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Chapter 1

Polynomial
Division

1 Introduction

A versatile and brutal method for manipulating a
mathematical expression is the method of polynomial
division. The setup and procedure for polynomial di-
vision is identical to elementary methods for arith-
metic. To illustrate, consider a ratio such as

x2 − 9x− 10

x+ 1
,

and set up the corresponding division structure:

x+ 1

)
x2 −9x −10

For the process to yield useful results, the numera-
tor should always contain a higher-degree polynomial

than the denominator.

1.1 Long Division Algorithm

Divide the first term in the dividend by the first term
in the divisor to get x2/x = x. Place the result (x) in
the quotient field (above the line). Then, distribute
x into the divisor and subtract the result from the
dividend:

x

x+ 1

)
x2 −9x −10

x2 x

−10x −10

The ‘bottom line’ of the above is −10x−10, which
may now regard as the updated dividend, and the
process is ready to repeat. Dividing the respective
leading terms, we find −10x/x = −10, and update as
follows:

x −10

x+ 1

)
x2 −9x −10

x2 x

−10x −10

−10x −10

0

With a new dividend of zero, the process halts, and
we can read off the answer:

x2 − 9x− 10

x+ 1
= x− 10

3
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1.2 Remainders

Polynomial division doesn’t always finish so cleanly as the example chosen above. Taking a more informative
case, consider the ratio (

x4 + x+ 1
)2

x2 − 1
=
x8 + 2x5 + 2x4 + x2 + 2x+ 1

x2 − 1
.

Setting up and doing the hard work, we have:

x6 +x4 +2x3 +3x2 +2x +4

x2 − 1

)
x8 +2x5 +2x4 +x2 +2x +1

x8 −x6
x6 +2x5 +2x4 +x2 +2x +1

x6 −x4
2x5 +3x4 +x2 +2x +1

2x5 −2x3

3x4 +2x3 +x2 +2x +1

3x4 −3x2

2x3 +4x2 +2x +1

2x3 −2x

4x2 +4x +1

4x2 −4

4x +5

The next step would be to try dividing 4x by x2, however the result (and any following it) will contain
factors of x−1. This is a sign to halt the division process and tuck the leftovers into a remainder term,
namely (4x+ 5) /

(
x2 − 1

)
. In doing so, we write the final result:

x8 + 2x5 + 2x4 + x2 + 2x+ 1

x2 − 1
= x6 + x4 + 2x3 + 3x2 + 2x+ 4 +

4x+ 5

x2 − 1

1.3 Dividing Infinite Sums

Polynomial division also works well with infinite
sums. A case worth exploring starts with the cosine
and sine given by

cos (x) = 1− x2

2!
+
x4

4!
− x6

6!
+ · · ·

sin (x) = x− x3

3!
+
x5

5!
− x7

7!
+ · · · .

The definition of tan (x) is the ratio of the sine
to the cosine, which can be calculated by brute force
using polynomial division. Setting up the problem
carefully, one finds

tan (x) ≈ x+
x3

3
+

2x5

15
+ · · · .

This result comes with a warning, though. Unlike
the sine and cosine, the above representation of the
tangent is not periodic and only works near x = 0.

2 Partial Fractions

When confronted with a ratio of polynomials where
the denominator is of higher degree than the numer-
ator, a technique called partial fractions can be used
to break apart the ratio.

Starting with a simple case, consider the scenario
where the denominator has a degree-two polynomial
in factored form. With this, observe that such a ratio
can be can be split into the sum of two terms, each
containing a degree-one polynomial:

cx+ d

(x− a) (x− b)
=

A

x− a
+

B

x− b

The unknowns A, B are easily determined in
terms of a, b, c d. By setting x = 0, and then x = 1/c,
respectively, we gain two equations

−d = bA+ aB

c = A+B ,
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solved by

A =
ac+ d

a− b

B =
bc+ d

b− a
,

which could have also been inferred by choosing val-
ues x = a, x = b.

This method generalizes to higher-degree poly-
nomial denominators, as shown for the degree-three
case:

1

(x− a) (x− b) (x− c)
=

A

x− a
+

B

x− b
+

C

x− c

Corollary

In general, if a polynomial p (x) occurs in the de-
nominator and is already factored into linear and
quadratic terms, then for each factor x − a, there
exists a term

A

x− a
,

where A must be determined in context.

