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Chapter 1

Newtonian Mechanics

1 Foundation
Newton’s laws of motion and universal gravitation,
along with the foundations of calculus, were devised
around 1687. The modern approach to these subjects
differs drastically from that of the seventeenth cen-
tury, particularly when it comes to energy. Newton
was satisfied using (what we now know as) force and
momentum vectors to make his conclusions. Things
like potential energy and conservation of energy were
popularized in later centuries by Joule, Helmholtz,
and others. Noether informed us in 1918 that any
differentiable symmetry of the action of a physical
system leads to a conserved quantity.

In the following we use the full arsenal of the 21st
century to develop Newtonian mechanics.

1.1 Position, Velocity, Acceleration
Newtonian mechanics assumes a single universal ref-
erence frame in which all dynamics take place. In
this scheme, it makes sense to define an origin from
which all positions r (t) at all times t are represented
as vectors. For a pair of particles or events, we could
write:

position: r (t)
displacement (time): r (t2) − r (t1)

displacement (space): r2 (t) − r1 (t)
time interval: t2 − t1 = ∆t

The average velocity of a particle is defined as the
displacement (in time) divided by the time interval.
In the differential limit, this becomes the instanta-
neous velocity v (t):

v (t) = d

dt
r (t)

The average aceleration of a particle is defined as the
velocity divided by the time interval. In the differen-

tial limit, this becomes the instantaneous acceleration
a (t):

a (t) = d

dt
v (t) = d2

dt2
r (t)

For a system of N total particles, we label each
particle with a subscript i, j, etc., depending on con-
text. For instance, the ith particle has position vector
ri, velocity vector vi, mass mi, etc.

1.2 Newton’s Laws
The axioms of Newtonian mechanics are the famous
Newton’s laws, of which there are three:

1. Law of Intertia: An object at rest stays at
rest, and an object in motion stays in motion
with the same speed and in the same direction
unless acted upon by an unbalanced force. This
means if the total force F on an object is zero,
the velocity doesn’t change:

F = 0 → v = constant

2. Law of Force and Acceleraton: The accel-
eration of an object is directly proportional to
the net force F acting on the object, is in the
same direction as the net force, and is inversely
proportional to the mass m of the object:

F = ma

For a system of N particles, Newton’s second
law reads:

miai =
N∑

j=1
F ij

3. Law of Action-Reaction: For every action,
there is an equal and opposite reaction. When
one object exerts a force on another object, the
second object exerts an equal force back on the
first object in the opposite direction:

F ij = −F ji

3



4 CHAPTER 1. NEWTONIAN MECHANICS

Force as Gradient

In otder for Newton’s second law to be of use, we
need to declare several things about the force vector
F , more precisely the interaction between two parti-
cles F ij :

1. The force F ij depends only on the positions ri,
rj :

F ij = F ij (ri, rj)

2. The force vector is defined as the spatial deriva-
tive, i.e. the gradient of a scalar function de-
pending only on ri, rj :

F ij = − ∂

∂ri
Uij (ri, rj)

3. The r-dependence in Uij (ri, rj) occurs as the
magnitude of the displacement between ri, rj :

Uij (ri, rj) = Uji (r1, r2) = Uij (|r1 − r2|)

From the above, we reason that the strength of the
interaction between two particles is, as far as space is
concerned, only a function of the separation between
the particles. This should mean the force vector F ij

is equivalent to a scalar function fij multiplied by the
distance ri − rj between the particles:

F ij = fij (|ri − rj |) (ri − rj)

Equivalently, we have

F ij = fij (|ri − rj |) r r̂ij ,

telling us

− ∂

∂ri
Uij (r) = fij (|ri − rj |) r ,

or
fij (r) = fji (r) = −1

r

d

dr
(Uij (r)) .

Swapping particle i with particle j, we see fij (r)
remains unchanged but the unit vector r̂ reverses
sign. This constitutes a proof of Newton’s third law.

In light of the interpretation of force as the gra-
dient of a scalar function, we compile an ‘updated’
Newton’s second law, which contains the other two
laws, as:

miai =
N∑

j=1
− ∂

∂ri
Uij (|ri − rj |)

1.3 Reference Frame
Galilean Invariance

Newton’s laws exhibit the remarkable property that
all physics remains the same when introducing a shift
of coordinates

r′
i = ri − ∆r ,

or more strongly

r′
i = ri − v0∆t ,

where v0 is a constant velocity vector. Taking a sin-
gle time derivative gives an analogous statement for
a shift of velocity:

v′
i = vi − v0

The pattern stops before acceleration. Due to the
same shift ∆r = v0∆t, the acceleration remains the
same:

a′
i = ai

Problem 1
Prove the notion of Galilean invariance by evalu-

ating:

mia
′
i =

N∑
j=1

− ∂

∂r′
i

Uij

(∣∣r′
i − r′

j

∣∣)
Hint: Simplify until all prime symbols are gone.

Center of Mass

The center of mass of a system of N particles denoted
R (t), is defined as:

R (t) = m1r1 +m2r2 +m3r3 + · · ·
m1 +m2 +m3 + · · ·

The denominator is the total mass M of the system

M = m1 +m2 +m3 + · · · =
N∑

j=1
mj ,

and the quantity R (t) is tightly expressed in sigma
notation:

R (t) = 1
M

N∑
j=1

mjrj

1.4 Momentum
For a system of N interacting particles, it should
make intuitive sense that the center of mass coor-
dinate R (t) does not accelerate or rotate on its own.
We establish this formally with the notation of mo-
mentum.
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Linear Momentum

Take the sum of all products pi = mivi in the system
to yield the total linear momentum

P (t) =
N∑

i=1
pi =

N∑
i=1

mivi ,

which is related to the center of mass via

P (t) = M
d

dt
R (t) .

The total linear momentum vector is a constant
of motion. To prove this, take a time derivative to
write

d

dt
P (t) =

N∑
i=1

mi
d

dt
vi

=
N∑

i=1

N∑
j=1

F ij ,

which seems like we did nothing.
The trick now is to swap the indices i ↔ j. The

order of the sums stays the same, but the force term
reverses the indices:

d

dt
P (t) =

N∑
i=1

N∑
j=1

F ji

Then, use Newton’s third law to restore the original
F ij with a negative sign:

d

dt
P (t) = −

N∑
i=1

N∑
j=1

F ij

At this point we’re saying dP (t) /dt equals the
negative of itself, which can only mean P (t) is con-
stant in time.

Angular Momentum

The total angular momentum of a system of particles
is given by the sum

L (t) =
N∑

i=1
ri ×mivi ,

which is also constant as we’ll prove.
For the time derivative of L (t), we have

d

dt
L (t) =

N∑
i=1

d

dt
ri ×mivi +

N∑
i=1

ri ×mi
d

dt
vi .

The first term contains vi × vi, which is zero by def-
inition of the cross product. Simplifying what’s left
gives

d

dt
L (t) =

N∑
i=1

ri ×
N∑

j=1
F ij

 =
∑
i,j

ri × F ij ,

where substituting

F ij = fij (r) (ri − rj)

means
d

dt
L (t) = −

∑
ij

fij (r) ri × rj .

Problem 2
By swapping indices i ↔ j and exploiting the

cross product, prove:

d

dt
L (t) = 0

1.5 Symmetry
Similar to Galiliean invariance, the equations of New-
tonian mechanics exhibit several inherent symme-
tries, particularly with respect to rotations in space
and translations in time. In detail, this means solu-
tions to

miai =
N∑

j=1
− ∂

∂ri
Uij (|ri − rj |)

remain intact under the following changes:

1. Coordinate Translation: A translation is a
constant shift in all position vectors such that

r′
i = ri − r0 .

2. Time Translation: A shift of the time coordi-
nate t′ = t− t0 implies all position vectors take
the form

r′
i (t) = ri (t− t0) .

3. Time Reversal: A reversal of the time coor-
dinate t′ = −t implies all position vectors take
the form

r′
i (t) = ri (−t) .

4. Coordinate Rotation: A rotation of all coor-
dinates about the origin is represented by

(r′
i)j =

3∑
k=1

Rjk (ri)k ,

where Rjk is the rotation matrix in three di-
mensions.
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For thoroughness we will work each of the above
cases. Coordinate translations entail r′

i = ri − r0,
along with v′

i = vi and a′
i = ai. We also note that

r′
i − r′

j = ri − rj ,

and furthermore

∂

∂r′
i

= ∂

∂ri
.

Starting with

mia
′
i =

N∑
j=1

− ∂

∂r′
i

Uij

(∣∣r′
i − r′

j

∣∣)
and replacing all primed variables via the above yields
the unprimed version. (This repeats the proof of
Galilean invariance.)

For time translations, start with t′ = t − t0 and
take derivatives of

r′
i (t) = ri (t− t0)

to find
a′

i (t) = ai (t− t0) .

From here it suffices to build the primed version of
Newton’s second law from the left. Doing so, we have:

mia
′
i (t) = miai (t− t0)

=
N∑

j=1
F ij (ri (t− t0) , rj (t− t0))

=
N∑

j=1
F ij

(
r′

i (t) , r′
j (t)

)
Problem 3

Show that Newton’s second law is maintained un-
der time reversal symmetry t → −t.

Proving that Newton’s second law remains intact
under coordinate rotations is a bit more technical.
We first acknowledge the rotation matrix in three di-
mensions obeys

3∑
k=1

RikRjk =
3∑

k=1
RkiRkj = δij ,

which is to say the transpose is the same as the in-
verse

RT = R−1 ,

so if r′ = Rr, then r = RT r′.

