indepen-
dent events, for if events A and B are independent,
this result reduces to P (A ∩B) = P (A)P (B) again.

Example 9
In a 52-card deck, calculate the probability that

the first three cards are Kings.

P (KKK) = P (K)P (K|K)P (K| (K|K))

=
4

52
· 3

51
· 2

50
≈ 0.000181

Example 10
In a 52-card deck, calculate the probability that

the first three cards are KQJ , in that order, with
mixed suits allowed.

P (KQJ) = P (K)P (Q|K)P (J | (Q|K))

=
4

52
· 4

51
· 4

50
≈ 0.000483

Example 11
Suppose a pair of six-sided dice are rolled, landing

on faces X and Y , respectively. What is the proba-
bility that X = 2 given that X + Y ≤ 5?

Of the 36 possible outcomes for a pair of dice, 10
of them obey X+Y ≤ 5. Listing these, find that only
(2, 1), (2, 2), (2, 3) satisfy X = 2, a total of three out-
comes. The final answer is the ratio of these counts:

P
(
X = 2

∣∣X + Y ≤ 5
)
=

3

10

Inversion Trick

Making use of the normalization condition

P
(
Ā
)
+ P (A) = 1 ,

it often helps in problem solving to use the negated
event Ā as the working variable.

Example 12
Calculate the probability that a random three-

card hand drawn from a 52-card deck contains the
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Queen of Hearts. For this, define the event Ā of not
drawing the Queen of Hearts and use the inversion
trick as follows:

Ā = Ā1 · Ā2 · Ā3

P
(
Ā1 ∩ Ā2

)
= P

(
Ā1

)
P
(
Ā2|Ā1

)
=

51

52
· 50
51

=
50

52

P
(
Ā1 ∩ Ā2 ∩ Ā3

)
= P

(
Ā1 ∩ Ā2

)
P
(
Ā3|Ā1 ∩ Ā2

)
=

50

52
· 49
50

=
49

52

P (A) = 1− P
(
Ā
)
= 1− 49

52
=

3

52

Radioactive Decay

An unstable atom is one that expels energy by eject-
ing a subatomic particle or photon. Having no inter-
nal time-keeping mechanism, an unstable atom is en-
tirely ‘unaware’ of its absolute age, and the its decay
occurs at a random moment after becoming unstable.

Supposing the observation of an unstable atom
begins at t = 0, the conditional probability of the
atom decaying in a small time window ∆t after time
t > 0 is

P decay
∆t/t = τ−1∆t ,

where τ−1 is a constant related to (but not precisely
equal to) the statistical half-life of the element, de-
fined such that ∆t ≪ τ .

The probability of the atom being ‘still alive’ in
the interval ∆t is

P alive
∆t/t = 1−∆t/τ .

Decompose the entire ‘alive’ state into a product of
conditional probabilities by slicing the time t into n
identical copies of the short interval ∆t as:

P alive (t) = P alive
∆t/t1

· P alive
∆t/t2

· · ·P alive
∆t/tn

=

(
1− t

nτ

)n

Letting n → ∞ permits use of the identity

lim
n→∞

(
1 +

A

n

)n

= eA .

It follows that the probability that a single unstable
atom will still be ‘alive’ obeys

P (t) = e−t/τ . (1.8)

One can work out the so-called half life τ1/2 of the
atom by inquiring when P (t) reduces to 1/2.

Missing Face Problem

A six-sided dice is rigged to keep rolling if it lands on
2. Prove that the statistical probability of rolling a 3
is 1/5.

Denote B as the event 2, and denote A as event
3. With a single roll, the probabilities of A or B
occurring are easy to write down:

p1 (A) = 1/6

p1 (B) = 1/6

Of course, event B is unstable and induces a re-roll,
which has a 1/6 chance of generating event A again,
and the same chance for event B:

p2 (A|B) = (1/6) (1/6) = (1/6)
2

p2 (B|B) = (1/6) (1/6) = (1/6)
2

With event B|B comes another re-roll, and we stack
on the conditional probabilities as

p3 (A|B|B) = (1/6)
3

p3 (B|B|B) = (1/6)
3
,

and the pattern is clear.
It follows that A could occur after any number of

rolls, or potentially occur after an infinite string of
B-events, and the total probability for A occurring is

P (A) = p1 (A) + p2 (A|B)

+ p3 (A|B|B) + p4 (A|B|B|B) + · · · ,

simplifying to:

P (A) =
1

6
·

(
1 +

(
1

6

)
+

(
1

6

)2

+

(
1

6

)3

+ · · ·

)
In the infinite limit, the geometric series in paren-
theses converges to 6/5. The probability of event A
occurring is therefore:

P (A) =
1

6
· 6
5
=

1

5

1.7 Bayes’ Theorem

For two events A and B, recall that the statement of
conditional probability reads

P (A ∩B) = P (B|A)P (A) ,

which gives the likelihood events A and B simultane-
ously occurring. It’s equally valid to write the state-
ment with A and B swapped, giving a complimentary
statement for ‘A given B’:

P (B ∩A) = P (A|B)P (B)
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Now, since A∩B is logically equivalent to B ∩A,
we immediately know P (A ∩B) = P (B ∩A), allow-
ing the two conditional equations to be combined to
arrive at Bayes’ theorem:

P (B|A) =
P (A|B)P (B)

P (A)
(1.9)

Laptop Repair Shop

Source: CMPSCI240 UMass Amherst 2013

Problem 1
You work in a laptop repair shop. 80% of lap-

tops brought in have been dropped, 15% of laptops
have had a drink spilled on them, and 5% of laptops
have a variety of other problems. A customer drops
off a laptop and doesn’t tell you what happened to
it. You notice the laptop is emitting a slight coffee-
like smell. Based on your knowledge of broken lap-
tops, you estimate that 20% of dropped laptops have
a slight coffee-like smell, 65% of laptops that have
had something spilled on them have a slight coffee-
like smell, and 5% of laptops that have some other
problem have a slight coffee-like smell.

Provide labels for the events described in the
problem. Find the probability that the laptop had
something spilled on it given that is has a slight
coffee-like smell.

Part 2:
After closer inspection, you note that the laptop

has no cracks on the case. Based on your knowledge
of broken laptops, you estimate that 80% of dropped
laptops have cracked cases, 11% of laptops that have
had something spilled on them have cracked cases,
and 9% of laptops that have some other problem have
cracked cases.