Example 1
Find the equivalent ratio as a sum of partial frac-

tions:
2x+ 1

(x− 3) (x− 4)

Step 1: Rewrite the ratio as a sum:

2x+ 1

(x− 3) (x− 4)
=

A

x− 3
+

B

x− 4

Step 2: Solve for A and B to get:

A = −7

B = 9

Step 3: Assemble the result:

2x+ 1

(x− 3) (x− 4)
=

−7

x− 3
+

9

x− 4

Example 2
Find the equivalent ratio as a sum of partial frac-

tions:
1

a2 − x2

Step 1: Factor the denominator:

1

a2 − x2
=

1

(a− x) (a+ x)

Step 2: Rewrite the ratio as a sum:

1

(a− x) (a+ x)
=

A

a− x
+

B

a+ x

Step 3: Solve for A and B to get:

A = 1/2a

B = 1/2a

Step 4: Assemble the result:

1

a2 − x2
=

1

2a

(
1

a− x
+

1

a+ x

)

2.1 Repeated Roots

Of course, the partial fraction expansion is prone to
error if we run into division by zero, i.e. the case
a = b. To handle a ratio having two repeated roots
in the denominator, we use a partial fraction expan-
sion

1

(x− a)
2
(x− b)

=
A1

x− a
+

A2

(x− a)
2 +

B

x− b
,

admitting a separate term for each instance of
(x− a). This pattern generalizes to three repeated
roots, and so on:

1

(x− a)
3
(x− b)

=

A1

x− a
+

A2

(x− a)
2 +

A3

(x− a)
3 +

B

x− b

2.2 Quadratic Factors

Factors of the form x2+ax+b occurring in the denom-
inator can be balanced by an Ax+B-term according
to

1

(x2 + ax+ b) (x− c)
=

Ax+B

x2 + bx+ c
+

C

x− c
.

If a factor like
(
x2 + ax+ b

)2
occurs, extra terms are

needed:

1

(x2 + ax+ b)
2
(x− c)

=

A1x+B1

x2 + bx+ c
+

A2x+B2

(x2 + bx+ c)
2 +

C

x− c

Example 3
Find the equivalent ratio as a sum of partial frac-

tions:
1

x4 − 1

Step 1: Factor the denominator:

1

x4 − 1
=

1

(x− 1) (x+ 1) (x2 + 1)
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Step 2: Rewrite the ratio as a sum:

1

(x− 1) (x+ 1) (x2 + 1)
=

A

x− 1
+

B

x+ 1
+
Cx+D

x2 + 1

Step 3: Multiply through by the left-hand denom-
inator:

1 = A (x+ 1)
(
x2 + 1

)
+B (x− 1)

(
x2 + 1

)
+ (Cx+D) (x− 1) (x+ 1)

Step 4: Let x = 1, x = −1, x = 0, and x = 2 to
isolate each coefficient:

A = 1/4

B = −1/4

D = −1/2

C = 0

Step 5: Assemble the result:

1

x4 − 1
=

1

4

(
1

x− 1
− 1

x+ 1

)
− 1

2

(
1

x2 + 1

)

2.3 Mixed Division Cases

Certain situations call for polynomial division and
partial fractions. For instance, in the ratio

x3 + 4

x2 + x
,

the numerator contains a higher-degree polynomial
than the denominator. Carrying out the division
problem

x2 + x

)
x3 +4 ,

we end up with a quotient and a remainder as follows:

x3 + 4

x2 + x
= (x− 1) +

x+ 4

x2 + x

Next, take the remainder term in isolation and
use partial fraction analysis to write

x+ 4

x2 + x
=

x+ 4

x (x+ 1)
=
A

x
+

B

x+ 1
,

where we find A = 4, B = −3. In summary then, we
find:

x3 + 4

x2 + x
= x− 1 +

4

x
− 3

x+ 1

3 Factoring by Division

Consider the curious equation with a special n-degree polynomial

xn − an = 0 ,

where a is an arbitrary real constant. In the most general case, there are n complex solutions to the above,
which may or may not be difficult to come by. Regardless of n though, we can be sure that x0 = a is a valid
real solution.

With a solution on hand, it’s instructive to factor x0 from the left-hand expression to check if anything
interesting happens, i.e.

xn − an

x− a
=?

Setting this up, we have:

x− a

)
xn −an

Without specifying n, it’s not clear where the division process ought to terminate. Carrying out the
division process anyway, we find, after four steps:

xn − an

x− a
= xn−1 + a1xn−2 + a2xn−3 + a3xn−4 +

a4xn−4 − an

x− a
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To be prudent, the maximum number of division steps should not exceed the degree number n, otherwise
the exponent on x becomes negative.

