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Chapter 1

Multivariate
Calculus

1 Surfaces and Solids

Before getting into heavy jargon, we’ll do a brief tour
of the extension of the curve y = f (x) into more
dimensions.

1.1 Surfaces

The natural extension of a single-input function f(x)
is one that takes two arguments. In analogy to
y = f(x), we may also write

z = f(x, y) ,

where f(x, y) requires two independent inputs x and
y. The domain of f is part (or all) of the Cartesian
plane on which x and y occur. The range variable z
may be regarded as the ‘height above’ the plane at
(x, y).

If f (x, y) is continuous in both variables, the set
of all z-points constitutes a surface. In the same sense
that a curve is a continuous arrangement of points in
the Cartesian plane, surfaces may are like ‘sheets’ in
a Cartesian volume.

Level Curves

Fixing z constant on a surface restricts the freedom in
the xy-plane at height z to a level curve. A level curve
is the same as a contour line seen on a topographical
(not topological) map, or on various weather maps.
A small ring surrounds a local minimum or a local
maximum. Level curves intersect at a saddle point.

Critical Points

As two-dimensional creatures, surfaces have three
kinds of critical points. A maxima in the surface
is when both the x- and the y-variables reach a high
point simultaneously. The same comment applies to
a minima on the surface.

Another kind of critical point is called a saddle
point, which has one of the variables x, y is a max-
ima, and the other a minima.

1.2 Solids

Adding another variable into the mix, we can have
functions of three variables

F = f (x, y, z) ,

where F is most generally called a scalar field. The
temperature or air density in a room qualifies as a
scalar field. Holding any variable F constant pro-
duces a level surface, the generalization of the level
curve.
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We’ll stave off the discussion of critical points
within scalar fields, or if you see it coming, vector
fields, until after a few developments are made.

Topological Remarks

If the field F describes a finite solid, then the notion
of minima, maxima, and saddle points on the sur-
face of the solid are given the respective labels ‘pits’,
‘peaks’, and ‘passes’. It’s possible to show using ar-
guments from topology that the following is always
true:

peaks− passes + pits = 2

To understand this, consider an ice cream cone
with one scoop of ice cream, supposed spherical.
There are two peaks in this situation - the top of
the ice cream, and the bottom of the cone, so 2 = 2
checks out. Press your thumb into the ice cream to
introduce a pit and a pass simultaneously. Then you
get 2− 1 + 1 = 2.

The relationship between critical points has an
analogous formula with respect volumes with flat
faces and sharp edges. If V is the number of ver-
tices, E is the number of edges, and F is the number
of faces, it’s possible to prove, much like the above:

V − E + F = 2

2 Multiple Integration

2.1 Single Integral

The workhorse of integral calculus is the fundamental
theorem

f (x1)− f (x0) =

∫ x1

x0

f ′ (t) dt ,

where f ′ (x) is the derivative df/dx.
The integral calculates the area under the curve

y (x) = f ′ (x) between the endpoints x0, x1 and hands
us the answer in the form A = f (x1)−f (x0). A con-
cise way to express the area under such a curve is

A =

∫ x1

x0

y (x) dx .

2.2 Double Integral

The standard area integral calculates the sum of an
infinite number of heights y (x) above the x-axis. It
stands to reason that y (x) itself could be the result
of an integral:

y (x) =

∫ y(x)

0

dy

The lower limit need not be zero if we take y (x) as
the vertical length trapped between two curves y0 (x),
y1 (x), or:

y (x) =

∫ y1(x)

y0(x)

dy

Inserting this form for y (x) into the one dimen-
sional area integral yields a double integral :

A =

∫ x1

x0

∫ y1(x)

y0(x)

dy dx

Notice that the inner integration limits are functions
of the outer integration variable.

Supposing y0 (x), y1 (x) are easily inverted, the
same area can be expressed with the integration vari-
ables reversed:

A =

∫ y1

y0

∫ x1(y)

x0(y)

dx dy

Order of Integration

Note that in any multiple integral, it’s always implied
that the order of integration goes from the inner-most
to the outer-most, not unlike like simplifying expres-
sions with parentheses.

Integration Region

The curves y0 (x), y1 (x) are called bounding func-
tions. The same comment apples to their inverted
counterparts x0 (y), x1 (y).

The total information contained in the integration
limits, including bounding functions, is called the in-
tegration region, denoted D. With this we can express
the double integral in a less definite form:

A =

∫ ∫
D
dx dy .