If the probability that a laptop smells like coffee
and the probability that a laptop has a cracked case
are conditionally independent of each other given the
cause of the damage (drop, spill, or other), what is
the probability that the laptop had something spilled
on it if it has a slight coffee-like smell and no cracks
in the case?

Solution 1
DenoteD for ‘drop’, S for ‘spill’, andO for ‘other’.

Let the letter F denote ‘slight coffee-like smell’. The
information provided in the problem may be written:

P (D) = .80

P (S) = .15

P (O) = .05

P (F |D) = .20

P (F |S) = .65

P (F |O) = .05

We further deduce:

P (F ) = P (F |D)P (D) + P (F |S)P (S)

+ P (F |O)P (O) = .26

To answer the question, we need to compute P (S|F ),
which is the inversion of P (F |S). Applying Bayes’
theorem, we easily find:

P (S|F ) =
P (S)P (F |S)

P (F )
= .375

Part 2:

The problem asks us to evaluate P
(
S|F ∩ ZC

)
,

where Z denotes ‘crack’ and ZC denotes ‘no crack,’
using the information

P (Z|D) = .80

P (Z|S) = .11

P (Z|O) = .09 ,

or equivalently:

P
(
ZC |D

)
= 1− .80 = .20

P
(
ZC |S

)
= 1− .11 = .89

P
(
ZC |O

)
= 1− .09 = .91

Proceed by applying Bayes’ theorem directly to
write

P
(
S|F ∩ ZC

)
=

P
(
F ∩ ZC |S

)
P (S)

P (F ∩ ZC)
.

Due to the independence between F and
ZC , the term P

(
F ∩ ZC |S

)
decouples into

P (F |S)P
(
ZC |S

)
.

The denominator term P
(
F ∩ ZC

)
can be recast

as a sum that factors in a similar way:

P
(
F ∩ ZC

)
=

∑
i=D,S,O

P
(
F ∩ ZC |Xi

)
P (Xi)

=
∑

i=D,S,O

P (F |Xi)P
(
ZC |Xi

)
P (Xi)

Evaluating the final answer is now straightfor-
ward:

P
(
S|F ∩ ZC

)
= .7169
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1.8 Copernicus Method

Source: Futility Closet
https://futilitycloset.com/

Princeton astrophysicist J. Richard Gott was vis-
iting the Berlin Wall in 1969 when a curious thought
occurred to him. His visit occurred at a random mo-
ment t years after the wall was created. Dividing
the total lifespan T of the wall into four equal inter-
vals, Gott reasoned there is a 50% chance that t lands
within the middle two quarters of the wall’s lifespan.
Built in 1961, the wall was t = 8 years old at the time
of his visit.

With this setup, we see at minimum that t is one
quarter of T . At the other extreme, t could be three
quarters of T . We therefore write

Tmax = 4t Tmin = t× 4

3

to establish upper and lower estimates of the wall’s
lifespan. Inserting t = 8 years, we find

Tmax = 32 yr Tmin ≈ 10.67 yr ,

which, when these are added to 1961, produces the
pair of results

Yearmax ≈ 1993 Yearmin ≈ 1972 .

That is, Gott found a 50% chance that the Berlin
Wall would fall between the years 1972 and 1993. The
wall came down in 1989.

Generalization

Now generalize the above method using N intervals
instead of four. Doing so, we begin with

Tmax = Nt Tmin =
Nt

N − 1
.

Of course, the window defined by Tmax − Tmin no
longer corresponds to a probability of 50%, but must
be adjusted to

p (N) =
N − 2

N
,

or

N (p) =
2

1− p
,

which must be an integer.
An interesting exercise is one that calculates

∆T = Tmax − Tmin and expresses the result all in
terms of p (N). Figuring this out, one finds

∆T =
4tp

1− p2
,

which can be inverted via the quadratic formula:

p (∆T ) =
−2t

∆T
+

√(
2t

∆T

)2

+ 1

Example 13
Suppose you encounter a man for the first time in

the 42nd year of his life. Determine the upper and
lower bounds of the interval in which he has a 33%
chance of expiring (in total years). Repeat for 66%
and 75%.

Tmax(33%) = 3× 42 = 126

Tmin(33%) =
3

2
× 42 = 63

Tmax(66%) = 6× 42 = 252

Tmin(66%) =
6

5
× 42 = 50.4

Tmax(75%) = 8× 42 = 336

Tmin(75%) =
8

7
× 42 = 48

1.9 Dice Stacking

Suppose you are given a pair of distinguishable three-
sided dice, abbreviated 2d3, meant to be rolled simul-
taneously or in sequence. Denoting the outcomes of
either given dice as 1, 2, 3, we can list the possible
outcomes for one roll of such a pair of dice:

ω = 11, 12, 21, 13, 22, 31, 23, 32, 33

The concatenation of outcomes from 2d3 is equiva-
lent to a single roll of an effective nine-sided dice,
abbreviated d9.

Effective d5?

One may wonder if other effective dice can be de-
rived from the roll 2d3. For instance, replacing the
concatenation of outcomes with the sum (inserting a
plus sign between each digit in the above ω-list), one
finds

σ = 2, 3, 3, 4, 4, 4, 5, 5, 6 .

In a more visual notation, the above is equivalent
to:

σ2 =

σ3 = ,

σ4 = , ,

σ5 = ,

σ6 =

https://futilitycloset.com/
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In total, there are five possible outcomes as sums
ranging from 2 to 6. The distribution of outcomes,
however, is nonuniform. For instance, one sees that
σ4 can be reached three ways, whereas all other σj

are less common.

Density Inversion

From the information contained in σ, we can work
toward an effective d5 so long as the nonuniform dis-
tribution problem can be dealt with. Proceed by list-
ing the allowed outcomes divided by the respective
density, i.e.

γ =
1

1
(2) ,

1

2
(3) ,

1

3
(4) ,

1

2
(5) ,

1

1
(6) .

Multiply by 3 · 2 to get rid of all denominators:

γ = 6 (2) , 3 (3) , 2 (4) , 3 (5) , 6 (6)

Explicitly, γ is a list with twenty items:

γ = 2, 2, 2, 2, 2, 2, 3, 3, 3, 4, 4, 5, 5, 5, 6, 6, 6, 6, 6, 6

Qualitatively, we see outcomes that are under-
represented in σ are over-represented in γ, and vice-
versa.