We still need to see what happens to the gradi-
ent operator under coordinate rotations. For this we
write using the chain rule

∂

∂ (r′
i)j

=
3∑

k=1

∂ (ri)k

∂ (r′
i)j

∂

∂ (ri)k

=
3∑

k=1
Rjk

∂

∂ (ri)k

,

or
∂

∂r′
i

= R
∂

∂ri
.

The proof is now easily worked out:

mia
′
i = Rmiai =

N∑
j=1

−R ∂

∂ri
Uij (|ri − rj |)

=
N∑

j=1
− ∂

∂r′
i

Uij

(∣∣r′
i − r′

j

∣∣)
1.6 Energy
In a system of N particles, consider the force and
displacement of the jth particle as it moves from the
initial position ri to the final position rf .

Kinetic Energy

The plan is to project the force on the jth particle
onto its displacement along the arc of motion, called
a work integral:

Wj = mj

∫ rf

ri

aj · drj

The work W has the same dimension as U (r), namely
energy units such as Joules.

We can evaluate the work integral without know-
ing the motion of the particle or the force upon it.
First use the chain rule to change the integration do-
main from spacial to temporal:

Wj = mj

∫ tf

ti

aj · vj dt

Integrating by parts, let

U = mjvj

dU = mjaj dt

dV = aj dt

V = vj

and accroding to the recipe,

Wj = (U · V )
∣∣∣∣tf

ti

−
∫ tf

ti

V · dU .

Evaluating, we find

Wj = mj (vj · vj)
∣∣∣∣tf

ti

−mj

∫ tf

ti

aj · vj ,
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where the remaining integral is just Wj again. Thus
the energy added to the jth particle throughout the
motion is

Wj = 1
2mjv

2
j

∣∣∣∣tf

ti

,

which we interpret as the kinetic energy, denoted T .
At a given instant in any particle’s motion, the

instantaneous kinetic energy is a function of the in-
stantaneous velocity vj (t), precisely given by

Tj (vj) = 1
2mj (vj · vj) = 1

2mjv
2
j ,

where m is the mass of the particle.

Total Energy

For a system of N particles, the total kinetic energy
is easy to write down:

T =
N∑

i=1
Ti = 1

2

N∑
i=1

miv
2
i

The total potential energy involves a double sum
due to the two indices on Uij . For starters let’s try

U ∝
N∑

i=1

N∑
j=1

Uij ,

but notice this double-counts the total energy. We
could slip in a factor of 1/2 and proceed with

U = 1
2

N∑
i=1

N∑
j=1

Uij = 1
2

N∑
i,j

Uij ,

or more efficiently, the configuration

U =
N∑

j=1

j∑
i=1

Uij =
N∑

i<j

Uij

does the same job.
The sum of the kinetic energy and the potential

energy is the total energy, denoted E:

E = T + U = 1
2

N∑
i=1

miv
2
i +

N∑
i<j

Uij (|r1 − r2|)

Conservation of Energy

The total energy E in a system of N interacting par-
ticles is a constant. Establish this by first calculating

dT

dt
= 1

2

N∑
i=1

mi (2vi · ai) =
N∑
i,j

vi · F ij .

To proceed we must make the right-most term into
something symmetric. Impose the swap of indices
i ↔ j and sum the two equations to write

dT

dt
= 1

2

N∑
i,j

(vi · F ij + vj · F ji) .

Replace each force vector in terms of the gradi-
ent of the potential energy, exploiting the symmetry
Uij = Uji:

dT

dt
= −1

2

N∑
i,j

(
vi ·

(
∂

∂ri
Uij

)
+ vj ·

(
∂

∂rj
Uij

))
Notice this is exactly −dU/dt by the chain rule:

dU

dt
= d

dt

1
2

N∑
i=1

N∑
j=1

Uij

 = −dT

dt

Putting both results together we find

dE

dt
= d

dt
(T + U) = 0 ,

thus the total energy is conserved.

Example: Collision of Spheres

Consider two spheres of radius R1,2 and mass m1,2,
each moving with uniform velocity v1,2. With this
setup, the system has a total energy T (scalar) and
linear momentum P (vector):

T = 1
2m1v

2
1 + 1

2m2v
2
2

P = m1 v1 +m2 v2

If the spheres are to make contact via an elas-
tic collision without exchanging mass, each sphere
emerges with a new velocity vector u1,2 obeying

T = 1
2m1u

2
1 + 1

2m2u
2
2

P = m1 u1 +m2 u2 ,

which is to say energy and momentum are conserved
throughout the collision. The task is to solve for u1,
u2.

To make the problem easier, we can define a mo-
mentum exchange vector q such that

m1 u1 = m1 v1 − q

m2 u2 = m2 v2 + q .

This pair of equations can recover the answers u1,2
from q, so the whole problem becomes finding q.



8 CHAPTER 1. NEWTONIAN MECHANICS

The two spheres exchange momentum at the point
of contact, thus q is normal to each sphere’s surface
at that point. By the same token, q is parallel to the
vector connecting the center of each sphere. Thus
each vector on hand relates by:

q = |q| n̂ = |q|
(

r1 − r2

|r1 − r2|

)

Since the positions r1,2 are given, the direction of q
is already clear, and the task reduces to finding |q|.

To proceed, square each momentum exchange

equation to write

1
2m1u

2
1 = 1

2m1v
2
1 − v1 · q + q2

2m1

1
2m2u

2
2 = 1

2m2v
2
2 + v2 · q + q2

2m2

Take the sum of these, and notice all kinetic energy
terms cancel, leaving

0 = q · (v1 − v2) − q2
(

1
m1

+ 1
m2

)
.

Using q = |q| n̂, finally solve for |q|:

|q| =
(

2m1m2

m1 +m2

)
n̂ · (v1 − v2)



Chapter 2

Central Forces

1 Planetary Motion
Early Progress

The ‘modern’ understanding of planetary motion ar-
guably began with Johannes Kepler (1571 - 1630),
whose career predates the invention of calculus and
Newton’s laws of motion by decades. Already famil-
iar with the Heliocentric model of the solar system,
Kepler studied meticulously-recorded charts of night
sky measurements recorded by Tycho Brahe (1546 -
1601).

Paying attention to the positions of observable
planets in the night sky, Kepler astonishingly figured
out that planetary orbits were elliptical in shape with
the sun at a focus. This became known as Kepler’s
first law, which survives to this day among two other
laws written by Kepler.

Aware of Kepler’s first law, Newton proposed the
existence of a law of mutual Earth-sun attraction that
gives rise to elliptical planetary orbits. In the modern
vector notation, he began with something like

F = F (r) r̂ ,

and the quest was to find whatever F (r) is.
Using the calculus of his own invention, Newton

found the answer to be a unified force depending on
the masses involved and the inverse square of the dis-
tance separating them. We know this as Newton’s
law of universal gravitation.

The plan here is to develop the equations of plan-
etary motion using a similar approach, at least in
spirit, to Newton.

Shell Theorem

One assumption we’ll make early on, which happens
to be true, and will be proven with triple integration,
is any object can be considered as a point mass located
at the object’s center of mass. For instance, if we need

to calculate the gravitational attraction between two
asteroids, the shape of each does not matter. Only
the center-to-center distance and the mass of each
body is important.

Newton’s Second Law

The one-dimensional version of Newton’s second law

m
d2

dt2
x (t) = − d

dx
U (x)

generalizes to more dimensions where the force and
acceleration become vectors:

m
d2r

dt2
= m

dv

dt
= ma = F

I avoided saying exactly how −dU/dx becomes F .
Note that in one dimension,

F = −dU

dx

is true by definition, but the three dimensional ver-
sion of this requires a vector derivative operator. The
exact details aren’t needed in order to proceed.

Newton’s Third Law

The classic phrase, for every action, there is an equal
an opposite reaction, is Newton’s third law. It means
that the force from object 1 onto object 2 is exactly
opposite of the force from object 2 onto object 1. This
is concisely stated via vectors:

F 12 = −F 21

1.1 Two-Body Problem
Consider two bodies in space, one of mass m1 at po-
sition r1 (t), and the other of mass m2 at position

9
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r2 (t). The force imposed onto body 1 by body 2 is
given by

m1
d2

dt2
r1 (t) = m1

d

dt
v1 (t) = F 12 ,

and the force imposed onto particle 2 by particle 1 is
given by

m2
d2

dt2
r2 (t) = m2

d

dt
v2 (t) = F 21 .

This setup is called the two-body problem.

Center of Mass

In the two-body system, the center of mass is defined
as a point in space R (t) such that

R (t) = m1r1 (t) +m2r2 (t)
m1 +m2

.

The time derivative of the center of mass gives a
quantity called the center of velocity:

V (t) = d

dt
R (t) = m1v1 (t) +m2v2 (t)

m1 +m2
.

Taking the time derivative of the center of velocity
gives something interesting:

d2

dt2
R (t) = m1 (dv1 (t) /dt) +m2 (dv2 (t) /dt)

m1 +m2

= F 12 + F 21

m1 +m2
= F 12 − F 12

m1 +m2
= 0

Evidently, the second derivative of the center of
mass is precisely zero because F 12 = −F 21, regard-
less of how the forces act. This means that two bod-
ies, while free to move individually, are not accelerat-
ing anywhere as a group. Moreover, this result proves
that the center of velocity V is a constant V 0.

Relative Displacement

If the distance separating the two bodies is r, define
a vector

r (t) = r1 (t) − r2 (t)
with |r| = r, capturing the relative displacement be-
tween the two.