By obscuring the product dx dy into an area element
dA, the above can be written free of the Cartesian
coordinate system:

A =

∫ ∫
D
dA

Volume Integral

The double integral apparatus can be used to calcu-
late the volume trapped between the xy-plane and a
given surface z = f (x, y). For this, we simply write

V =

∫ ∫
D
f (x, y) dx dy .
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Integrating Functions

Supposing we need to calculate something more ab-
stract than an area, the double integral apparatus
takes any reasonable function in its integrand

B =

∫ ∫
D
f (x, y) dx dy ,

where f (x, y) is a generalized surface.

2.3 Polar Integral

To work a specific case, the differential area element
in polar coordinates reads

dA = r dr dθ ,

which means

A =

∫ ∫
D
r dr dθ

Note that the r-variable is usually a function of θ,
which means the r-integral should be solved first. In
detail,

A =

∫ (∫
r dr

)
dθ ,

where the integration limits are left in indefinite form.
Now, even if there were an additional function

f (θ) in the integrand, thus changing the integral to

B =

∫ (∫
r dr

)
f (θ) dθ ,

notice how f (θ) has no r-dependence, and is situated
outside the r-integral.

We’re thus free to evaluate the inner r-integral,
and the above becomes

B =
1

2

∫
r2f (θ) dθ .

This is a nifty result, as if f (θ) weren’t there, then
the integral is simply the area under r (θ) in polar
coordinates:

A =
1

2

∫
r2 dθ

Area of a Circular Arc

Calculating the area of the circular arc in polar coor-
dinates is as easy as

A =

∫ θ1

θ0

∫ R

0

r dr dθ =
1

2
(θ1 − θ0)R

2 ,

which is the entire story.

For a bit of self-torture, let us do the same cal-
culation in Cartesian coordinates using double inte-
gration. To set up, consider a pair of points (x0, y0),
(x1, y1) with x0 > x1 that define the endpoints of the
arc:

R cos (θ0) = x0

R sin (θ0) = y0

R cos (θ1) = x1

R sin (θ1) = y1

Note also that the points (x0, y0), (x1, y1) define
straight lines through the origin (no y-intercept),
with respective slopes:

m0 =
y0
x0

m1 =
y1
x1

The area of the circular arc will be calculated in
two parts, one that resolves to a triangle with all
straight edges, and another to handled the curved
region. Working this out carefully, find:

A =

∫ x1

0

∫ m1x

m0x

dy dx+

∫ x0

x1

∫ √
R2−x2

m0x

dy dx

The first integral can be evaluated fully with ease,
but the second needs to chipped away at. Doing a
round of simplifying, reach the intermediate step

A =
x2
1

2
(m1 −��m0)

+

∫ x1

x0

√
R2 − x2 dx

− m0

2

(
x2
0 − ��x

2
1

)
.

The remaining integral can be solved with a sine
substitution, which has the general solution:∫ √

R2 − x2 dx =
x
√
R2 − x2

2

+
R2

2
arctan

(
x√

R2 − x2

)
+ C

For the problem on hand, this means∫ √
R2 − x2 dx =

m0x
2
0 −m1x

2
1

2

+
R2

2

(
arctan

(
x0

y0

)
− arctan

(
x1

y1

))
.

The x- and m-terms all cancel, and the area reads

A =
R2

2

(
arctan

(
x0

y0

)
− arctan

(
x1

y1

))
.
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From trigonometry, note in general that

arctan (cot (u)) =
π

2
− u ,

and the area becomes

A =
R2

2

(π
2
− θ0 −

π

2
+ θ1

)
,

and finally,

A =
1

2
(θ1 − θ0)R

2 ,

in agreement with the previous answer.

Gaussian Integral

Consider the definite integral

I1 =

∫ ∞

−∞
e−ax2

dx ,

which has no elementary solution. Instead of turning
to a numerical approximation, which would ordinar-
ily be the case for such an integral, consider the same
exact integral with a swap of variables:

I1 =

∫ ∞

−∞
e−ay2

dy

If this analysis doesn’t seem insane yet, multi-
ply each copy of the integral together to get to what
seems like a dead end,

I21 =

(∫ ∞

−∞
e−ax2

dx

)(∫ ∞

−∞
e−ay2

dy

)
,

and melt the notation down:

I21 =

∫ ∞

−∞

∫ ∞

−∞
e−a(x2+y2) dx dy

Now, one must be very careful when doing this,
but it just happens that the x, y variables can be
regarded as locations on the Cartesian plane, which
lends to polar coordinates. Switching to polar, the
above integral is

I21 =

∫ 2π

0

∫ ∞

0

e−aρ2

ρ dρ dϕ .