Tidy up the equation by multiplying x− a into each side:

xn − an = (x− a)
(
xn−1 + a1xn−2 + a2xn−3 + a3xn−4

)
+
(
a4xn−4 − an

)
Of course, there was no real reason to stop the division process at four steps, so the above must also be true
for j steps:

xn − an = (x− a)
(
xn−1 + a1xn−2 + a2xn−3 + · · ·+ aj−1xn−n

)
+
(
ajxn−j − an

)
By choosing j = n, the remainder term vanishes entirely, leaving

xn − an = (x− a)
(
xn−1 + a1xn−2 + a2xn−3 + · · ·+ an−1

)
. (1.1)

This we’ll take as the answer to the curious factoring problem. Starting with the polynomial xn − an,
solutions other than x = a are contained in another polynomial of order n− 1 given by the above.

3.1 Sigma Notation

In order to avoid always writing Equation (1.1) as a
long polynomial basted with exponents, we will often
use condensed sigma notation as follows:

xn − an = (x− a)

(
n∑

k=1

ak−1xn−k

)
(1.2)

The symbol Σ is the uppercase Greek ‘sigma’.
Sometimes it’s convenient to work the modified

version that replaces an with a:

xn − a =
(
x− a1/n

)( n∑
k=1

a(k−1)/nxn−k

)
(1.3)

3.2 Examples

Example 1
Factor:

x3 − 8

Step 1: Identify variables:

n = 3

a = 2

Step 2: Write the factored expression in summa-
tion notation:

x3 − 8 = (x− 2)

(
3∑

k=1

2k−1x3−k

)

Step 3: Simplify:

x3 − 8 = (x− 2)
(
x2 + 2x+ 4

)

Example 2

Factor:

x4 − 9

Step 1: Identify variables:

n = 4

a = 3

Step 2: Write the factored expression in summa-
tion notation:

x4 − 9 =
(
x−

√
3
)( 4∑

k=1

9(k−1)/4x4−k

)

Step 3: Simplify:

x4 − 9

=
(
x−

√
3
)(

x3 +
√
3x2 + 3x+ 3

√
3
)

=
(
x−

√
3
)(

x2
(
x+

√
3
)
+ 3

(
x+

√
3
))

=
(
x−

√
3
)(

x+
√
3
) (
x2 + 3

)

4 Recursive Sequences

Equation (1.1) representing the ‘curious identity’
lends to a variety of uses beyond factoring. Here we
develop the notion of a recursive sequence, which in
essence, is a sequence of numbers that uses itself to
extend itself.
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4.1 Applied Polynomial Division

By making the substitution a = (−1/x)
n
, we use

Equation (1.3) to write

xn − (−1/x)
n

x+ 1/x
=

n∑
k=1

(−1)
k−1

xn+1−2k ,

where the right-hand sum is a sequence depending
solely on x and n.

Choosing n = 1, n = 2, n = 3, and so on, a
simple-enough pattern emerges:

xn − (−1/x)
n

x+ 1/x
=



n = 1 : x0

n = 2 : x1 − x−1

n = 3 : x2 − x0 + x−2

n = 4 : x3 − x1 + x−1 − x−3

n = 5 : x4 − x2 + x0 − x−2 + x−4

n = 6 : x5 − x3 + x1 − x−1 + x−3 − x−5

Labeling the nth result as Cn, we equivalently write

Cn =
xn − (−1/x)

n

x+ 1/x
(1.4)

=



C1 = 1

C2 = x1 − x−1

C3 = −C1 + x2 + x−2

C4 = −C2 + x3 − x−3

C5 = −C3 + x4 + x−4

C6 = −C4 + x5 − x−5

Recursion Relations

By inspection of the above, the coefficients Cn are
subect to recursion relations:

Cn = −Cn−2 + xn−1 − x−(n−1) (1.5)

Cn+1 = −Cn−1 + xn + x−n (1.6)

4.2 Large-n Recursion

Supposing we choose any even-valued n, the coeffi-
cient Cn and its next neighbor relate by the recursion
relations (1.5), (1.6). The pair of these begs the ratio

R =
Cn+1

Cn
=

−Cn−1 + xn + x−n

−Cn−2 + xn−1 − x−(n−1)
.

Within this ratio, let us examine the quantities xn,
x−n with n growing very large. Regardless of whether

x is less than one or greater than one (but not equal to
one), either xn or x−n will grow very large, whereas
the other will grow very small.

Taking the case with x > 1, then x−n and x−(n−1)

become negligible, and we find

R ≈ x

(
−Cn−1 + xn

−x · Cn−2 + xn

)
≈ x ,

suggesting that, for large xn:

Cn+1 ≈ x · Cn

Taking x < 1 instead, the same reasoning boils down
to, for small xn:

Cn+1 ≈ −Cn

x

5 Lucas Numbers

In deriving Equation (1.4), we manged to avoid spec-
ifying the variable x. While we’re free to mess with
x directly, it’s more interesting to direct this freedom
into the C2 coefficient.