Listing this with the center of mass R (t), we have
a system of two equations that can be solved for
r1 (t), r2 (t) separately: (We know everything is a
function of t by now, so drop the extra notation.)

r1 = R + m2

m1 +m2
r

r2 = R − m1

m1 +m2
r

Reduced Mass

From the equations above, multiply through by m1,
m2, respectively, and take two time derivatives:

m1
d2r1

dt2
= m1

�
��d2R

dt2
+ m1m2

m1 +m2

d2r

dt2

m2
d2r2

dt2
= m2

�
��d2R

dt2
− m1m2

m1 +m2

d2r

dt2

These results say the same thing, as the left sides are
F 12, F 21, respectively, and the right sides differ by
the proper negative sign.

Evidently, we have

F 12 = m1m2

m1 +m2

d2r

dt2
.

That is, there is only one force equation to worry
about, and thus one position to worry about if we
work with the relative displacement vector r rather
than two explicit position vectors r1,2.

The price we pay is the mass term became a mess.
This group of symbols is called the reduced mass:

m∗ = m1m2

m1 +m2

Representing the effective mass of the total system
as m∗, the two-body problem is summarized in one
equation:

F 12 = m∗
d2r

dt2
= m∗a

A handy identity involving the reduced mass,
somewhat reminiscent of resistors in parallel, goes as:

1
m∗

= 1
m1

+ 1
m2

Linear Momentum

The linear momentum p = m∗v is not constant in
the two-body system. To see this, take a derivative
and simplify using Newton’s third law:

dp

dt
= m∗

(
dv1

dt
− dv2

dt

)
= m∗

(
F 12

m1
− F 21

m2

)
dp

dt
= F 12
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1.2 Angular Momentum
Alongside the notion of forces, we’ll need to put the
ideas of angular momentum to use. In particular, we
can show that the angular momentum of the two-
body system is constant, and find what it is.

By definition, the angular momentum L of the
two-body system reads

L = m∗r × v ,

where r is the relative displacement vector, and v is
its time derivative. Now calculate the time derivative
of L:

d

dt
L = m∗

d

dt
(r × v)

= m∗

(
v × v + r × dv

dt

)
= r × F

For the remaining cross product to vanish, we go
back to Newton’s original assumption that

F = F (r) r̂ ,

which means the force vector and the displacement
vector are parallel. Using this, we see that the deriva-
tive of L resolves to zero.

Without knowing the exact motion of the two-
body system, we can still write a formula for the an-
gular momentum. For some r (t), θ (t), we have, in
polar coordinates:

r = r r̂

v = dr

dt
r̂ + r

dθ

dt
θ̂

Remembering r̂ × r̂ is zero, we then have

L = m∗r
2 dθ

dt

(
r̂ × θ̂

)
.

The angular momentum is a constant vector that
points perpendicular to the plane of motion. We take
its magnitude

L = m∗r
2 dθ

dt

as a constant of motion in the two-body system.
It’s easy to show that the position vector and the

angular momentum vector are always perpendicular.
Starting with the definition of L, project r into both
sides:

r · L = m∗r · (r × v) ,
and then make use of the triple product:

r · L = m∗v · (r × r) = 0

1.3 Inverse-Square Acceleration
We’ve made it this far without knowing the mag-
nitude gravitational force F (r), although we have
harmlessly assumed that gravity acts in a straight
line. Here we will derive the proper gravitational
force by using Kepler’s first law as a starting point.

In detail, Kepler noticed that the orbit of any
planet around the sun takes an elliptical form de-
scribed by

r (θ) = r0

1 + e cos (θ) ,

where e is the eccentricity of the orbit, and r0 is a
positive characteristic length. Notice that r (θ) as
written places the origin (the sun) at the right focus
of the ellipse. Reverse the sign on the cosine term for
the sun at the left focus.

To really get started, take the time derivative of
the (constant) angular momentum of the two-body
system:

0 = dL

dt
= m∗r

(
2dr
dt

dθ

dt
+ r

d2θ

dt2

)
Perhaps you recognize the parenthesized term as be-
ing identically the θ̂-component of the acceleration
vector in polar coordinates. In terms of L, the accel-
eration vector is

a =
(
d2r

dt2
− L2

m2
∗r

3

)
r̂ + 1

m∗r�
�

��
(
dL

dt

)
θ̂ .

We need the polar form of the ellipse to calculate
d2r/dt2. For this, we find, after simplifying,

dr

dt
= dθ

dt

d

dθ

(
r0

1 + e cos (θ)

)
= L

m∗r0
e sin (θ) ,

and keep going to the second derivative:

d2r

dt2
= L2

m2
∗r

2r0
e cos (θ) = L2

m2
∗r

2

(
1
r

− 1
r0

)
The full acceleration vector then reads

a = L2

m2
∗r

2

(
�
��1
r

− 1
r0

−
�
��1
r

)
r̂ ,

which simplifies nicely:

a = −L2

m2
∗r0

r̂

r2

This finally reveals the nature of F (r). The r-
dependence is present as −1/r2, hence the name
inverse-square acceleration.
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Going back to the equations that led to the re-
duced mass, i.e.

m1
d2r1

dt2
= m∗

d2r

dt2

m2
d2r2

dt2
= −m∗

d2r

dt2
,

we can solve for the absolute acceleration of each
body:

a1 = m∗

m1
a

a2 = −m∗

m2
a

Eliminate a between the two equations to recover
Newton’s third law:

m1 a1 +m2 a2 = 0

1.4 Universal Gravitation
Enough ground work has been done to push toward
Newton’s universal law of gravitation.

Recall the absolute acceleration of each body a1,
a2, and replace the reduced mass m∗ and acceleration
a with expanded forms:

a1 =
(

m2

m1 +m2

)
−L2

m2
∗r0

r̂

r2

a2 =
(

−m1

m1 +m2

)
−L2

m2
∗r0

r̂

r2

Multiply each equation through by m1, m2, re-
spectively to turn accelerations into forces:

F 12 =
(

m1m2

m1 +m2

)
−L2

m2
∗r0

r̂

r2

F 21 =
(

−m1m2

m1 +m2

)
−L2

m2
∗r0

r̂

r2

Newton decided to introduce a new proportion-
ality constant G, named after ‘gravity’, to wrangle
all of the constants inherent to the two-body, system
such that

G =
(

1
m1 +m2

)
L2

m2
∗r0

.

Of course, both force equations are saying the
same thing due to Newton’s third law, thus we write
Newton’s law of universal gravitation:

F 12 = −G m1m2

r2 r̂

Note that the force vector bears the 12-subscript and
not the other way around. The subscript is often

omitted because the unit vector r̂ has an implied 12-
subscript that goes back to the definition of r.

While this calculation was set up in the context
of planetary motion, note that the gravitational force
is in fact universal, which is to say that every pair of
particles in the universe obeys the same law.

Problem 1
Show that

G = L2

m∗m1m2r0
.

1.5 Equations of Motion
With the law of universal gravitation on hand, we
should be able to run the analysis in reverse by start-
ing with F 12 and finishing with the shape of the el-
lipse, along with all other allowed possibilities.

Acceleration

Use
L = m∗r

2 dθ

dt

to eliminate 1/r2 in the force vector:

F 12 = −Gm1m2
m∗

L

dθ

dt
r̂

Also replace F 12 to keep simplifying

m1 a1 = m∗ a = −Gm1m2
m∗

L

dθ

dt
r̂ ,

and solve for the relative acceleration:

a = −Gm1m2

L

dθ

dt
r̂

Velocity

To proceed, replace the acceleration vector as the
derivative of the relative velocity by a = dv/dt. Also
replace r̂ via −r̂ = dθ̂/dθ to get

dv

dt
= G

m1m2

L

dθ

dt

dθ̂

dθ
,

simplifying with the chain rule to:

dv = G
m1m2

L
dθ̂

Integrate both sides of the above to get a vector
equation for the velocity

v (t) = G
m1m2

L
θ̂ (t) + v0 ,

where v0 is the integration constant. Letting θ = 0
correspond with the positive x-axis, it must be that
v0 = v0 ŷ.
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Position

To goal is get hold of a position equation r (θ). To get
closer, calculate the full angular momentum vector:

L = m∗r × v

= m∗r ×
(
G
m1m2

L
θ̂ + v0 ŷ

)
= m∗G

m1m2

L
r
(

r̂ × θ̂
)

+m∗v0r (r̂ × ŷ)

To handle the cross products, note that∣∣∣r̂ × θ̂
∣∣∣ = 1

|r̂ × ŷ| = |cos (θ)| ,

and we can work with just magnitudes:

L = m∗G
m1m2

L
r +m∗v0r cos (θ)

To simplify, use

G = L2

m∗m1m2r0
,

and work to isolate r, arriving at

r0 = r
(

1 + r0
m∗v0

L
cos (θ)

)
,

and finally get

r (θ) = r0

1 + (m∗r0v0/L) cos (θ) .

With r (θ) known, the position vector is straight-
forwardly written:

r = r (θ) r̂

Eccentricity

Comparing the above to the general form of a conic
section in polar coordinates, we pick out the eccen-
tricity to be

e = m∗r0v0

L
.

Circular orbits arise from the special case v0 = 0. An-
other special case is e = 1 for a parabolic trajectory.
For all e < 1, the orbit is strictly an ellipse. For e > 1,
the path (also technically an orbit) is hyperbolic.

This surely nails the case shut for Kepler’s first
law. All results reinforce the fact that planetary or-
bits occur on ellipses with the sun at a focus.