Observe how the region of integration (the infinite
plane) makes the limits on each integral easy to write.

The ϕ-integral is trivial and resolves to 2π. The
remaining ρ-integral can is solved straightforwardly
by u-substitution. Chugging through each, we find
I21 = π/a, or

I1 =

∫ ∞

−∞
e−ax2

dx =

√
π

a
.

This cheat works on several I1-like problems
called Gaussian integrals. Let us work through

I2 =

∫ ∞

∞
e−ax2+bx dx .

Completing the square within the exponential leads
to:

I2 = eb
2/4a 1√

a

∫ ∞

−∞
e−u2

du =

√
π

a
eb

2/4a

Yet another Gaussian integral

I3 =

∫ ∞

−∞
x2 e−ax2

dx

can be solved by taking the derivative of −I1 with
respect to a (not x). In detail:

d

da
(−I1) = I3 = − d

da

(√
π

a

)
=

√
π

4a3

2.4 Triple Integral

The apparatus for multiple integration readily gen-
eralizes for three and more dimensions. For three
dimensions, the idea of a bounding function becomes
a bounding surface, and we have a triple integral :

V =

∫ x1

x0

∫ y1(x)

y0(x)

∫ z1(x,y)

z0(x,y)

dz dy dx

In the special case z0 (x, y) = 0, the above reduces to
a standard volume integral.

The order of integration has greater significance
as the dimension of the integral increases. Supposing
the required bounding functions and surfaces are eas-
ily attained, the triple integral can be written several
more ways, for instance:

V =

∫ y1

y0

∫ z1(y)

z0(y)

∫ x1(y,z)

x0(y,z)

dx dz dy

V =

∫ z1

z0

∫ x1(z)

x0(z)

∫ y1(z,x)

y0(z,x)

dy dx dz

Or, in terms of an integration region:

V =

∫ ∫ ∫
D
dx dy dz

Of course, the triple integral can involve func-
tions in the integrand. For a three-variable function
f (x, y, z), sometimes called a scalar field, we can cal-
culate things like

B =

∫ ∫ ∫
D
f (x, y, z) dx dy dz .
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Non-Cartesian Volume Elements

To go from three-dimensional Cartesian coordinates
to a different system, the volume element and spec-
ification of the integration need to be changed. For
cylindrical coordinates, we may have

V =

∫ z1

z0

∫ ϕ1(z)

ϕ0(z)

∫ ρ1(ϕ,z)

ρ0(ϕ,z)

ρ dρ dϕ dz ,

and for spherical coordinates:

V =

∫ ϕ1

ϕ0

∫ θ1(ϕ)

θ0(ϕ)

∫ r1(θ,ϕ)

r0(θ,ϕ)

r2 sin (θ) dr dθ dϕ

Like the two-dimensional case, the volume ele-
ment and integration region can be generalized (a
fancy word for ‘obscured’):

V =

∫ ∫ ∫
D
dV

Hurricane Problem

In a simplified model of a hurricane, the velocity of
the wind is taken to be purely in the circumferential
direction and of magnitude

v (ρ, z) = Ω ρ e−z/h−ρ/a ,

where ρ and z are cylindrical coordinates measured
from the eye of the hurricane at sea level, and Ω, h, a
are positive constants. The density of the atmosphere
is approximated by

d (z) = d0 e
−z/h .

Find the total kinetic energy of the motion.
As an integral, the kinetic energy is given by

T =

∫
1

2
v2 dm .

This can be converted to a volume integral via the
relation

dm

dV
= d (z) ,

where dV is the volume element in cylindrical coor-
dinates. The kinetic energy integral becomes

T =

∫ ∞

0

∫ 2π

0

∫ ∞

0

1

2
d (z) (v (ρ, z))

2
dV ,

or

T =
d0Ω

2

2

∫ ∞

0

∫ 2π

0

∫ ∞

0

e−z/hρ2 e−2z/h−2ρ/aρ dρ dϕ dz .

The integral can be broken apart into three sepa-
rate integrals

T =
d0Ω

2

2

(∫ ∞

0

e−3z/h dz

)
(∫ 2π

0

dϕ

)(∫ ∞

0

ρ3e−2ρ/adρ

)
,

each straightforwardly evaluated:

T =
d0Ω

2

2

(
h

3

)
(2π)

(
3a4

8

)
=

π

8
Ω2d0ha

4

2.5 Shell Theorem

Newton’s law of gravitation tells us that every parti-
cle in the universe is trying to pull every other particle
toward itself with a force proportional to the masses
involved and inversely proportional to the square of
the separation, and this is duly used to calculate the
force onto planets, moons, satellites, and so on.