The d5 Gamma Ray

The item γ is the ‘gamma-array’, or ‘gamma ray’ for
short. Taking an gamma ray γ, assign the items in γ
to an index via γ (k), where k is an integer between
1 and 20, inclusive.

In the above example, one can see there is nothing
particularly special about the arrangement of items
2, 3, 4, etc. in the array. These are listed by group
in ascending order for mere convenience.

Since the intent is to build a uniformly-behaving
d5 dice, it’s prudent to conceive of the set {γ} of all
possible reshuffles of the items of γ. Of course, one
wouldn’t attempt writing down the full set {γ}, or
stepping through its members in any systematic way.
It suffices instead to have a function that shuffles an
existing gamma ray to produce another.

The d5 Algorithm

An effective d5 is achieved with the following steps:

1. Choose a random gamma ray from {γ} and let
k = 1.

2. Let x equal the random sum of a 2d3 roll:

x = dice(3) + dice(3)

3. If x = γ (k), record x− 1 as a valid result.

4. Let k → k + 1.

5. If k > 20 then Goto 1.

6. Goto 2.

2 Combinatorics

2.1 Arrangements

The number An of all arrangements of n distinguish-
able (non-repeated) elements is equal to the factorial
of the total number of elements:

An = n!

If the set of n elements contains any number m iden-
tical members, the number of arrangements over-
counts by a factor of m-factorial, which must be di-
vided out:

Am
n =

n!

m!
(1.10)

Example 1
Consider the set of twelve elements

ACEFGILMNTUX. What is the probability that
a random arrangement of the elements will spell out
MAGNETICFLUX ?

P (MAGNETICFLUX) =
1

12!

Example 2
Consider the word FLUXELECTRIC. What is

the probability that a random arrangement of the
letters will spell out ELECTRICFLUX ?

P (ELECTRICFLUX) =
2!2!2!

12!

2.2 Permutations

For a set of width n, partition each of the n! arrange-
ments into two bins such that one bin contains the
first m elements in the arrangement, and the other
bin contains the remaining n−m elements. For each
of the m elements in the first bin, the unused ele-
ments in the second bin are subject to (n−m)! ar-
rangements. Dividing out this factor yields the per-
mutation number:

Pm
n =

n!

(n−m)!
(1.11)

Qualitatively, the permutation number tells how
many ways there are to choose m unique elements
from a set of n total elements.

Example 3
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A door keypad is unlocked by a code of four dif-
ferent integers between 0 to 9, inclusive. The same
integer cannot be used twice. How any possible pass-
words are there?

For a k = 4 digit password drawing (and consum-
ing) from N = 10 integers, observe that N of them
are available for the first digit A. N − 1 of the digits
are available for the second digit B, and so on, with
the kth digit selecting from N−k+1 unused integers.
In general, we can intuitively write

P k
N = N (N − 1) . . . (N − k + 1) =

N !

(N − k)!
,

which builds the permutation formula:

P 4
10 =

10!

(10− 4)!
=

10!

6!
= 5040

Example 4
In a 52-card deck, calculate the probability that

the first three cards are Kings. (This is a repeat of
an earlier problem.)

The total number of ways to draw any three cards
from 52 is

P 3
52 =

52!

(52− 3)!
= 52 · 52 · 50 .

Meanwhile, the number of ways to draw any three
Kings from four total Kings is

P 3
4 =

4!

(4− 3)!
= 4 · 3 · 2 .

The ratio of these is the answer:

P (KKK) =
P 3
4

P 3
52

=
4 · 3 · 2

52 · 51 · 50
≈ 0.000181

Example 5
In a 52-card deck, calculate the probability that

the first three cards are KQJ , in that order, with
mixed suits allowed. (This is a repeat of an earlier
problem.)

Consider the three cardsKQJ in that order. List-
ing off all ways this could occur, we see there are 43

possibilities in total, as each card has four suits to
choose from. The total number of ways to draw any
three cards from 52 is

P 3
52 =

52!

(52− 3)!
= 52 · 52 · 50 .

The ratio of these is the answer:

P (KQJ) =
43

52 · 51 · 50
≈ 0.000483

2.3 Birthday Problem

Consider a room populated by N people. What is
the probability that any two people were born on the
same day? (Ignore leap year.)

Conditional Probability Analysis

Begin with the trivial case N = 2, in where there is
a 1/365 chance of a common birthday:

P (2) =
1

365
= 1− 364

365

The result is written in the form 1 − X so we may
focus on X, the probability of no common birthday.

A third person entering the system, making N =
3, has 365−2 = 363 available days to avoid a common
birthday. The probability becomes

P (3) = 1− 364

365
· 363
365

,

and the pattern becomes clear. For total population
N , the probability that some pair of people share a
birthday ought to be:

P (N) = 1− 365

365
· 364
365

· 363
365

· · · (365−N + 1)

365

= 1− 365!

365N (365−N)!

On the right, note that X has been expressed as
a recursion of conditional probabilities:

X (n|n− 1) =
365− (n− 1)

365

X (N) =

N∏
n=2

X (n|n− 1)

Permutation Analysis

The same result can be written directly by the per-
mutation formula. Choosing N people of 365, we
have

PN
365 =

365!

(365−N)!
.

Meanwhile, the number of ways to assign birthdays
to N people is 365N without worrying about shar-
ing. The ratio of these is the same X (N) calculated
above:

X (N) =
1

365N
PN
365 =

365!

365N (365−N)!
.
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Following is a list of various populations N with
their corresponding P (N):

N P(N)
5 2.71%
10 11.7%
20 41.1%
23 50.7%
30 70.6%
50 97.0%

Remarkably, the population need only be 23 in order
for there to be a 50% chance that any two people
share a birthday.

2.4 Combinations

Extending the derivation of the permutation formula,
it may happen that the precise order of elements in
the ‘m’ bin does not matter, meaning the list of per-
mutations is overpopulated by a factor of m!. Divid-
ing out this factor, we attain the number of combina-
tions in the system:

Cm
n =

n!

m! (n−m)!

The numbers Cm
n are none other than the binomial

coefficients.