Choosing the most nontrivial case of C2 = 1, we
have

1 = x− 1

x
,

which forces x to be found by the quadratic equation.
There are two solutions x1 = ϕ, x2 = ψ to the above,
obeying

ϕ · ψ = −1

ϕ+ ψ = 1 .

Then, making the association

x = ϕ

1/x = −ψ ,

the coefficients Cn represented in Equation (1.4) spe-
cialize to

Fn =
ϕn − ψn

ϕ− ψ
. (1.7)

The terms Fn are labeled to foreshadow their formal
name.

In terms of ϕ, ψ, the above occurs in list form as

Fn =



F1 = 1

F2 = ϕ+ ψ

F3 = −F1 + ϕ2 + ψ2

F4 = −F2 + ϕ3 + ψ3

F5 = −F3 + ϕ4 + ψ4

F6 = −F4 + ϕ5 + ψ5

,

or as a recursion relation,

Fn = −Fn−2 + Ln−1 . (1.8)
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5.1 Lucas Generating Formula

The terms

Ln = ϕn + ψn (1.9)

are called Lucas numbers. These are a bit tricky to
evaluate, but nonetheless with some grit one can pro-
duce:

L1 = ϕ1 + ψ1 = 1

L2 = ϕ2 + ψ2 = (ϕ+ ψ)
2 − 2ϕψ = L2

1 + 2

L3 = ϕ3 + ψ3 = ϕ2 + 1 + ψ2 = L1 + L2

L4 = ϕ4 + ψ4 =
(
ϕ2 + ψ2

)2 − 2ϕ2ψ2 = L2
2 − 2

L5 = ϕ5 + ψ5 = ϕ4 + ϕ2 + 1 + ψ2 + ψ4 = L3 + L4

L6 = ϕ6 + ψ6 =
(
ϕ3 + ψ3

)2 − 2ϕ3ψ3 = L2
3 + 2

Evidently, the pattern in Ln splits between odd
and even channels

Ln odd = Ln−1 + Ln−2

Ln even = L2
n/2 − 2 · (−1)

n/2
,

where explicitly:

L0 = 2

L1 = 1

L2 = 12 + 2 = 3

L3 = L2 + L1 = 4

L4 = L2
2 − 2 = 32 − 2 = 7

L5 = L4 + L3 = 7 + 4 = 11

L6 = L2
3 + 2 = 42 + 2 = 18

L7 = L6 + L5 = 18 + 11 = 29

Recursion Relations

Since the equation for Ln odd makes reference to the
two previous terms, it suffices to write

Ln = Ln−1 + Ln−2 (1.10)

as a single formula applying to both odd and even
Lucas numbers.

5.2 Lucas Sequence

Listing the Lucas numbers in order gives the Lucas
sequence:

{L} = {2, 1, 3, 4, 7, 11, 18, 29, . . . }

6 Fibonacci Numbers

In discovering the Lucas numbers, the intermediate
relation

Fn = −Fn−2 + Ln−1

emerged before focusing on Ln. In the above, Fn is
given by

Fn =
ϕn − ψn

ϕ− ψ
,

and ϕ, ψ are solutions to 1 = x−1/x. With the result
for Ln in hand, we can use the above to generate the
Fibonacci numbers:

F1 = 1

F2 = 1

F3 = −1 + L2 = 2

F4 = −1 + L3 = 3

F5 = −2 + L4 = 5

F6 = −3 + L5 = 8

F7 = −5 + L6 = 13

F8 = −8 + L7 = 21

Note that the Fibonacci numbers follow a recur-
sion relation analogous to equation (1.10), namely

Fn = Fn−1 + Fn−2 . (1.11)

Despite its obvious truth, the proof of the above is
reserved for the more general treatment of the Lucas-
Fibonacci system (see below).