Using triple integration and spherical coordinates,
something Newton didn’t have, we finally address
an assumption made early in gravitational analysis,
namely why we’re allowed to represent voluminous
objects as single points located at the center of mass.
This is called the shell theorem, and entails two im-
portant proofs.

Outside a Sphere

Consider a solid sphere of radius R, total mass M ,
and uniform density λ. Also let there be a test par-
ticle of mass m somewhere in space. Without loss of
generality, place the test particle on the z-axis at the
point D⃗ = D ẑ. The length D is the distance from
the test particle to the center of the sphere.

In order to ‘properly’ calculate the gravitational
attraction between the test mass and the sphere, a
volume integral over there entire sphere must be cal-
culated. Choose any element of volume dV inside the
sphere at location r⃗, which is located distance r from
the center, at an angle θ from the z-axis.

Let vector q⃗ denote the line connecting D⃗ to r⃗
such that

r⃗ + q⃗ = D ẑ ,

and also let α be the angle between ẑ and q̂. From
the law of cosines, we can say:

q2 = r2 +D2 − 2rD cos (θ)

r2 = q2 +D2 − 2qD cos (α)

The total force on the test particle is the vector F⃗ .
However, due to the ϕ-symmetry of this picture, only
the z-component of the force will have a net effect on
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the particle. All xy-components cancel equally and
oppositely:

F =

∫
D
dF⃗ · ẑ =

∫ ∫ ∫
volume

dF cos (α)

The differential force is

dF =
−Gm

q2
dm ,

where dm is the mass of the differential volume el-
ement influencing the test particle. The mass term
can be replaced using the density

dm

dV
=

M

4πR3/3
= λ ,

where it is appropriate to replace dV with the volume
element in spherical coordinates.

The force integral now is

F = −Gmλ

∫ 2π

0

∫ π

0

∫ R

0

cos (α)

q2
r2 sin (θ) dr dθ dϕ ,

which, after substituting and simplifying a bit, be-
comes:

F = −Gmλ
2π

2D

∫ π

0

∫ R

0(
1

q
+

D2 − r2

q3

)
r2 sin (θ) dr dθ

Perform implicit differentiation on the q2 equation
to find, remembering r and θ are independent,

q dq = rD sin (θ) dθ ,

and rewrite the integral with the intent of integrating
over r last. Make you you know why the limits are
now changed:

F = −Gmλ
π

D2

∫ R

0

∫ (D+r)

(D−r)(
1 +

D2 − r2

q2

)
r dq dr

The whole q-integral treats r as a constant and
resolves to 4r, so

F = −Gmλ
π

D2

∫ R

0

4r2 dr ,

and the r-integral is elementary. Simplifying every-
thing gives

F = −Gm

(
3M

4πR3

)
π

D2

4

3
R3 =

−GMm

D2
.

Conveniently, the force acts as if all of its mass
were concentrated at the center. This result is also
true in general, where the notion of ‘center’ means
center of mass, not necessarily the center of the vol-
ume.

Inside a Shell

Another interesting question that arises in the course
of studying gravity is, what does it feel like inside a
hollow uniform shell? To pursue this question, sup-
pose we have a thin spherical shell of radius R and
thickness 2a that is much less than R, and the test
particle is inside anywhere within the shell.

This setup borrows all of the geometry from the
previous setup, except this time we have D < R,
which is the important part. Setting up the same
integral and doing the same simplifications, we can
jump to

F = −Gmλ
π

D2

∫ R+a

R−a

∫ (D+r)

(r−D)(
1 +

D2 − r2

q2

)
r dq dr .

Most notably, the lower integration in the q-integral
is swapped to accommodate D < R. This causes the
q-integral to resolve to zero, and we find

F = 0

inside the shell.

3 Partial Derivative

Returning to the definition of a function, recall that
a function f depends on an input variable x in the
function’s domain. Given any input value, the out-
put of the function is written y = f(x), and there
is only one y for a given x. The set of all y-values
constitute the function’s range. A ‘curve’ given by
function y = f(x) may exhibit a myriad of features:
asymptotic behavior, periodicity, singularities, criti-
cal points, inflection points, etc.

Derivative

One star result from the analysis of curves gives the
slope of the function at a point x0, namely

d

dx
f (x0) = lim

x→x0

f (x)− f (x0)

x− x0
.
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Taylor’s Theorem

The so-called derivative turns out to be just the first-
order version of something more general we known as
Taylor’s theorem. Near the point x0, we have:

f (x) ≈ f (x0) +

∞∑
q=1

1

q!
f (q) (x0) (x− x0)

q

3.1 Slope on a Surface

The technical definition of the derivative generalizes
to surfaces. For this, we require the surface z =
f (x, y) to be differentiable both in the x-direction
and the y-direction, meaning that the slope of the
surface at a point (x0, y0) has two answers: a slope
along x, and a slope along y.