Example 6
From a 52-card deck, a five-card hand is drawn at

random. How many five-card hands are possible?

C5
52 =

52!

5! (52− 5)!

Example 7
From a 52-card deck, calculate the probability of

drawing a royal flush (A-K-Q-J-10) in any order in
any one suit.

P (RF ) =
4

C5
52

=
1

649740
≈ 0.00000154

Lottery Game

In a lottery game, the winning numbers are five non-
repeating integers between 1 and 75, inclusive, along
with one bonus integer between 1 and 15, inclusive.
Guessing the five winning numbers at random, let
us calculate the probability P = (n, b) that n of the
guessed numbers match the winning numbers, with
or without the bonus b also being correctly guessed.

As an application of combinatoric analysis, it fol-
lows that there are C5

75 = 17, 259, 390 ways to guess
the winning five numbers, and C1

15 = 15 choices for

the bonus number. Following are the probabilities of
guessing partial winning numbers, with and without
the bonus.

P (5, 1) =
1

C5
75 · C1

15

=
1

258, 890, 850

P (4, 1) =
C4

5 · C1
70

C5
75 · C1

15

≈ 1

739, 688

P (3, 1) =
C3

5 · C2
70

C5
75 · C1

15

≈ 1

10, 720

P (2, 1) =
C2

5 · C3
70

C5
75 · C1

15

≈ 1

473

P (1, 1) =
C1

5 · C4
70

C5
75 · C1

15

≈ 1

56

P (0, 1) =
C0

5 · C5
70

C5
75 · C1

15

≈ 1

21

P (5, 0) =
C5

5 · C0
70 · C1

14

C5
75 · C1

15

≈ 1

18, 492, 204

P (4, 0) =
C4

5 · C1
70 · C1

14

C5
75 · C1

15

≈ 1

52, 835

P (3, 0) =
C3

5 · C2
70 · C1

14

C5
75 · C1

15

≈ 1

766

P (2, 0) =
C2

5 · C3
70 · C1

14

C5
75 · C1

15

≈ 1

34

P (1, 0) =
C1

5 · C4
70 · C1

14

C5
75 · C1

15

≈ 1

4

P (0, 0) =
C0

5 · C5
70 · C1

14

C5
75 · C1

15

≈ 2

3

3 Variables and Expectations

3.1 Normalization

For an event A, the probability P (A) of the event
occurring has a trivial yet important relationship to
P
(
A
)
, via the normalization condition

1 = P (A) + P
(
A
)
.

In words, normalization means there is a 100% chance
that event A either occurs or does not occur.

For n repeated events, also called trials, A is re-
placed by Ak, where the index k tracks the event
number such that 1 ≤ k ≤ n. Using this notation, we
lump A and all subsequent Ak into the coefficients
Ak to write a more general normalization condition:

1 =

n∑
k=1

P (Ak) (1.12)
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3.2 Statistical Average

Expanding out the normalization condition above, we
have a sequence with n terms on the right:

1 = P (A1) + P (A2) + · · ·+ P (An)

By multiplying Ak into each respective P (Ak) term,
the equation becomes the statistical average, or
weighted average ⟨A⟩ of the events Ak. To denote
this, we write:

⟨A⟩ = A1 · P (A1) +A2 · P (A2) + · · ·+An · P (An)

In summation notation, the above result reads:

⟨A⟩ =
n∑

k=1

Ak · P (Ak) (1.13)

3.3 Expectation Value

A function f that depends on any event Ak can also
be averaged using this apparatus. Generalizing the
above, we can easily write an equation for the expec-
tation value of f :

⟨f⟩ =
n∑

k=1

f (Ak) · P (Ak) (1.14)

With the above, we may also calculate
〈
f2
〉
with-

out hesitation:

〈
f2
〉
=

n∑
k=1

(f (Ak))
2 · P (Ak) (1.15)

Example 1
A six-sided dice that chooses a random number

1 ≤ Ak ≤ 6 is tossed in succession to produce n ≫ 1
events. Calculate the average outcome.

⟨A⟩ = 1

6
+

2

6
+

3

6
+

4

6
+

5

6
+

6

6
=

21

6
= 3.5

Example 2
A six-sided dice that is missing the 2-face but

has an extra 4-face is tossed in succession to produce
n ≫ 1 events. Calculate the average outcome.

⟨A⟩ = 1

6
+

0

6
+

3

6
+

4 · 2
6

+
5

6
+

6

6
=

23

6
= 3.83

3.4 Standard Deviation

Further insight into f can be gained by inserting
(f (Ak)− ⟨f⟩)2 as the argument in Equation (1.19).
By doing so, and then taking the square root of the

entire result, we arrive at the standard deviation in
the system:

σf =

√√√√ n∑
k=1

(f (Ak)− ⟨f⟩)2 · P (Ak) (1.16)

Using only the definitions above, it’s easy to show
that the standard deviation is equivalent to

σf =

√
⟨f2⟩ − 2 ⟨f⟩ ⟨f⟩+ ⟨f⟩2

σf =

√
⟨f2⟩ − ⟨f⟩2 . (1.17)

3.5 Continuous Distributions

For a stochastic process that produces events Ak in
a continuous range instead of a discrete set, the nor-
malization condition

n∑
k=1

P (Ak) = 1

becomes an infinite sum. When confronted with this,
the sum becomes an integral according to

n∑
k=1

P (Ak) →
∫

dP (Ak) = 1 .

Probability Distribution Function

At this point, we abbreviate Ak → k, and then use
the chain rule to write

1 =

∫
n

dP (k)

dk
dk =

∫
n

w (k) dk .

The continuous function w (k) is called the probabil-
ity density, or probability distribution function (al-
though ‘w’ stands for weight). Specifically, ω (k) is
the probability of an event occurring within a win-
dow [k, k + dk].

In the continuous limit, the equations for the sta-
tistical average, general expectation value, and stan-
dard deviation generalize to:

⟨k⟩ =
∫
n

k · w (k) dk (1.18)

⟨f⟩ =
∫
n

f (k)w (k) dk (1.19)

σf =

√∫
n

(f (k)− ⟨f⟩)2 w (k) dk (1.20)

Note that Equation (1.17) still holds in the continu-
ous distribution.

Example 3
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What is the expected area of a right triangle with
a hypotenuse of k whose non-right angles are uni-
formly distributed over the interval (0, π/2)?