The eccentricity can be expressed by a variety of
combinations of terms. For a version without L, one
can find

e =
√
r0 v0√

G (m1 +m2)
,

or, if you need to get rid of r0:

e = v0L

Gm1m2

In terms of the eccentricity, the equations of mo-
tion can be simplified. For the position, we simply
have

r (θ) = r0

1 + e cos (θ) .

For the velocity and acceleration, shuffle the con-
stants around to establish

Gm1m2

L
= v0

e
,

which is only defined for non-circular orbits. With
this, we have:

v = v0

(
θ̂

e
+ ŷ

)

a = −v0

e

dθ

dt
r̂

1.6 Runge-Lorenz Vector
The two-body problem exhibits conservation of an-
gular momentum via the constant vector L. There
is, in fact, another constant vector of motion lurking
about called the Runge-Lorenz vector

Z = v × L −Gm1m2 r̂ .

Constant of Motion

Take a time derivative to prove Z is constant:

d

dt
Z = d

dt
(v × L) −Gm1m2

dr̂

dt

= dv

dt
× L + v ×

�
��dL

dt
−Gm1m2

dr̂

dt

Keep simplifying with

dv

dt
= 1
m∗

F = −Gm1m2

m∗r2 r̂ ,

and also with L = m∗r × v, so we have

d

dt
Z = Gm1m2

(
− r̂ × (r × v)

r2 − dr̂

dt

)
.

Replace v with its polar expression and note that

r × v = r ×
(
dr

dt
r̂ + r

dθ

dt
θ̂

)
= r2 dθ

dt

(
r̂ × θ̂

)
,

and furthermore, using the BAC-CAB formula:

r̂ × (r × v) = r2 dθ

dt
r̂ ×

(
r̂ × θ̂

)
= −r2 dθ

dt
θ̂
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Summarizing, we find

d

dt
Z = Gm1m2

(
dθ

dt
θ̂ − dr̂

dt

)
= 0

as proposed.

Perigee

With Z known to be constant, we’re free to evaluate
it at any point along the trajectory. Choose a point
rp = rp x̂ that has vp · rp = 0, called a perigee:

Z = vp × L −Gm1m2 x̂

= vp × (m∗rp x̂ × vp) −Gm1m2 x̂

=
(
m∗rpv

2
p −Gm1m2

)
x̂

At the perigee, the velocity vp is momentarily
equal to rp dθ/dt, which we’ll call

vp = rp ωp .

In the same notation, the angular momentum is

L = m∗r
2
pωp = m∗rpvp ,

and the vector Z becomes

Z =
(

L2

m∗rp
−Gm1m2

)
x̂ .

We can keep simplifying. Replace L2 with the
expression involving G:

Z = Gm1m2

(
r0

rp
− 1
)

x̂ .

The ratio r0/rp can be calculated by setting θ = 0 in
the polar equation r (θ) for a conic section:

rp = r0

1 + (r0m∗v0/L) = r0

1 + e

Finally, the simplest form for Z is:

Z = Gm1m2 e x̂

What Z tells us, apart from containing all infor-
mation about the trajectory, is that all gravitational
trajectories contain at least one perigee, defining the
x-axis of the coordinate system about which the mo-
tion is symmetric.

Apogee

The perigee is also known as the nearest distance at-
tained between the two bodies. For an elliptical orbit
or hyperbolic orbit, the perigee is given by θ = 0:

rperigee = r0

1 + e

For elliptical orbits, there is also the notion of
apogee, which is the furthest distance attained be-
tween the two bodies. Set θ = π to find

rapogee = r0

1 − e

Problem 2
Take derivatives of

r (θ) = r0

1 + e cos (θ)

to verify the locations of the perigee and apogee.

Problem 3
Show that:

e =
∣∣∣∣rp − ra

rp + ra

∣∣∣∣

Conic Trajectory

The Runge-Lorenz vector

Z = v × L −Gm1m2 r̂ ,

together with its particular expression

Z = Gm1m2 e x̂

can be used together to quickly recover the polar
equation for conic sections by projecting the position
vector across the equation and simplifying:

r · Z = r · (v × L) −Gm1m2 r · r̂

rZ cos (θ) = L · (r × v) −Gm1m2r

Gm1m2re cos (θ) = L2

m∗
−Gm1m2r

Now solve for r (θ) and simplify more:

r (θ) =
(

L2

Gm1m2m∗

)
1

1 + e cos (θ)
= r0

1 + e cos (θ)
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Relation to Ellipse

An ellipse is classified by two perpendicular lengths
we know as the semi-major and semi-minor axes, de-
noted a, b, respectively. By studying the ellipse, it’s
straightforward to show that

a = r0

1 − e2 ,

along with
b = r0√

1 − e2
,

so that
b

a
=
√

1 − e2

and
r0 = b2

a
.

The a-equation can be derived by taking the dif-
ference between r (0) and r (π), i.e. the distance be-
tween the perigee and apogee. This pair of points
defines the distance 2a.

The b-equation can be derived by finding r∗, θ∗
that correspond to y = b, the highest point on the
ellipse:

0 = d

dθ
(y (θ)) = d

dθ
(r (θ) sin (θ))

∣∣∣∣
r∗,θ∗

=
(

r0 e sin2 (θ)
(1 + e cos (θ))2 + r0 cos (θ)

1 + e cos (θ)

)∣∣∣∣
r∗,θ∗

= r2
∗
r0

(e+ cos (θ∗))

Evidently, we have

cos (θ∗) = −e .

Taking this with

b = r∗ sin (θ∗)

r∗ =
√
e2a2 + b2

is enough to finish the job. Note that similar rela-
tionships can be drawn for hyperbolic orbits.

Problem 4
Show that r ·v = 0 is true only at the apogee and

perigee.

Dimensionless Runge-Lorenz

The Runge-Lorenz vector can be made into a dimen-
sionless vector ϵ by dividing Gm1m2 across the whole
equation

ϵ = v × L

Gm1m2
− r̂ ,

where by the properties of Z, we also know

ϵ = e x̂ .

With this setup, write

r̂ + e x̂ = v × L

Gm1m2
,

and then project r into each side to recover the equa-
tion of a conic section:

r (1 + e cos (θ)) = r · (v × L)
Gm1m2

= r0

1.7 Kepler’s Laws
We spent a good effort developing the nature of grav-
itational orbits, and it would be difficult to imag-
ine doing this without all of the modern advantages,
particularly calculus and vectors. Somehow, Kepler
was able to find enough pattern in sixteenth-century
astronomical data to work out three correct laws of
planetary motion. The data itself was recorded by as-
tronomer Tycho Brahe over a span of at least thirty
years.

Law of Ellipses (1609)

The orbit of each planet is an ellipse, with the sun at
a focus.

This law we know very well by now, as did New-
ton. For the sun at the right focus (reverse the sign
for the left focus), a planetary orbit looks like

r (t) = r0

1 + e cos (θ (t)) ,

where e is the eccentricity.

Law of Equal Areas (1609)

A line drawn between the sun and the planet sweeps
out equal areas in equal times.

This is an amazing thing to notice from looking at
charts of numbers. It turns out that this law is actu-
ally stating the conservation of angular momentum,
although Kepler wouldn’t have known so.

To derive the law in familiar language, recall the
setup for the area integral in polar coordinates, par-
ticularly

A = 1
2

∫ θ1

θ0

r2 dθ .

In differential form, this same notion reads

dA = 1
2r

2dθ .
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Or, by the chain rule, we can also write

dA

dt
= 1

2r
2 dθ

dt
.

Notice, though, that r2dθ/dt is also present in the
angular momentum

L = m∗r
2 dθ

dt
,

which can only mean

dA

dt
= L

2m∗
,

thus dA/dt is constant. This is the literal mathemat-
ical statement of ‘equal areas swept in equal times’.

Problem 5
For a body moving on a path r = f (θ) obeying

Kepler’s second law, show that the acceleration is:

a = L2

m∗r3

(
f ′′ (θ)
f (θ) − 2

(
f ′ (θ)
f (θ)

)2
− 1
)

r̂

Harmonic Law (1618)

The square of the period of a planet is directly pro-
portional to the cube of the semi-major axis of the
orbit.

Years after his first two discoveries, Kepler dis-
cerned yet another relationship for linking the time
scale of the orbit to its length scale. While Kepler
only knew of the proportionality between the period
T and the semi-major axis a, we can do better by
finding the associated constant.

Integrate the area equation for a full period of the
orbit:

A = 1
2

∫ 2π

0
r2 dθ = L

2m∗

∫ T

0
dt = L

2m∗
T

The area is simply πab, so we find

T = πab
2m∗

L
.

Replace b using b = a
√

1 − e2, and eliminate L
using

G = L2

m∗m1m2r0
.

To deal with the r0 term, recall a = r0/
(
1 − e2) and

reason that

T = 2πa3/2√
G (m1 +m2)

.

1.8 Energy Considerations
With some fine details of planetary motion finished,
it’s worth pointing out that the notion of ‘energy’
was not used at all. To develop some of this now,
recall that in one dimension, the force relates to the
potential energy by

F = − d

dx
U (x) .

Planetary motion, on the other hand, requires
three dimensions to express the force, or two dimen-
sions if we already know the plane of the motion. This
is why the force is a vector:

F = −Gm1m2

r2 r̂

Notice, though, that the force is dependent on one
spacial quantity, the length, which to say the force is
effectively one-dimensional.

Gravitational Potential Energy

Since the gravitational force acts in strictly the radial
direction, it stands to reason that the gravitational
potential energy U (r) relates to the force by:

F (r) = − d

dr
(U (r)) r̂

This is just like the one-dimensional Newton’s law
F = −dU/dx, except the force is a vector, balanced
by r̂ on the right.