6.1 Fibonacci Sequence

Listing the Fibonacci numbers in order gives the Fi-
bonacci sequence:

{F} = {1, 1, 2, 3, 5, 8, 13, 21, . . . }

6.2 Negative Fibonacci Numbers

The calculation that gives rise to the Fibonacci se-
quence can be repeated with a slight tweak that in-
volves swapping x for 1/x. This gives rise to a mod-
ified generating formula

F̃ =
(1/x)

n − (−x)n

1/x+ x
=

(−ψ)n − (−ϕ)n

ϕ− ψ
,

inviting a similar algebraic puzzle to the one solved
already.
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Working this formula carefully, we find

F̃1 = 1 = F1

F̃2 = − (ϕ+ ψ)����(ϕ− ψ)

����(ϕ− ψ)
= −1 = −F2

F̃3 =
����(ϕ− ψ)

(
ϕ2 + ϕψ + ψ2

)
����(ϕ− ψ)

= −1 + L2 = F3

F̃4 =

(
(−ψ)2 + (−ϕ)2

)
����(ϕ− ψ)(((((((

((−ψ) + (−ϕ))−1

����(ϕ− ψ)

= −
(
L2
1 + 2

)
= −F4 ,

which is enough to see the pattern. Evidently, the
even-indexed terms flip sign, where the odd-indexed
terms remain the same. The extended Fibonacci se-
quence thus reads:

{F} = {. . . ,−8, 5,−3, 2,−1, 1, 0, 1, 1, 2, 3, 5, 8, . . . }

6.3 Solving for x

Interestingly, we’ve made it this far without explic-
itly needing the numerical values of x1 = ϕ, x2 = ψ.
Recalling these are defined as solutions to

1 = x− 1

x
,

it’s straightforward to find

x1 = ϕ =
1 +

√
5

2
≈ 1.618034 . . .

x2 = ψ = − 1

ϕ
=

1−
√
5

2
≈ −0.618034 . . . .

Golden Ratio

The constant

ϕ =
1 +

√
5

2
≈ 1.618034 . . .

is the famed golden ratio. Little ado is made of this
number in the fundamental sciences, but plenty of at-
tention is given to this number in areas pertaining to
graphics, architecture, and biology.

Without using symbols, the nth Lucas or Fi-
bonacci number can be straightforwardly expressed:

Ln =

(
1 +

√
5
)n

+
(
1−

√
5
)n

2n

Fn =

(
1 +

√
5
)n −

(
1−

√
5
)n

2n
√
5

7 General L-F Numbers

The Lucas-Fibonnacci rabbithole was entered by set-
ting C2 = 1 as it occurs as Equation (1.4). Of course,
this can all be be generalized by setting C2 to an ar-
bitrary constant p, leading to a generalized Lucas-
Fibonacci regime characterized by

C2 = p = x− 1

x
,

having solutions x1, x2 obeying

x1 · x2 = −1

x1 + x2 = p .

Pursuing this, we stumble upon a new recursion
statement analogous to Equation (1.8), namely

Cn = −Cn−2 + L̃n−1 , (1.12)

where L̃ is a generalized Lucas number

L̃n = xn1 + xn2 ,

obeying the recursion relation

L̃n = pL̃n−1 + L̃n−2 . (1.13)

7.1 Recursion Relations

To derive a robust recursion relation, let us write
three instances of Equation (1.8) based on respective
indices n, n+ 1, and n+ 2:

Cn = −Cn−2 + L̃n−1

Cn+1 = −Cn−1 + L̃n

Cn+2 = −Cn + L̃n+1

Multiply the first equation by a factor of −1, and the
second by a factor of −p

−Cn = Cn−2 − L̃n−1

−pCn+1 = pCn−1 − pL̃n

Cn+2 = −Cn + L̃n+1

Next, take the sum of all three equations and re-
group terms:

(Cn+2 − pCn+1 − Cn) + (Cn − pCn−1 − Cn−2)

=
(
L̃n+1 − pL̃n − L̃n−1

)
The right side is identically zero by Equation (1.13).
The rest can only be true if

Cn = pCn−1 + Cn−2 , (1.14)

which we take as the generalized recursion relation.
In the special case p = 1, the above reduces to the
Fibonacci case represented by Equation (1.11).
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7.2 Modified Seed

The seed value C2 = p has direct bearing on the set of
Lucas-Fibonacci-like numbers that emerge from the
analysis. In general, the solutions x depend on p such
that

x =
p

2
± 1

2

√
p2 + 4 ,

where the special case p = 1 was studied in detail
above. From this perspective, we see there is a con-
tinuous family of Lucas-Fibonacci numbers.

The first number in any Fibonacci-like sequence
is always C1 = 1, and the second number is always
C2 = p. Using the generalized recursion relation
(1.14), we easily find the rest:

{Fp=1} = {1, 1, 2, 3, 5, 8, 13, 21, . . . }
{Fp=2} = {1, 2, 5, 12, 29, 70, 169, 408, . . . }
{Fp=3} = {1, 3, 10, 33, 109, 360, 1189, 3927, . . . }
{Fp=4} = {1, 4, 17, 72, 305, 1292, 5473, 23184, . . . }
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