⟨A⟩ = k2/2

π/2

∫ π/2

0

cos (θ) sin (θ) dθ

=
k2/2

π/2

∫ 1

0

x dx =
k2

2π

Example 4
Divide a given line segment into two other line

segments. Then, cut each of these new line segments
into two more line segments. What is the probability
that the resulting four line segments are the sides of
a quadrilateral?

Let the total length be L, and require that no one
side be longer than L/2. After the initial cut, let the
longer segment have length x, and the shorter seg-
ment L − x. Diving the longer segment at point z
(from the start of x), it is required that z < L/2 and
simultaneously x − z < L/2. Therefore, the window
of allowed z has width L/2− (x− L/2) = L−x. The
normalized probability of an allowed z along x is:

P = N

∫ L

L/2

L− x

x
dx

=
(L lnx− x)

∣∣L
L/2

L/2
= 2 ln 2− 1 ≈ 38.6%

3.6 Random Variables

Consider a set {Ak} of random (not necessarily inde-
pendent) variables.

Sum of Random Variables

Suppose that the sum of random variables comes to
A:

A =

n∑
k=1

Ak

In the continuous large-n limit, the average value of
A can be written as an n-dimensional integral

⟨A⟩ =
∫

A · w (A1, . . . , An) dA1 . . . dAn .

Replace A in the above with its sum representation:

⟨A⟩ =
n∑

k=1

∫
Ak · w (A1, . . . , An) dA1 . . . dAn ,

where the ‘sum’ symbol has been harmlessly pulled
outside all n of the integrals.

Simplifying the above is a straightforward exer-
cise, with the majority of integrals satisfying the nor-
malization condition and resolving to one. After the
dust settles, one finds

⟨A⟩ = ⟨A1⟩+ ⟨A2⟩+ · · ·+ ⟨An⟩ ,

which, strictly translated, means the average of the
sum is the sum of the averages:

⟨A⟩ =
n∑

k=1

⟨Ak⟩ (1.21)

Independent Random Variables

More can be said about the weight function w (k) in
the regime of independent random variables. In the
same sense that P (A ∩B) = P (A)P (B) applies to
independent events, we write

w (A1, An, . . . , An) = w (A1)w (A2) · · ·w (An)

when all probability distribution values w (Ak) are
independent.

Product of Independent Random Variables

Suppose that the product of random variables {Bk}
of n comes to

B =

n∏
k=1

Bk = B1 ·B2 · · ·Bn ,

and let us calculate the average value ⟨B⟩. Going by
definition, this amounts to

⟨B⟩ =
n∏

k=1

∫
Bk · w (B1) · · ·w (Bn) dB1 . . . dBn ,

the ‘product’ symbol has been pulled outside all n
of the integrals, and the probability distribution is
factored to accommodate independent Bk.

From this, we see the right side is the product of
n independent integrals, and conclude

⟨B⟩ = ⟨B1⟩ · ⟨B2⟩ · · · ⟨Bn⟩ ,

which, strictly translated, means the average of the
product is the product of the averages:

⟨B⟩ =
n∏

k=1

⟨Bk⟩ (1.22)
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3.7 Variance

Starting from the sum

A =

n∑
k=1

Ak ,

square both sides and convince yourself that

A2 =

(
n∑

i=1

Ai

) n∑
j=1

Aj

 =

n∑
k=1

A2
k +

∑
i̸=j

cijAiAj ,

where cij are the binomial coefficients to represent all
cross terms.

Meanwhile, the square of the average ⟨A⟩ comes
out to

⟨A⟩2 =
∑
k

⟨Ak⟩2 +
∑
i ̸=j

cij ⟨Ai⟩ ⟨Aj⟩ .

We can also calculate
〈
A2
〉
by exploiting the the

independence among Ak, resulting in

〈
A2
〉
=

n∑
k=1

〈
A2

k

〉
+
∑
i ̸=j

cij ⟨Ai⟩ ⟨Aj⟩ .

Taking the difference
〈
A2
〉
−⟨A⟩2, the cross terms

cancel and we arrive at a simple relation connecting
A to its members:

〈
A2
〉
− ⟨A⟩2 =

n∑
k=1

〈
A2

k

〉
− ⟨Ak⟩2

+
��������
∑
i̸=j

cij ⟨Ai⟩ ⟨Aj⟩ −
��������
∑
i ̸=j

cij ⟨Ai⟩ ⟨Aj⟩

The square root of
〈
A2
〉
− ⟨A⟩2 is defined as the

variance in A:

Var (A) =

√
⟨A2⟩ − ⟨A⟩2 (1.23)

As we’ve built it, the variance has some more handy
expressions:

Var (A) =

√√√√ n∑
k=1

⟨A2
k⟩ − ⟨Ak⟩2 =

√√√√ n∑
k=1

(Var (Ak))
2

3.8 Dispersion

A variation in the sum A of independent variables,
denoted ∆A, is also known as dispersion, defined as:

∆A = A− ⟨A⟩ =
n∑

k=1

(Ak − ⟨Ak⟩) (1.24)

From this, it’s easy to show that the average disper-
sion is zero:

⟨∆A⟩ = ⟨A⟩ − ⟨A⟩ = 0

The expectation value
〈
∆A2

〉
, however, is more

telling. By brute force, first write

∆A2 = ((A1 − ⟨A1⟩) + (A2 − ⟨A2⟩) + · · · )2

=

n∑
k=1

(Ak − ⟨Ak⟩)2 +
∑
i ̸=j

cij∆Ai∆Aj ,

so then:〈
∆A2

〉
=

n∑
k=1

〈
(Ak − ⟨Ak⟩)2

〉
+

���������∑
i̸=j

cij ⟨∆Ai⟩ ⟨∆Aj⟩

This is result is perhaps not surprising, telling us the
total ∆A2 is the sum of its constituents:〈

∆A2
〉
=

n∑
k=1

〈
∆A2

k

〉
(1.25)

In the large-n limit, the average ⟨A⟩ scales with
n, and meanwhile we see

〈
∆A2

〉
also scales with n.

The ratio of the RMS dispersion over the average thus
tends to zero, as√

⟨∆A2⟩
⟨A⟩

≈ 1√
n
→ 0 ,

telling us that fluctuations in A become negligibly
small.