To solve for U (r), project r̂ into both sides of the
above to get

Gm1m2

r2 = d

dr
(U (r)) ,

solved by:
U (r) = −Gm1m2

r

This is the total gravitational potential energy stored
between the two masses m1, m2.

For a more formal definition, turn Newton’s sec-
ond law into a definite integral in the variable dr to
get ∫ r1

r0

F (r) · dr = −
∫ r1

r0

d

dr
U (r) r̂ · dr ,

where the integral on the right is redundant to the
derivative, leaving U (r) evaluated at the endpoints:∫ r1

r0

F (r) · dr = − (U (r1) − U (r0))

Set r0 to infinity to recover the previous form.
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Kinetic Energy

Containing two objects in total, the kinetic energy
energy T of the two-body system is

T = 1
2m1v

2
1 + 1

2m2v
2
2 .

What we need, however, is to express the kinetic en-
ergy in terms of the relative velocity

v = v1 − v2 .

Working out the algebra for this is left as an exercise,
but the effort results in

T = 1
2m∗v

2 + 1
2 (m1 +m2)V 2

0 ,

where V0 is the (constant) center of velocity of the
whole system. It’s harmless to set this term to zero.

Conservation of Energy

The total energy of the two-body system is the sum
of the kinetic and the potential contributions:

E = T + U = 1
2m∗v

2 − Gm1m2

r

As it turns out, the energy of the system is constant.
To prove this, begin with Newton’s second law

F = −Gm1m2

r2 r̂ ,

and project the velocity vector into each side:

v · F = −Gm1m2

r2 (v · r̂)

Replace F on the left and v on the right

m∗

(
v · dv

dt

)
= −Gm1m2

r2

(
dr

dt
r̂ + r

dθ

dt
θ̂

)
· r̂ ,

which simplifies to

1
2m∗

d

dt
(v · v) = −Gm1m2

r2
dr

dt
.

(Note we didn’t really need the polar expression for
the velocity. The r-component of the velocity is al-
ways dr/dt.) The right side can be undone with the
chain rule:

d

dt

(
1
2m∗v

2
)

= d

dt

(
Gm1m2

r

)
Finally, we have found

d

dt
(T + U) = 0 ,

as expected.

Apocalypse Problem

Problem 6
If a planet were suddenly stopped in its orbit, sup-

posed circular, show that it would fall into the sun in
a time which is

√
2/8 times the period of the planet’s

revolution.
Answer: Begin with the total energy of the system

−Gm1m2

a
= 1

2m∗

(
dr

dt

)2
− Gm1m2

r (t) ,

where a is the radius of the orbit. Solve for dr/dt to
get

dr

dt
=
√

2G (m1 +m2)
a

√
a

r
− 1 ,

which can be separated into two equal integrals:∫ 0

a

dr√
a/r − 1

=
√

2G (m1 +m2)
a

∫ t∗

0
dt ,

where t∗ is the answer we’re after.
To solve the r-integral, choose the peculiar sub-

stitution

r = a cos2 (θ)
dr = −2a cos (θ) sin (θ) dθ ,

and the above reduces to

2a
∫ π

π/2
cos2 (θ) dθ = t∗

√
2G (m1 +m2)

a
.

The remaining θ-integral resolves to π/4. Solving
for t∗ gives

t∗ =
√

2
8

(
2πa3/2√

G (m1 +m2)

)
=

√
2

8 T ,

as stated. This is about 0.1768 years, or just over two
months, supposing there are twelve months per year
on that planet.

Inverse Cube Attraction

Problem 7
A particle released from rest a distance D from

the origin is attracted by the force

F = −mk2

x3 .

Show that the time required to fall to the origin is
D2/k. Hint:

v = dx

dt
= k

√
1
x2 − 1

D2
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1.9 Solid Sphere
We’ve taken on assumption (correctly) the shell the-
orem, which says a gravitational body with finite size
can be treated as a point located at its center of mass.

With the shell theorem, we can calculate the grav-
itational force inside a uniform sphere of mass M
and radius R at any distance r < R from the center.
A uniform sphere has the same density throughout,
which we’ll call λ:

λ = M

4πR3/3

Force Inside Solid Sphere

At a distance r < R from the center, according to
the theorem, all of the sphere’s mass that is located
further from the center than r can be ignored. Only
the sphere’s mass obeying r < R contributes to the
force at distance r. This portion is called the enclosed
mass. The enclosed mass is written m (r), given by

m (r) = λ
4
3πr

3 .

If the test particle has mass m0, the magnitude of
the force on the test particle is

F (r) = −Gm0m (r)
r2 = −Gm0Mr

R3 .

Due to the r3 factor that enters the numerator, the
usual r−2 factor is replaced by r. The gravitational
force inside a sphere grows linearly with distance un-
til r = R.

As a vector, the force inside the solid sphere reads

F (r) = −Gm0M

R3 r .

Energy Inside Solid Sphere

The gravitational potential energy inside a solid
sphere is not U ∝ −1/r. To find the proper answer,
first define

lim
r→∞

U (r) = 0

which assumes there is no energy when infinitely far
from the solid sphere, assumed centered at the origin.

Starting from infinity, let a test particle of mass
m0 approach the solid sphere, eventually penetrat-
ing the its surface, stopping at r1. The energy spent
during approach is broken into two integrals:

U (r1) = −
∫ R

∞
F out · dr −

∫ r1

R

F in · dr ,

where F out, F int are the forces felt by m0 outside
and inside the sphere, respectively.

Carrying out the integrals and simplifying, one
finds

U (r1) = Gm0M

2

(
r2

1 − 3R2

R3

)
.

Note that the special point r1 = R corresponds to be-
ing on the sphere’s surface, and the potential energy
takes a familiar form

U (R) = −Gm0M

R
.

Self Energy

The self energy of a solid object is the energy required
to assemble the object from parts initially at infinity.
Since the gravitational force is attractive, we can ex-
pect the self energy due to gravity to be negative.

Demonstrating on a uniform solid sphere of radius
R and mas M , write

dU = −Gm

r
dm ,

where dU is the energy added when a particle of mass
dm is added to the existing sphere of mass m = m (r).
The particle settles at radius r, and each particle does
so until r = R.

Since the sphere has uniform density λ, we further
write

dU = −Gmλv

r
λdv ,

where v = v (r) is the volume of the sphere. Turning
the crank gives:

dU = −Gλ2 4πr3/3
r

4πr2dr

U = −G (4πλ)2 1
3

∫ R

0
r4 dr

U = −3
5
GM2

R

Variable Density

If the gravitational force inside a solid phere is in-
dependent of position, determine the density λ (r) of
the sphere.

While there exist more rigorous ways to solve this
problem, assume the density takes the form

λ (r) = Arn ,

where n is an integer and A is a unit-balancing con-
stant. With this, all mass contained with a radius
r < R is given by

m (r) = A
4π
3 r3+n .
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Then, the magnitude of the force on the particle is

F = −4πGm0

3 r1+n .

If the force is to be independent of r, we must
have n = −1, or λ (r) = A/r.

1.10 Gravity Near Earth
Students of classical physics find out early that the
force due to gravity near Earth’s surface is a vector
pointing straight down

F g = −mg ŷ ,

with corresponding potential energy

U (y) = mgy ,

where y is the height above the surface (or a location
near it), and g is the local gravitation constant:

g = 9.8 m
s2

On the other hand, we just went through all the
pains of showing that the gravitational force is

F (r) = −Gm1m2

r2 r̂

with potential energy

U (r) = −Gm1m2

r
.

Clearly, these two pictures must be reconciled. To
do so, let r be replaced by the quantity R+ y, where
R is a constant distance we’ll take to be the radius
of the Earth, and y is the effective height, approxi-
mately from sea level. What we assume throughout
is that y ≪ R.

Without loss of generality, we can assume all dis-
placements are one dimensional and thus r̂ = ŷ. This
identifies m1 for the mass of the Earth, and m2 for
the mass of a test projectile.

With these restrictions, the force and energy be-
come:

F (y) = − Gm1m2

(R+ y)2 ŷ

U (y) = −Gm1m2

(R+ y)
Next apply binomial expansion to each denomi-

nator, particularly:

(R+ y)−2 ≈ 1
R2 − 2y

R3 + 3y2

R4 − · · ·

(R+ y)−1 ≈ 1
R

− y

R2 + y2

R3 − · · ·

To first order, the above equations become

F (y) ≈ −Gm1m2

R2

(
1 − 2y

R

)
ŷ

U (y) ≈ −Gm1m2

R

(
1 − y

R

)
.

We want the force equation to be constant, thus we
see the quantity 2y/R must be negligible so the effec-
tive force at the surface is

F g = −Gm1m2

R2 ŷ .

The acceleration term is identically g:

g = GmEarth

R2
Earth

.

For the potential energy, we have

U (y) = U0 +mgy ,

where U0 is the potential energy at y = 0, often de-
fined to be zero, and the unscripted mass m is that
of a test particle (not the Earth).

Note that the first-order potential term is main-
tained despite y/R being a very small number. The
reason for this not only to recover the form mgy, but
also that the first derivative must equal a constant,
which is what we asked of the force.

Problem 8
A person’s weight is F0 at sea level. To first order

in y, what is the person’s weight 4km above sea level?
Answer: F4 km = F0 (1 − 2 (4 km) /R)

Escape Velocity

In a two-body system with gravity being the
only force present, suppose we imparted an initial
carefully-chosen escape velocity ve along the line be-
tween the bodies such that the kinetic energy goes to
zero as the separation becomes infinite.