To express the slope on a surface at the point
(x0, y), we write the usual slope formula treating x
as the ‘active’ variable with y as a constant:

∂

∂x
f (x0, y) = lim

x→x0

f (x, y)− f (x0, y)

x− x0
(1.1)

Meanwhile, the slope at the point (x, y0) allows y to
vary while x is constant:

∂

∂y
f (x, y0) = lim

y→y0

f (x, y)− f (x, y0)

y − y0
(1.2)

The familiar d/dx-notation is replaced by ∂/∂x. The
symbol ∂ denotes the partial derivative.

3.2 Mixed Partial Derivatives

One issue that needs to be settled right away is the
idea of mixed partial derivatives. For the surface
z = f (x, y), let us find out whether

∂

∂y

(
∂z

∂x

)
=

∂

∂x

(
∂z

∂y

)
(1.3)

is true. Using brute force, start with

∂

∂y

(
∂z

∂x

)
=

∂

∂y

(
lim

x→x0

f (x, y)− f (x0, y)

x− x0

)
,

which becomes

∂

∂y

(
∂z

∂x

)
= lim

y→y0

lim
x→x0

f (x, y)− f (x0, y)− f (x, y0) + f (x0, y0)

(y − y0) (x− x0)
.

Now, it takes little to imagine doing a similar cal-
culation with the y-partial derivative first to have

∂

∂x

(
∂z

∂y

)
=

∂

∂x

(
lim
y→y0

f (x, y)− f (x, y0)

y − y0

)
,

which then simplifies to something nearly identical
to the above, save one difference, which that the or-
der of the limits is swapped. The task boils down to
showing in this context that

lim
x→x0

lim
y→y0

↔ lim
y→y0

lim
x→x0

can be assumed.

To prove this, define two new functions

X (x, y) = f (x, y)− f (x0, y)

Y (x, y) = f (x, y)− f (x, y0) ,

and notice the following equality:

X (x, y)−X (x, y0) = Y (x, y)− Y (x0, y)

The left- and right-hand sides of the above each
represent the endpoints of a secant line on the surface.
By the mean value theorem, each can be replaced by
partial derivatives as

(y − y0)
∂

∂y
X (x, b) = (x− x0)

∂

∂x
Y (a, y) ,

where

x0 < a < x

y0 < b < y .

Keep simplifying to write

(y − y0)

(
∂

∂y
f (x, b)− ∂

∂y
f (x0, b)

)
=

(x− x0)

(
∂

∂x
f (a, y)− ∂

∂x
f (a, y0)

)
,

and use the mean value theorem a second time on
each side to write

(y − y0) (x− x0)
∂

∂x

(
∂

∂x
f (α, b)

)
=

(x− x0) (y − y0)
∂

∂y

(
∂

∂x
f (a, β)

)
,

where

x0 < α < x

y0 < β < y .

Closing the limits tighter, we see that the pair a,
α tend to x0, and also the pair b, β tend to y0. In
the differential limit, the left and right sides are equal
and the proof is done.
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3.3 Partial Derivative Operator

Like the ordinary derivative operator d/dx, the par-
tial derivative operator is written ∂/∂x. For short-
hand, the same operator is often written with one
‘partial’ symbol and a subscript:

∂

∂x
= ∂x

In this notation, the mixed partial derivative Equa-
tion (1.3) is simply written

∂yxf (x, y) = ∂xyf (x, y) ,

or with just the operators,

∂yx = ∂xy .

Yet another nomenclature for partial derivatives
involves placing a subscript with the function itself:

∂

∂x
f (x, y) = fx

Second Derivative

With the notion of partial derivatives, the idea of the
second derivative of a function can go three ways.
Each of the following is a second derivative operator

∂xx ∂xy ∂yy

and each produces, in the general case, a different
result.

The partial derivative operator obeys the same
algebraic rules as the ordinary derivative opera-
tor. Without abusing the notation, we can establish
things like:

(∂x + ∂y) (∂x − ∂y) = ∂xx − ∂xy + ∂yx − ∂yy

= ∂xx − ∂yy

Third Derivative

The equivalency of the mixed partial derivative ex-
tends to any depth. From Equation (1.3), we reason
that

∂yxx ∂xyx ∂xxy

yield the same result. For this reason, it turns out
there four unique third derivative operations:

∂xxx ∂xxy ∂yyx ∂yyy

The notation can be condensed once more by us-
ing exponent notation on repeated derivatives:

∂xxx = ∂x3

∂xxy = ∂x2y

∂yyx = ∂xy2

∂yyy = ∂y3

3.4 Total Derivative

The notion of ‘regular’ derivative still survives the
jump to more dimensions, and is given the name to-
tal derivative.