3.9 Random Product Problem

Consider the real numbers in the interval (0 : 2). Let
x̃1 be a random number chosen from this interval, let
x̃2 be a second random number, and so on up to x̃n.
(Repeats are allowed but unlikely.)

Expectation

With this setup, suppose we are interested in the
product of numbers in the list:

Xn =

n∏
j=1

x̃j = x̃1 · x̃2 · x̃3 · · · x̃n

Sampling from (0 : 2), it is true that the average ran-
dom value is one:

⟨x̃j⟩ = 1 .

This should mean right away that the average prod-
uct is also one:

⟨Xn⟩ = 1 · 1 · 1 · · · = 1
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Disaster

All seems well until we try to verify ⟨Xn⟩ = 1 on a
calculator. To illustrate, take the contrived list with
five members

{x̃j} = {0.8, .9, 1.0, 1.1, 1.2} ,

so the product is

X5 = (0.8) (0.9) (1.0) (1.1) (1.2) = 0.9504 ,

which is less than one.
The effect gets worse for increasing n, for if we

continue the pattern so the list includes 0.7, 1.3, the
product is

X7 ≈ 0.8648 .

The members x̃j < 1 weigh down the product Xn

more than members x̃j > 1 weigh the product up.
After many trials, the net result is Xn → 0, in con-
tradiction to ⟨Xn⟩ = 1.

You’re encouraged to verify this on a computer
with a variety of x̃j and a variety of n-values to see
there is clearly something wrong with the way Xn is
expected to behave. It seems that Xn reliably de-
creases for increasing n, so we inevitably conclude
Xn → 0.

Modified Interval

Going back to the beginning, adjust the interval to
(0 : 2.5) so that

⟨x̃j⟩ = 1.25 ,

and run similar experiments. Now we’re multiply-
ing a list of numbers who average is clearly greater
than one. However, much like the previous setup, the
product Xn still goes to zero.

Adjust the interval once more to (0 : 3) and start
over. This time, we have

⟨x̃j⟩ = 1.5 ,

and pattern finally breaks. One can check that prod-
uct Xn tends to grow for increasing n, and for large
n, the trend Xn → ∞ occurs.

Tuning the Interval

Given the evidence on hand, there should be some
interval (0 : p), where p is some number between 2.5
and 3 such that Xn does not tend to zero and does
not tend to infinity:

Xn ∝ ⟨Xn⟩

To estimate p, one may write a simple trial-and-
error program that allows p to vary:

1. Choose an initial value for p.

2. Choose a sufficiently large sample of n values
from the interval (0 : p) and calculate the cor-
responding Xn.

3. If Xn goes to zero, increase p.

4. If Xn goes to infinity, decrease p.

5. Goto step 2.

Doing this, one finds, after many trials:

p ≈ 2.718 . . .

This answer is tantalizingly close to Euler’s constant.
Who saw that coming?

Proper Analysis

To reconcile the random product problem, begin with
the natural logarithm of the product Xn:

ln (Xn) = ln (x̃1) + ln (x̃2) + ln (x̃3) + · · ·

In the limit n → ∞, it stands to reason that every
real number in the interval (0 : p) is represented by
some x̃j or another. Rearranging the sum to write
these in order, we have

ln (X) = lim
n→∞

n∑
j=1

ln

(
p
j

n

)
.

The total interval (0 : p) can be made from n
copies of a small interval ∆x, which means p/n = ∆x.
Also substituting x = j/n, the above becomes

ln (X) = lim
∆x→0

1

p

1∑
x>0

ln (px)∆x .

The sum becomes an integral in the continuous limit

ln (X) =
1

p

∫ 1

0

(ln (p) + ln (x)) dx ,

and the solution is straightforward:

p ln (X) = (x ln (p) + x ln (x)− x)

∣∣∣∣1
0

p ln (X) = ln (p)− 1

Now comes the final argument. By avoiding
ln (0) → −∞ and also ln (∞) → ∞, we’re asking
for X to be a finite number. In the infinite limit, it
can only be that X → 1:

p ln (1) = 0 = ln (p)− 1
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The only solution to ln (p) = 1 is p = e and we’re
done.

Problem 1
Consider the real numbers in the interval (0 : 1),

and let x̃1, x̃2, x̃3, etc. represent random samples
from this interval. How many times n must a random
x̃j be multiplied into a very large number A ≫ 1 un-
til the product is approximately one? In other words,
solve for n in the following:

1 ≈ A · x̃1 · x̃2 · · · x̃n

Hint:

0 ≈ ln (A) +

n∑
j=1

(ln (x) + 1)−
n∑

j=1

(1)

The answer is n ≈ ln (A).

3.10 Random Sums Problem

Accumulating random values 0 < rk < 1 in a sum,
how many iterations ⟨n⟩ until the total is greater than
one, on average?

Geometric Analysis

Begin by interpreting each interval 0 ≤ rk ≤ 1 as an
independent ‘number line’ for each of the n variables
needed. For n = 2, r1, r2 lie on orthogonal axes of
a two-dimensional plane. For n = 3, r1, r2, r3 lie on
orthogonal axes of a three-dimensional volume, and
so on.

Geometrically, the criteria

n∑
j=1

rj > 1

thus defines a triangular area in two dimensions, a
pyramid-like volume in three dimensions, a hyper-
volume in four-dimensions, and so on. The space en-
closed by each ‘volume’ is defined by

n∑
j=1

rj ≤ 1 .

For convenience, let us label r1 → z, r2 → y, r3 → x,
r4 → t, r5 → u.

Examining n = 2, the line z + y = 1 encloses half
of the unit square, formally shown via

V2 =

∫ 1

0

∫ 1−z

0

dy dz

=

∫ 1

0

(1− z) dz =

(
z − z2

2

) ∣∣∣∣1
0

=
1

2
.

For n = 3, the plane z + y + x = 1 encloses one
sixth of the unit cube:

V3 =

∫ 1

0

∫ 1−z

0

∫ 1−z−y

0

dx dy dz =
1

6

Jumping to n = 4 is impossible to visualize, how-
ever the required integral is easy enough to write and
solve:

V4 =

∫ 1

0

∫ 1−z

0

∫ 1−z−y

0

∫ 1−z−y−x

0

dt dx dy dz =
1

24

Evidently, the enclosed volume is always the in-
verse of the factorial of the number of dimensions,

Vn =
1

n!
.