As a two-body problem, we can apply conserva-
tion of energy to write

1
2m∗v

2
0 − Gm1m2

d
= 1

2m∗v
2 − Gm1m2

r
= 0 ,

where d is the initial separation between the bodies.
The total energy is zero by definition.

From the energy statement, we can easily solve
for the escape velocity from a starting separation d:

ve =
√

2Gm1m2

m∗d
=
√

2G (m1 +m2)
d

For the case of a small body escaping Earth, the
above becomes

ve ≈
√

2gREarth .
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Hole Through Earth

An object of mass m is dropped through a straight
tube connecting two points on Earth’s surface. Ne-
glecting rotational effects and friction, what happens
to the object?

Unless the hole is drilled through the center,
which we will not assume, the gravitational force on
the object resolves into two components - one compo-
nent parallel to the tube, the other component per-
pendicular. The equilibrium position of the object is
in the center of the tube where the parallel compo-
nent of the force is zero.

Let x be the parallel displacement form equilib-
rium, and let r be the position vector from the center.
The force on the object parallel to the tube is:

Fx = F (r) · x̂ = −GMm

R3 (r · x) ,

or
m
d2x

dt2
= −GMm

R3 x = −gm

R
x .

The above is the differential equation

d2x

dt2
= −ω2x

for a simple harmonic oscillator solved by

x (t) = A cos (ωt+ ϕ) ,

where A is the length of the tube and ϕ chooses the
initial position of the object. The angular frequency
ω is given by

ω =
√
g

R
.

1.11 Energy and Orbit
Parabolic Orbit

Suppose now that a two-body system has zero total
energy

E = 0 .
but the motion is not strictly along the line connect-
ing the two bodies. In this special case, the system
is always at escape velocity. This does not mean the
escape velocity is constant. The distance d is playing
the role of r in the ve equation.

To develop this, recall that the velocity for a
parabolic orbit can be written

v = v0

(
θ̂ + ŷ

)
,

which means

v2 = v · v = 2v2
0
r0

r
.

Using the escape velocity in place of v allows us to
write

2G (m1 +m2)
r

= 2v2
0
r0

r
,

or

v2
0 = G (m1 +m2)

r0
.

Elliptical Orbit

Elliptical orbits are called bound orbits, and have neg-
ative total energy:

E < 0

Interestingly, if we take a parabolic orbit with E = 0
and subtract a little energy from the total (by some
external means), then the parabola becomes an el-
lipse by having the second focus come in from infin-
ity.

We ought to be able to prove the total energy is
negative for an elliptical orbit. Start with the total
energy

E = 1
2m∗v

2 − Gm1m2

r
,

and substitute v2 using

v = v0

e

(
θ̂ + e ŷ

)
,

which excludes the case of circles. Proceeding care-
fully, find

v2 = v2
0
e2

(
2r0

r
− 1 + e2

)
= 2Gm1m2

m∗r
− Gm1m2

m∗r0

(
1 − e2) ,

so the kinetic term is

Ekin = Gm1m2

r
− Gm1m2

2r0

(
1 − e2) .

The total energy sums the potential plus the ki-
netic, which happens to contain equal and opposite
1/r-like terms, leaving just the constant:

E = −Gm1m2

2r0

(
1 − e2) = −Gm1m2

2a ,

in terms of v0,

E = −1
2m∗v

2
0

(
1 − e2

e2

)
.
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Hyperbolic Orbit

Hyperbolic orbits are called unbound orbits, and have
positive total energy:

E > 0

The analysis of this situation follows exactly like the
elliptical case. For the total energy, you can see e > 1
simply flips the sign to make

E = Gm1m2

2a = 1
2m∗v

2
0

(
e2 − 1
e2

)
.

Circular Orbit

For circular orbits, we need to go back to the velocity
equation

v = Gm1m2

L
θ̂ ,

which has no v0-term.
The angular momentum is

L = m∗R
2 dθ

dt
= m∗a

2 2π
T
,

where T is the period of the orbit and R is the radius.
Simplifying gives

L = m∗
√
G (m1 +m2)R ,

and then the square of the velocity is:

v2 = G (m1 +m2)
R

The time derivative of v gives a familiar equation
for the acceleration

a = −Gm1m2

L

dθ

dt
r̂ ,

which for circular orbits simplifies to

a = −v2

R
r̂ ,

as expected for circular motion in general.
The energy of a circular orbit is

E = 1
2
Gm1m2

R
− Gm1m2

R
= −Gm1m2

2R ,

thus the kinetic energy is half the potential energy,
and the total is negative.

Eccentricity and Orbit

Begin with the Runge-Lorenz vector and replace L
using its definition:

Z = v × (m∗r × v) −Gm1m2 r̂ ,

and square the whole equation:
Z · Z = |v × (m∗r × v̂)|2

− 2Gm1m2 v × (m∗r × v̂) · r̂ +G2m2
1m

2
2

For the first term on the right, notice v is perpen-
dicular to r × v, so

|v × (m∗r × v̂)| = m∗rv
2 |sin (ϕ)| ,

where ϕ is the angle between r and v.
For the second term, the scalar triple product can

be rewritten
v × (m∗r × v̂) · r̂ = m∗ (r × v) · (r̂ × v) .

The remaining vectors are parallel and the whole
quantity simplifies to

v × (m∗r × v̂) · r̂ = m∗rv
2 sin2 (ϕ) .

Rewriting Z · Z with this in mind, we have

Z2 =
(
m∗rv

2)2 sin2 (ϕ)
− 2Gm1m2m∗rv

2 sin2 (ϕ) +G2m2
1m

2
2 ,

or
Z2

G2m2
1m

2
2

= 1 + sin2 (ϕ)
(
q2 − 2q

)
,

where
q = m∗rv

2

Gm1m2
.

simplifying this further gives
Z2

G2m2
1m

2
2

= cos2 (ϕ) + sin2 (ϕ) (1 − q)2

Finally, note that the left size is actually the
square of the eccentricity, giving, after restoring q:

e2 = cos2 (ϕ) + sin2 (ϕ)
(

1 − rv2

G (m1 +m2)

)2

This is an enlightening result. For ϕ = 0 the motion
is purely radial and uninteresting. For all other cases,
we see the combination of variables being suspiciously
like to the escape velocity. Swapping this in gives

e2 = cos2 (ϕ) + sin2 (ϕ)
(

1 − 2v2

v2
e

)2

We see if v = ve, then the eccentricity is pre-
cisely one, which is consistent with what we know of
parabolic orbits. Similarly we see the cases v < ve

and v > ve give e < 1 and e > 1 respectively, which
is the signature of elliptic and hyperbolic orbits. A
circular orbit has ϕ = π/2.
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1.12 Shell Theorem
Newton’s law of gravitation tells us that every parti-
cle in the universe is trying to pull every other particle
toward itself with a force proportional to the masses
involved and inversely proportional to the square of
the separation, and this is duly used to calculate the
force onto planets, moons, satellites, and so on.

Using triple integration and spherical coordinates,
something Newton didn’t have, we finally address
an assumption made early in gravitational analysis,
namely why we’re allowed to represent voluminous
objects as single points located at the center of mass.
This is called the shell theorem, and entails two im-
portant proofs.

Outside a Sphere

Consider a solid sphere of radius R, total mass M ,
and uniform density λ. Also let there be a test par-
ticle of mass m somewhere in space. Without loss of
generality, place the test particle on the z-axis at the
point D = D ẑ. The length D is the distance from
the test particle to the center of the sphere.

In order to ‘properly’ calculate the gravitational
attraction between the test mass and the sphere, a
volume integral over there entire sphere must be cal-
culated. Choose any element of volume dV inside the
sphere at location r, which is located distance r from
the center, at an angle θ from the z-axis.

Let vector q denote the line connecting D to r
such that

r + q = D ẑ ,

and also let α be the angle between ẑ and q̂. From
the law of cosines, we can say:

q2 = r2 +D2 − 2rD cos (θ)
r2 = q2 +D2 − 2qD cos (α)

The total force on the test particle is the vector F .
However, due to the ϕ-symmetry of this picture, only
the z-component of the force will have a net effect on
the particle. All xy-components cancel equally and
oppositely:

F =
∫

D
dF · ẑ =

∫ ∫ ∫
volume

dF cos (α)

The differential force is

dF = −Gm
q2 dm ,

where dm is the mass of the differential volume el-
ement influencing the test particle. The mass term

can be replaced using the density

dm

dV
= M

4πR3/3 = λ ,

where it is appropriate to replace dV with the volume
element in spherical coordinates.

The force integral now is

F = −Gmλ
∫ 2π

0

∫ π

0

∫ R

0
cos (α)
q2 r2 sin (θ) dr dθ dϕ ,

which, after substituting and simplifying a bit, be-
comes:

F = −Gmλ 2π
2D

∫ π

0

∫ R

0(
1
q

+ D2 − r2

q3

)
r2 sin (θ) dr dθ

Perform implicit differentiation on the q2 equation
to find, remembering r and θ are independent,

q dq = rD sin (θ) dθ ,

and rewrite the integral with the intent of integrating
over r last. Make sure you know why the limits are
now changed:

F = −Gmλ π

D2

∫ R

0

∫ (D+r)

(D−r)(
1 + D2 − r2

q2

)
r dq dr

The whole q-integral treats r as a constant and
resolves to 4r, so

F = −Gmλ π

D2

∫ R

0
4r2 dr ,

and the r-integral is elementary. Simplifying every-
thing gives

F = −Gm
(

3M
4πR3

)
π

D2
4
3R

3 = −GMm

D2 .