For a function f (x, y, z) the total derivative with
respect to a variable t sums across each partial deriva-
tive:

d

dt
f (x, y, z) =

∂f

∂x

dx

dt
+

∂f

∂y

dy

dt
+

∂f

∂z

dz

dt

The Differential

Stripping away the dt-variable by the chain rule yields
the so-called ‘differential of’ f (x, y, z):

df (x, y, z) =
∂f

∂x
dx+

∂f

∂y
dy +

∂f

∂z
dz

3.5 Variable Integration Limits

It’s possible for an integral to have variable limits,
which can make a mess of things like integration by
parts. Consider a function y (x) and a two-variable
function f (x, y (x)). By the fundamental theorem,
this setup implies integrals of the form

F (x) =

∫ b(x)

a(x)

f (x, t) dt .

To attack this, define a helper function

G (x, y) =

∫ y

t0

f (x, t) dt ,

so then F (x) reads

F (x) =

∫ b(x)

t0

f (x, t) dt−
∫ a(x)

t0

f (x, t) dt

= G (x, b (x))−G (x, a (x)) .

Take the total derivative of F (x):

d

dx
F (x) =

∂

∂x
G (x, b (x))− ∂

∂x
G (x, a (x))

+
∂

∂y
G (x, b (x))

db

dx

− ∂

∂y
G (x, a (x))

da

dx

The first two terms combine to make ∂F/∂x. To
handle the ∂G/∂y factors, define ∆y such that

G (x, y +∆y) =

∫ y+∆y

t0

f (x, t) dt
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Unpack the right side and divide through by ∆y to
find

G (x, y +∆y)−G (x, y)

∆y
=

1

∆y

∫ y+∆y

y

f (x, t) dt .

In the limit ∆y → 0, the left side is ∂G/∂x. The
right simplifies to f (x, y). In other words:

∂

∂y
G (x, y) = f (x, y)

Putting the whole answer together, we have found

d

dx

∫ b(x)

a(x)

f (x, t) dt =

f (x, b (x))
db

dx
− f (x, a (x))

da

dx

+
∂

∂x

∫ b(x)

a(x)

f (x, t) dt (1.4)

as the chief result, called the Leibniz integral rule.
Finally, since the operator ∂x doesn’t touch the

y-variable, the last integral obeys:

∂

∂x

∫ b(x)

a(x)

f (x, t) dt =

∫ b(x)

a(x)

∂

∂x
f (x, t) dt

Problem 1
Prove the following:

d

dx

∫ x

0

ext
2

dt = ex
3

+

∫ x

0

∂

∂x
ext

2

dt

3.6 Two-Variable Taylor’s Theorem

Taylor’s theorem generalizes readily to surfaces. To
get started, consider a fixed point (x0, y0) in the do-
main of a surface z = f (x, y). Deviations from the
fixed point are tracked by two quantities

∆x = x− x0

∆y = y − y0 .

Like the one-dimensional Taylor’s theorem, we’re
allowed to frame the final answer as an infinite sum.
To do this, first notice that the one-dimensional case
contains every whole number power of the quantity
x− x0 = ∆x. Then, for two dimensions, we ought to
need every whole number power of ∆x∆y.

Of course, the factor f (q) (x0) /q! that appears in
the one-dimensional case can’t work for two dimen-
sions. Without knowing what to replace this with, let
a set of unknown coefficients {Cjk} stand in for now.

With all this, the two-dimensional Taylor’s theorem
looks like:

f (x, y) ≈ f (x0, y0)

+ C10∆x+ C01∆y

+ C20∆x2 + C11∆x∆y + C02∆y2

+ C30∆x3 + C21∆x2∆y + C12∆x∆y2 + C03∆y3

+ · · ·

Now we have the problem of determining each un-
known coefficient Cjk. Begin by applying the ∂x oper-
ator across the whole equation, and then evaluate the
equation at (x0, y0). With almost no effort, we can
see that any terms containing ∆x2 or higher power
will zero out, and the whole result is

∂xf (x0, y0) = C10 .

Applying the ∂y instead and doing the exercise again
leads to a similar result

∂yf (x0, y0) = C01 .