Probabilistic Calculation

We ultimately seek the expectation value ⟨n⟩, given
by

⟨n⟩ =
∞∑

n=2

n · P (n) ,

where P (n) is the probability of satisfying

n∑
j=1

rj < 1 .

By the geometric analysis, observe that P (n) cor-
responds to the ‘window’ of volume bounded between
Vn and Vn−1:

P (n) =
1

(n− 1)!
− 1

n!
=

n− 1

n!

With this, we can calculate the expectation value

⟨n⟩ =
∞∑

n=2

n · n− 1

n!
=

∞∑
n=2

1

(n− 2)!
=

∞∑
0

1

n!
,

which indeed converges to Euler’s constant:

e =

∞∑
0

1

n!

Amazingly, we conclude:

⟨n⟩ = e
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4 Systems and Distributions

4.1 Two-State System

Consider a balanced coin that is tossed to generate n
random events resulting in either H(eads) or T (ails).
If we are interested in the portion m ‘heads’ events
that occur without the order of events being impor-
tant, the combination number

Cm
n =

n!

m! (n−m)!

summarizes the system. Said another way, the mul-
tiplicity of the system Ω is ‘n choose m’:

Cm
n = Ω(m,n) =

(
m

n

)
The sum of all Cm

n across the whole range of m,
namely from 0 to n, must resolve to the total multi-
plicity of events, namely 2n for a coin tossing game:

2n =

n∑
m=0

n!

m! (n−m)!

Normalized Probability Distribution

Knowing the total states available to the two-state
system, we can write the probability of attaining m
events among n trials in any two-state system as:

P (m,n) =
1

2n
n!

m! (n−m)!
(1.26)

In the above definition, we divide by the factor 2n so
that the sum of all probabilities - accounting for all
outcomes - sums to one.

The combination number Cm
n can be interpreted

nicely by spotting the pattern that emerges in trivial
cases. A single toss can result in T or H, which we
denote

ω1 = (T,H) .

Denoting m as the number of H-events, we write

C0
1 = 1 C1

1 = 1

For a game of n = 2 tosses, the list of possible events
is

ω2 = (TT, TH,HT,HH) .

Again denoting m as the number of H-events, we
write

C0
2 = 1 C1

2 = 2 C2
2 = 1

Similarly, a game of three tosses has

ω3 = (TTT, TTH, THT, THH,HTT,HTH,HHH)

with combinations

C0
3 = 1 C1

3 = 3 C2
3 = 3 C3

3 = 1 .

The pattern in Cm
n (stand back and look at the page)

matches the rows of Pascal’s triangle.

Heuristic Derivation

There is a (perhaps) intuitive way to derive Cm
n . Take

n coins and lay them all down showing T , represented
by C0

n = 1. Turn any one of the coins to H and find
C1

n = n. Turn any two of the coins to H and find

C2
n = n

(n− 1)

2
,

and for three,

C3
n = n

(n− 1)

2

(n− 2)

3
,

and so on. Building this up for m total H-faces, we
find

Cm
n =

n!

m! (n−m)!
,

the familiar combination number.

4.2 Binomial Distribution

Consider an unbalanced coin having inherent proba-
bility p to land on H(eads), and correspondingly 1−p
to land on T (ails). As a generalized two-state system,
a game of n tosses generates the same potential out-
comes:

Ω1 = T,H

Ω2 = TT, TH,HT,HH

Ω3 = TTT, TTH, THT, THH,HTT,HTH,HHH

Of course, the probability P of generating m
Heads-events requires an extra argument to account
for the imbalance p. Denoting the modified combina-
tion symbol Pm

n (p), the two-state analysis generalizes
by:

P 0
1 (p) = 1− p

P 1
1 (p) = p

P 0
2 (p) = (1− p)

2

P 1
2 (p) = 2 · p (1− p)

P 2
2 (p) = p2
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P 0
3 (p) = (1− p)

3

P 1
3 (p) = 3 · p (1− p)

2

P 2
3 (p) = 3 · p2 (1− p)

P 3
3 (p) = p3

Evidently, the factors of p and 1 − p compound
into the terms pm and (1− p)

n−m
, but otherwise this

analysis traces that of the two-state system exactly.
Scanning for a pattern in the above, we evidently
have

Pm
n (p) =

(
n

m

)
(1− p)

n−m
pm .

This result is known as the binomial distribution,
and gives the probability of attaining, in general, m
events of weight p among n trials:

P (m,n, p) =
n!

m! (n−m)!
(1− p)

n−m
pm (1.27)

Note there is no need to divide by 2n. The binomial
distribution as written is unit-normalized already.

Analysis

Define a random variable zk that is equal to one if
the event H with weight p occurs in the k-th trial,
and is equal to zero otherwise. The average value of
zk is then

⟨zk⟩ = P (H) z (H) + P (T ) z (T )

= p · 1 + (1− p) · 0 = p ,

and, simply enough, the average of z2k reads〈
z2k
〉
= p · 12 + (1− p) · 02 = p .

The standard deviation in z, denoted σz, is evidently

σz =

√
⟨z2k⟩ − ⟨zk⟩2 =

√
p− p2 =

√
p (1− p) .

Next, note that the number m of H-events among
the n independent trials is the sum

m =

n∑
k=1

zk ,

implying

〈
∆m2

〉
=

n∑
k=1

〈
∆z2k

〉
= n

〈
∆z2

〉
,

or, in tighter notation for large-n systems,

σm =
√
nσ2

z =
√
np (1− p) .

Example 1
Monique is practicing netball. She knows from

past experience that the probability of her making
any one shot is 70%. Her coach has asked her to
keep practicing until she scores 50 goals. How many
shots would she need to attempt to ensure that the
probability of making at least 50 shots is more than
99%?

This problem is analogous to flipping a weighted
coin with bias p. The multiplicity of scoring k shots
in N tosses is

Ω (k,N, p) =
N !

k! (N − k)!
(1− p)

N−k
pk ,

where summing over k gives the cumulative distribu-
tion:

99% =

N∑
k=50

N !

k! (N − k)!
.3N−k.7k

This is best solved by a computer, where one should
find

N = 86 .