Conveniently, the force acts as if all of its mass
were concentrated at the center. This result is also
true in general, where the notion of ‘center’ means
center of mass, not necessarily the center of the vol-
ume.
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Inside a Shell

Another interesting question that arises in the course
of studying gravity is, what does it feel like inside a
hollow uniform shell? To pursue this question, sup-
pose we have a thin spherical shell of radius R and
thickness 2a that is much less than R, and the test
particle is inside anywhere within the shell.

This setup borrows all of the geometry from the
previous setup, except this time we have D < R,
which is the important part. Setting up the same
integral and doing the same simplifications, we can
jump to

F = −Gmλ π

D2

∫ R+a

R−a

∫ (D+r)

(r−D)(
1 + D2 − r2

q2

)
r dq dr .

Most notably, the lower integration in the q-integral
is swapped to accommodate D < R. This causes the
q-integral to resolve to zero, and we find

F = 0

inside the shell.

2 Central Potential
The whole apparatus for studying planetary motion
can be grown from the gravitational potential energy

U (r) = −Gm1m2

r

of a two-body system. The plan now is to develop
the theory while assuming as little as possible about
U (r).

Two-Body Analysis

As a two-body system, we still deal with the center
of mass

R (t) = m1r1 (t) +m2r2 (t)
m1 +m2

,

whose time detivative is the center of velocity V (t).
Two time derivatives of R (t) yields the center of ac-
celeration, which is always zero by Newton’s third
law:

d2

dt2
R (t) = 0

In terms of R, the absolute position of each body
is

r1 = R + m2

m1 +m2
r

r2 = R − m1

m1 +m2
r ,

and we define the relative displacement

r (t) = r1 (t) − r2 (t)

to deal with one variable instead of two. The time
derivative of the relative displacement is the relative
velocity v (t).

In terms of r (t), Newton’s second law takes spe-
cial form

F 12 = m∗
d2r

dt2
,

where
m∗ = m1m2

m1 +m2

is the reduced mass.

Energy Conservation

The total energy in the two-body system is the sum
of a kinetic term and a potential term. For the kinetic
energy we have

T = 1
2m∗v

2 + 1
2 (m1 +m2)V 2

0 ,

where we take V0 = 0 without loss of generality. For
the potential energy we’re stuck with just U (r).

For the total energy, we write

E = T + U = 1
2m∗v

2 + U (r) .

Take a single time derivative to find E to be constant

dE

dt
= 1

2m∗
d

dt

(
v2)+ d

dt
U (r)

= 1
2m∗2v · dv

dt
+ v · d

dr
(U (r))

= v ·
(
m∗

dv

dt
+ d

dr
(U (r))

)
,

because the parenthesized term is identically New-
ton’s second law and resolves to zero.

Angular Momentum

The angular momentum

L = m∗r × v

doesn’t depend on U (r) at all, thus we recycle the
constant of motion from planetary motion analysis:

L = m∗r
2ω ,

where ω = dθ/dt. Since L is constant, we know the
motion to be planar.
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Polar Coordinates

In the polar coordiante system, the relative position,
veclocity, and acceleration vectors read

r = r r̂

v = dr

dt
r̂ + rω θ̂

a =
(
d2r

dt2
− rω2

)
r̂ +

(
r
dω

dt
+ 2dr

dt
ω

)
θ̂ .

The θ̂-term in the acceleration is proportional to
dL/dt and vanishes entirely, leaving a purely radial
acceleration vector

a =
(
d2r

dt2
− L2

m2
∗r

3

)
r̂ .

2.1 Effective Potential
In terms of the angular momentum L, the velocity
vector can be written

v = dr

dt
r̂ + L

m∗r
θ̂ ,

meaning

v2 =
(
dr

dt

)2
+ L2

m2
∗r

2 .

Feed this v2 into the energy conservation statement:

E = 1
2m∗

(
dr

dt

)2
+ L2

2m∗r2 + U (r)

The latter two terms constitute the effective po-
tential energy

Ueff (r) = U (r) + L2

2m∗r2 ,

also known as the centrifugal potential energy, the
gradient of which is the centrifugal force.

In terms of the effective potential, the total en-
ergy goes back down to two terms, one with time
dependence and one with spatial dependence:

E = 1
2m∗

(
dr

dt

)2
+ Ueff (r)

Problem 9
For the elliptical orbit of a planet, show for a given

radius r0 that:

|Ueff (r0)| = −Gm1m2

2r0

2.2 One-Dimensional Systems
In terms of the effective potential energy, the total
energy is reduced to a one-dimensional system in the
variable r. Taking this literally, let us study the
generic one-dimensional system

E = 1
2m

(
dx

dt

)2
+ U (x)

to remove complications from planar motion.
Solving the above for the velocity, one writes

dx

dt
= ±

√
2
m

(E − U (x))

to establish the euation of motion

t = ±
√
m

2

∫ xf

xi

dx√
E − U (x)

.

Time-Reversal Symmetry

The ± symbol in the equation of motion indicates
time-reversal symmetry of the problem. Typically in
one-dimensional systems, the solution to the equa-
tion of motion exhibits such symmetry, a stronger
constraint than what we have. Supposing x (t) is a
solution to the equation of motion, time-reversal sym-
metry implies that x1 (t) = x (t0 − t) is also a solu-
tion that differs from original x (t) by an integration
constant.

For most configurations, there exists at least one
turning point t∗ at which the velocity goes to zero.
We exploit time-reversal symmetry to write an exact
time-reversed-and-shifted equation

x1 (t) = x (2t∗ − t) .

Next, we note from function- and derivative matching
that

x1 (t∗) = x (t∗)
d

dt
x1 (x (t∗)) = − d

dt
x (x (t∗)) = 0 ,

and so on for higher derivatives. We may then drop
the 1-subscript to get

x (t) = x (2t∗ − t) .

Shifting the above by t∗, the symmetric equation

x (t∗ + t) = x (t∗ − t)

emerges. In one dimension, the essence of time-
reversal symmetry means that equations of motion
are symmetric about turning points t∗.
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Trapped Particle

Potential energy functions U (x) that exhibit at least
one local minimum can ‘trap’ a particle into an oscil-
latory pattern. Supposing xi and xf correspond to
turning points in the motion, the oscillatory period
is given by

T =
√

2m
∫ xf

xi

dx√
E − U (x)

.

The quantity E − U (x) is always positive except at
the turning points, at which the speed of the particle
is instantaneously zero.

Harmonic Oscillations

In the vicinity of a local energy minimum at x∗, the
first- and second-derivatives of U (x∗) are

d

dx
U (x∗) = 0

d2

dx2U (x∗) = λ > 0 ,

which allows U (x) to be approximated by Taylor se-
ries:

U (x) ≈ U (x∗) + 1
2λ (x− x∗)2

Applying Newton’s second law, the corresponding
equation of motion is

d2

dx2x (t) = − λ

m
(x− x∗) ,

whose solution is known as the harmonic oscillator

x (t) = x∗ +A sin
(√

λ

m
t− ϕ0

)
.

The amplitude of oscillation is A, and the initial
phase is contained in ϕ0.

Unstable Equilibrium

An equilibrium point x∗ exists at any local maximum
of U (x), however motion around such a point is un-
stable (non-oscillatory). To show this, reverse the
sign on λ to arrive at the differential equation

d2

dx2x (t) = λ

m
(x− x∗) ,

generally solved by

x (t) = x∗ +Aeλt +Be−λt .

That is, the particle is pulled away from x∗ and rides
U (x) downhill.

2.3 Planar Orbits
Returning to the case of planar orbits, we can extrap-
olate all one-dimensional results to two dimensions by
replacing x → r and acounting for θ (t) as a dynamic
variable.

Equations of Motion

In terms of the total energy E, the time evolution of
the two-body system is given by

t (r) = ±
√
m∗

2

∫ rf

ri

dr√
E − Ueff (r)

.

An equation for θ (t) is attained by integrating the
angular momentum L = m∗r

2ω to write

θ (t) = θ0 + L

m∗

∫ t

0

dt′

(r (t′))2 .

Switching to the r domain, the above is also written

θ (r) = ± L√
2m∗

∫ rf

ri

dr/r2√
E − Ueff (r)

.

Apogee and Perigee

Supposing there exits a time t∗ at which the radius
r reaches a turning point (i.e. dr/dt = 0), the cor-
responding point (r∗, θ∗) in the plane is called the
apogee if r is at a maximum, and the perigee if r is
at a minimum.

Solutions to the θ-equation occur in four explicit
branches:

Apogee, θ > θ∗

θ = θ0 + L√
2m∗

∫ r

r∗

dr/r2√
E − Ueff (r)

Apogee, θ < θ∗

θ = θ0 − L√
2m∗

∫ r

r∗

dr/r2√
E − Ueff (r)

Perigee, θ > θ∗

θ = θ0 + L√
2m∗

∫ r∗

r

dr/r2√
E − Ueff (r)

Perigee, θ < θ∗

θ = θ0 − L√
2m∗

∫ r∗

r

dr/r2√
E − Ueff (r)

Evident in the above is the time-refersal symmetry
about θ∗, namely

r (θ∗ − θ) = r (θ∗ + θ) .
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Bounded Orbits

When the potential energy U (x) contains a local
minimum, a particle with a sufficiently low energy
may become ‘trapped’ in the so-called potential well.
Looking at the evolution of θ between two extreme
points (perigee to apogee or vice-versa), we have

θ = L√
2m∗

∫ ra

rp

dr/r2√
E − Ueff (r)

,

which is some number that is not generally a ratio-
nal fraction of π. That is, we find that orbits are
bounded aren’t necessarily repeated shapes, but may
have a any (or an infinite) number of apogees and
perigees. We will soon find there are two exceptions
to this, where if the energy U has certain dependence
on r, closed orbits are possible.