For the next ‘row’ of coefficients, apply the ∂xx,
∂xy, ∂yy operators respectively, and evaluate at
(x0, y0). This saps all but the order-two terms in
the equation, from which we find:

∂xxf (x0, y0) = 2 · C20

∂xyf (x0, y0) = C11

∂yyf (x0, y0) = 2 · C02

Solving for the order-three coefficients means us-
ing the four operators ∂x3 , ∂x2y, ∂xy2 , ∂y3 to f (x, y)
and evaluate at (x0, y0). This gives four new equa-
tions:

∂x3f (x0, y0) = 3 · 2 · C30

∂x2yf (x0, y0) = 2 · C21

∂xyyf (x0, y0) = 2 · C12

∂yyyf (x0, y0) = 3 · 2 · C03

To summarize and condense notation once more,
use using the general shorthand

zxjyk = ∂xjykf (x0, y0) ,

and we have found

C10 = zx

C01 = zy

C20 = zx2/2

C11 = zxy

C02 = zy2/2
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C30 = zx3/3!

C21 = zx2y/2

C12 = zxy2/2

C03 = zy3/3!

The two-dimensional Taylor’s theorem now looks
like:

f (x, y) ≈ f (x0, y0)

+ zx∆x+ zy∆y

+
zx2∆x2 + 2zxy∆x∆y + zy2∆y2

2

+
zx3∆x3 + 3zx2y∆x2∆y + 3zxy2∆x∆y2 + zy3∆y3

3!
+ · · ·

Look for a moment at the pattern in the numeri-
cal coefficients in the numerator of each term written
so far. Jotting these down:

1

1 1

1 2 1

1 3 3 1

The pattern is clearly that of the binomial coeffi-
cients, i.e. the entries of Pascal’s triangle. This
means that the terms in the infinite sum can be
regrouped as binomials with the help of the par-
tial derivative operator. For instance, the order-two
terms are written

zx2∆x2 + 2zxy∆x∆y + zy2∆y2

= (∆x ∂x +∆y ∂y)
2
f (x0, y0) ,

and similarly for all orders.
Switching to summation notation, we finally have

the two-dimensional Taylor’s theorem

f (x, y) ≈ f (x0, y0) (1.5)

+

∞∑
q=1

1

q!
(∆x ∂x +∆y ∂y)

q
f (x0, y0)

For a sanity check, you can see that if all y = 0 then
the above reduces to the familiar one-dimensional
form.

4 Vectors and Surfaces

4.1 Basis Vectors as Derivatives

In three-dimensional space, there are always three
basis vectors from which everything is oriented. In

Cartesian coordinates, these are just x̂, ŷ, ẑ, and are
fixed in space. In other systems, such as cylindrical
coordinates ρ̂, ϕ̂, ẑ, and spherical coordinates r̂, θ̂, ϕ̂,
each basis vector depends on the coordinates them-
selves.

In each system mentioned, the respective position
vector is:

r⃗ = x x̂+ y ŷ + z ẑ

r⃗ = ρ cos (ϕ) x̂+ ρ sin (ϕ) ŷ + z ẑ

r⃗ = r sin (θ) (cos (ϕ) x̂+ sin (ϕ) ŷ) + r cos (θ) ẑ

It’s customary using geometry to work out the basis
vectors for each system, namely ρ̂, ϕ̂, ẑ, and also r̂,
θ̂, ϕ̂.

Having suffered the tedious derivations once,
you’re entitled to a secret from the math department.
Let q represent any parameter whatsoever - it could
be x, or z, or ϕ, etc. It turns out that the basis vector
q̂ is the normalized q-derivative of the position vector.
That is:

q̂ =
1

|∂r⃗/∂q|
∂r⃗

∂q
(1.6)

For example, if we want θ̂ from spherical coordi-
nates, write

∂r⃗

∂θ
= r cos (θ) (cos (ϕ) x̂+ sin (ϕ) ŷ)− r sin (θ) ẑ ,

whose magnitude is r. Dividing this out delivers the
result promised:

1

r

∂r⃗

∂θ
= θ̂

4.2 Surface Tangent Vectors

Parametric Surface Tangents

In the same way that curves y = f (x) can be rep-
resented with vectors and parameters, the story is
similar for surfaces z = f (x, y). In a generic case, a
surface requires two parameters u, v such that

r⃗ (u, v) = x (u, v) x̂+ y (u, v) ŷ + z (u, v) ẑ ,

which doesn’t necessarily need to framed in the
Cartesian system.