Example 2
Haldor the Viking has slain sixteen ooze creatures

in the swamp. After a thorough forensic analysis,
Haldor finds a single gold cup among the corpses. He
remembers from swamp lore that a slain ooze has a
1/3 chance to drop a gold cup. What are the chances
he found just one cup after slaying sixteen oozes? Re-
peat the calculation for finding two cups, three cups,
etc., up to sixteen cups. Also account for zero cups.

Model a slain ooze as a weighted coin with a Heads
probability of 1/3, and a Tails probability of 2/3,
which calls for a straightforward application of the
binomial distribution. For finding one gold cup, we
have

P (16, 1, 1/3) =
16!

1! (16− 1)!
(2/3)

16−1
(1/3)

1

=
16

3

(
2

3

)15

≈ 0.01218 ,

and then for other numbers of gold cups:

P (16, 2, 1/3) ≈ 0.04567

P (16, 3, 1/3) ≈ 0.1066

P (16, 4, 1/3) ≈ 0.1732

P (16, 5, 1/3) ≈ 0.2078

P (16, 6, 1/3) ≈ 0.1905

P (16, 7, 1/3) ≈ 0.1361

P (16, 8, 1/3) ≈ 0.07654

P (16, 9, 1/3) ≈ 0.03402
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P (16, 10, 1/3) ≈ 0.01191

P (16, 11, 1/3) ≈ 0.003247

P (16, 12, 1/3) ≈ 0.0006765

P (16, 13, 1/3) ≈ 0.0001041

P (16, 14, 1/3) ≈ 0.00001115

P (16, 15, 1/3) ≈ 0.0000007434

P (16, 16, 1/3) ≈ 0.00000002323

P (16, 0, 1/3) ≈ 0.001522

4.3 Multi-State System

A generalization of the two-state system is the multi-
state system. Going for a modest example, consider
a three-sided coin with faces A, B, C. Flipping such
a coin to generate n total events, let:

• nA → Number of outcomes A

• nB → Number of outcomes B

• nC → Number of outcomes C

• pA → Probability of of outcome A

• pB → Probability of of outcome B

• pC → Probability of of outcome C

With this, we can write the probability
of the three-state system exhibiting the state
(nA, nB , nC , n):

P (nA, nB , nC , n) =
n!

nA!nB !nC !
pnA

A pnB

B pnC

C

In the special case C = 0, the above reduces to the
non-normalized binomial distribution.

4.4 Gaussian Distribution

Recall that the probability of generating k results
among n total trials in a two-state system is given
by

P (k, n) =
1

2n
n!

k! (n− k)!
.

Introduce the shift

k → k +
n

2
,

which modifies the above:

P (k, n) =
1

2n
n!(

n
2 + k

)
!
(
n
2 − k

)
!

In the large-k limit, making k a continuous vari-
able, it makes sense to describe the system solely in

terms of expectation values and their deviations, a
notion formally called the central limiting theorem.
Here we develop this idea on a two-state system to
derive a central equation in probability theory called
the Gaussian distribution.

To proceed in the large n-limit, we deploy Stir-
ling’s approximation for large numbers

ln (n!) ≈ n ln (n)− n+ ln
(√

2πn
)

n! ≈
(n
e

)n √
2πn ,

and the probability density reduces to

w (k) = e−2k2/n

√
2

πn
. (1.28)

The result w (k) is the famed normalized Gaussian
distribution centered at k = 0. Introducing a nonzero
shift of base-point value a, the generalized equation
is

w (k) = e−2(k−a)2/n

√
2

πn
.

Using Gaussian integrals, the average values and
standard deviation are readily calculated:

⟨k⟩ =
∫
n

k · w (k) dk = a〈
k2
〉
=

∫
n

k2 · w (k) dk =
n

4
+ a2

σk =

√
⟨k2⟩ − ⟨k⟩2 =

√
n

4

4.5 Poisson Distribution

Imagine trying to count the number of water
molecules that pass a point in a river flowing at av-
erage speed v. Over time interval t, the average
molecule count is directly proportional to vt. To re-
duce notation clutter, let us ignore the proportion-
ality constant and take vt as a dimensionless quan-
tity. Due to local random fluctuations in the river,
an actual measurement would never precisely land on
vt, but instead on an interval surrounding vt. Natu-
rally we wonder, what is the time-varying probability
Pk (t) that k molecules are measured over the interval
t?

To begin, partition the elapsed time t into n iden-
tical bins of width ∆t such that ∆t → 0, and observe
that each Pk (∆t) relates to its k−1 and k+1 neigh-
bors as:

lim
∆t→0

P0 (∆t) ≫ P1 (∆t) ≫ P2 (∆t) ≫ P3 (∆t) ≫ · · ·

This means it’s more likely to measure few molecules
in a small ∆t-interval as opposed to many. We may
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proceed using weighted two-state analysis, wherein
a ∆t-interval may either be unfilled with zero
molecules, or filled with one or more molecules. Bor-
rowing the apparatus developed previously, we write

P (k, n, v∆t) =
n!

k! (n− k)!
(1− v∆t)

n−k
(v∆t)

k
,

where n and k are integers. Substituting t = n∆t, we
have

P (k, n, vt) =
(vt)

k

k!

(
n!

(n− k)!

1

nk

)(
1− vt

n

)n−k

.

In the large-n limit, the approximations

n!

(n− k)!
≈ nk

(
1− vt

n

)n−k

≈ e−vt

are valid, and re-casting vt as a dimensionless variable
q lands us at the anticipated Poisson distribution:

Pk (q) =
qk

k!
e−q (1.29)

Summing over the variable k tells us Pk (t) is already
normalized:

∞∑
k=0

qk

k!
e−q = e−q

( ∞∑
k=0

qk

k!

)
= e−qeq = 1

With Pk (t) on hand, we may calculate ⟨k⟩,
〈
k2
〉
,

and the standard deviation:

⟨k⟩ =
∞∑
k=0

k
qk

k!
e−q = e−q

∞∑
k=1

qk

(k − 1)!

= e−q
∞∑
p=0

q(p+1)

p!
= e−qqeq = q

〈
k2
〉
=

∞∑
k=0

k2
qk

k!
e−q = e−qq

∞∑
p=0

(p+ 1)
qp

p!

= q + q2

σk =
√

q2 + q − q2 =
√
q
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