Choosing any fixed point (u0, v0) on a parameter-
ized surface, there exist a pair of embedded tangent
vectors we’ll call u⃗, v⃗ straightforwardly calculated di-
rectly from r⃗ (u, v):

u⃗ (u0, v0) =

(
∂

∂u
r⃗ (u, v0)

) ∣∣∣∣
u0

v⃗ (u0, v0) =

(
∂

∂v
r⃗ (u0, v)

) ∣∣∣∣
v0
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Like all vectors, the tangents u⃗, v⃗ can be converted
to normal vectors by dividing out the magnitude:

û = u⃗/u

v̂ = v⃗/v

Level Curve Tangents

The tangent vectors to a level curve of z = f (x, y)
are trickier to determine. To begin, propose choose a
point (x0, y0) and write the pair of vectors

u⃗ (x0, y0) = ux x̂+ uz ẑ

v⃗ (x0, y0) = vy ŷ + vz ẑ ,

where without loss of generality, u⃗ lacks a y-
component and v⃗ lacks an x-component.

The ratios uz/ux, vz/vy, receptively, are the par-
tial derivatives in disguise, as

uz

ux
=

(
∂

∂x
f (x, y0)

) ∣∣∣∣
x0

vz
vy

=

(
∂

∂y
f (x0, y)

) ∣∣∣∣
y0

,

which allows the vectors u⃗, v⃗ to be written in terms
of partial derivatives:

u⃗ (x0, y0) = ux

(
x̂+

(
∂

∂x
f (x, y0)

) ∣∣∣∣
x0

ẑ

)

v⃗ (x0, y0) = vy

(
ŷ +

(
∂

∂y
f (x0, y)

) ∣∣∣∣
y0

ẑ

)

For shorthand, denote the fully-evaluated partial
derivatives as fx (x0, y0), fy (x0, y0), respectively. Di-
viding each vector by its own magnitude gives the
normalized version of each:

û =
x̂+ fx ẑ√
1 + f2

x

v̂ =
ŷ + fy ẑ√
1 + f2

y

4.3 Surface Normal Vector

With a pair of surface tangent vectors u⃗, v⃗ in hand
for a given point, the cross product of the two yields
the vector n⃗ that is normal to the surface:

n⃗ = u⃗× v⃗

Parametric Surface Normal

For the parametric surface r⃗ (u, v), the surface normal
is straightforwardly calculated from

n⃗ (u0, v0) = u⃗ (u0, v0)× v⃗ (u0, v0) ,

which suggests a normalized version

n̂ =
u⃗ (u0, v0)× v⃗ (u0, v0)

|u⃗ (u0, v0)× v⃗ (u0, v0)|
.

Of course, there is no need to normalize if we use unit
vectors only:

n̂ = û× v̂

Cartesian Surface Normal

The normal vector to the surface z = f (x, y) at a
point (x0, y0) is the cross product of the tangent vec-
tors u⃗ (x0, y0), v⃗ (x0, y0). Explicitly, this is:

n⃗ (x0, y0) = u⃗× v⃗ =

∣∣∣∣∣∣
x̂ ŷ ẑ
ux 0 uxfx
0 vy vyfy

∣∣∣∣∣∣ ,
or

n⃗ = uxvy (−fx x̂− fy ŷ + ẑ) .

Eliminate the stray coefficients by normalizing:

n̂ =
−fx x̂− fy ŷ + ẑ√

1 + f2
x + f2

y

4.4 Tangent Plane

In either picture, whether it be parametric or Carte-
sian, the tangent vectors u⃗, v⃗ imply the existence of a
tangent plane to the surface at a given point, much in
the same way the slope at a point implies a straight
line in the one-dimensional case. The normal vector
n⃗ is always perpendicular to the tangent plane.

If the point (x0, y0, z0) is the base from which the
tangent vectors and normal vector are drawn, and
(x, y, z) is any other point in space, then the equa-
tion of the tangent plane is:

n⃗ ·∆x⃗ = 0 ,

where
∆x⃗ = ⟨x, y, z⟩ − ⟨x0, y0, z0⟩ .

From what we know about planes, we can also
write

ax+ by + cz + d = 0

to represent the tangent plane. To reconcile this with
the vector definition, write out the full dot product:

nx (x− x0) + ny (y − y0) + nz (z − z0) = 0 ,

or
nxx+ nyy + nzz + d = 0 ,
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with
d = −nxx0 − nyy0 − nzz0 .

We can say a bit more about the Cartesian case,
as

nx = −fx

ny = −fy

nz = 1

would mean

−fx (x− x0)− fy (y − y0) + (z − z0) = 0 .
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