Circular Orbit

The circular orbit is characterized by dr/dt = 0, or
equivalently r (t) = r0. The equation of motion for
θ (t) becomes trivial

θ (t) = θ0 + Lt

m∗r2
0
,

and the time T0 required for θ (t) − θ0 = 2π corre-
sponds to the period of the circular orbit:

T0 = 2πm∗r
2
0

L

As for the energy of a circular orbit, we have

E =
��

����1
2m∗

(
dr

dt

)2
+ L2

2m∗r2 + U (r) ,

which remains constant. Taking an r-derivative at r0
yields

0 = − L2

m∗r3
0

+ d

dr
(U (r))

∣∣∣∣
r0

,

or, in shorthand:

U ′ (r0) = L2

m∗r3
0

Eliminate L from the above to write

U ′ (r0) = m∗r0ω
2 = m∗v

2
0

r0
,

which is precisely the force ‘felt’ by an object con-
strained to uniform circular motion. (The force vec-
tor itself points to the center.)

We can eliminate L once more to express the pe-
riod T of the circular orbit in terms of U ′ (r0):

T0 = 2π
√

m∗r0

U ′ (r0)

Problem 10
Check that the circular orbit is described by

d

dr
(Ueff (r))

∣∣∣∣
r0

= 0 .

Problem 11
Show that Kepler’s law of equal areas hold for any

central force, including straight-line motion.

3 Power Law Potential
Finally we must choose a particular form for the po-
tentuaql energy U (r), thus we’ll pose a central power
law potential

U (r) = − Λ
rα

,

where Λ is an arbitrary constant (positive or nega-
tive), and α = 2 reproduces the case for planetary
motion. In the general case, we use

Ueff (r) = − Λ
rα

+ L2

2m∗r2

for the effective potential energy.

3.1 Circular Orbit
For orbits that are have a nearly-circular radius r0,
we may approximate the effective potential energy
via Taylor expansion in the vicinity r ≈ r0:

Ueff (r) = Ueff (r0) + d

dr
(Ueff (r))

∣∣∣∣
r0

(r − r0)

+ d2

dr2 (Ueff (r))
∣∣∣∣
r0

(r − r0)2

2! + · · ·

Stability

The first-order derivative term is identically zero by
nature of the circular orbit. The second-order term
must be done by brute force:

d2

dr2Ueff (r)
∣∣∣∣
r0

= d

dr

(
Λα
rα+1 − L2

m∗r3

) ∣∣∣∣
r0

= −Λα (α+ 1)
rα+2

0
+ 3L2

m∗r4
0

Now, from the first-order equation we learn
Λα
rα+1

0
= L2

m∗r3
0
,
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where eliminating L2 in the second-order term now
gives

d2

dr2Ueff (r)
∣∣∣∣
r0

= −Λα (α+ 1)
rα+2

0
+ 3Λα
rα+2

0

= Λα (2 − α)
rα+2

0

= L2

m∗r4
0

(2 − α) .

We can also write the angluar frequency ω0 in terms
of the angular momentum via

ω0 = L

m∗r2
0
,

and thus

d2

dr2Ueff (r)
∣∣∣∣
r0

= m∗ω
2
0 (2 − α)

Rewriting the Taylor expansion, we how have

Ueff (r) ≈ Ueff (r0) +m∗ω
2
0 (2 − α) (r − r0)2

2! .

For all α > 2, near-circular orbits are unstable,
meaning particles with high enough energy will slip
away to r → ∞, whereas particles with sufficiently
low energy or sufficiently low radius will inevitably
collapse to r = 0. For α < 2, the system corre-
sponds to a one-dimensional harmonic oscillator in
r, thus near-circular orbits are stable. The angular
frequency in the r-variable is given by

ωr = ω0
√

2 − α ,

implying that periodic closed orbits occur when√
2 − α is a rational number. Conveniently we’ll

see that the Coulomb and gravitational potentials
(α = 1), along with the harmonic oscillator (α = −2)
each produce closed orbits not limited to circles. The
next closed orbit corresponds to α = −7.

Period

In terms of ω0, we can write the period T0 of a cir-
cular orbit. Start with the definition ωT = 2π, we
have

T0 = 2π
ω0

= 2πm∗r
2
0

L

Harmonic Potential

The harmonic potential is defined by

U (r) = Λr2 .

As a central force, all motion is confined to a plane
and thus we separate into components as

U (r) = Λ
(
x2 + y2) .

Using Fx = −∂U/∂x and similar for the y-
compoenent, the above implies a pair of independent
one-dimensional differential equations

d2

dt2
x (t) = −ω2x (t)

d2

dt2
y (t) = −ω2y (t) ,

where ω =
√

2Λ/m∗.
General solutions to the above are trigonometric,

namely

x (t) = Ax cos (ωt− ϕx)
y (t) = Ay cos (ωt− ϕy) ,

where Ax,y and ϕx,y are determined from initial con-
ditions.

We can do away with the ϕx-term by placing the
particle at Ax at t = 0 and defining the x-axis to
pass through that point. Then, the y-component of
the position must be zero, telling us ϕy = π/2. Fi-
nally, we find a closed equation for elliptical orbits
with the origin at the center:

x (t) = Ax cos (ωt)
y (t) = Ay sin (ωt)

The envelops of positions draws an ellipse:

x2

A2
x

+ y2

A2
y

= 1

3.2 Dimensionless Variables
For a power law potentual U (r) = −Λ/rα, we can
find a circular orbit characterized by r = r0 that min-
imizes Ueff (r) at r0. The period of such an orbit is
T0.

Let us now replace quantities of radius, energy,
and time units with dimensionless variables by the
following substitutions:

ρ (t) = r (t)
r0

E = E

|Ueff (r0)|

τ = t

T0
= Lt

2πm∗r2
0

We bring Λ into the mix by recalling

L2

m∗r2
0

= Λα
rα

0
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for circular orbits, and it further follows that

|Ueff (r0)| = L2

2m∗r2
0

∣∣∣∣2 − α

α

∣∣∣∣ .
Problem 12

For a planet on an elliptical orbit with semi-major
axis a, use

E = −Gm1m2

2a
to show that the eccentricity is given by

e =
√

1 + E .

Problem 13
For a planet on an elliptical orbit with semi-major

axis a and semi-minor axis b, show that

b

a
=

√
−E .

If the orbit is hyperbolic, show instead that

b

a
=

√
E .

Equations of Motion

The equations of motion

t (r) = ±
√
m∗

2

∫ rf

ri

dr√
E − Ueff (r)

θ (r) = ± L√
2m∗

∫ rf

ri

dr/r2√
E − Ueff (r)

must be recast in dimensionless variables.
Staying in the special case Λ > 0, α < 2, proceed

by simplifying the radical term first:

E − Ueff (r) = E + Λ
rα

− L2

2m∗r2

= EΛα
2rα

0

(
2 − α

α

)
+ Λ
rα

0 ρ
α

− Λα
2rα

0 ρ
2

=
(

Λα
2rα

0

)(
(2 − α) E/α+ (2/α) /ρα − 1/ρ2)

Substituing carefully, one finds

τ = ± 1
2π

∫ ρf

ρi

dρ√
(2 − α) E/α+ (2/α) /ρα − 1/ρ2

θ = ±
∫ ρf

ρi

dρ/ρ2√
(2 − α) E/α+ (2/α) /ρα − 1/ρ2

.

Note that solutions to

0 = (2 − α) E/α+ (2/α) /ρα − 1/ρ2

indicate all apogees and perigees in the motion.

3.3 Inverse Square Attraction
The attractive power law potential with Λ > 0 and
α = 1 corresponds to the gravitational force and the
attractive static electric force. Such a potential nat-
urally hosts a circular orbit with:

r0 = L2

Λm∗

T0 = 2πm∗r
2
0

L

|Ueff| = L2

2m∗r2
0

= Λ2m∗

2L2

Spatial Dynamics

The equations of motion simplify significantly with
α = 1. For the θ-equation, we have

θ = ±
∫ ρf

ρi

dρ/ρ2√
E + 2/ρ− 1/ρ2

.

Let ξ = 1/ρ to find

θ = ±
∫

−dξ√
E − (ξ − 1)2 + 1

,

and then let β = ξ − 1 to get

θ = ±
∫

−dβ√
E − β2 + 1

.

Factor
√

1 + E from the denominator and also let
γ = β/

√
1 + E :

θ = ±
∫

−dβ
√

1 + E
√

1 − β2/ (1 + E)

= ±
∫

−dγ√
1 − γ2

Next, let γ = cos (ψ) to find

θ = ±
∫ sin (ψ) dψ

sin (ψ) = ±
∫
dψ .

The remaining integral has a trivial solution

θ = θ0 ± ψ ,

and undoing all substitutions gives

θ = θ0 ± arccos
(

1/ρ− 1√
1 + E

)
,

where the integration constant θ0 is an ignorable ro-
tation in the plane. Continue solving for ρ to get the
equation of a conic section:

ρ = 1
1 +

√
1 + E cos (θ)
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Eccentricicty

The combination
√

1 + E is none other than the ec-
centricity of the orbit:

e =
√

1 + E

From what we know of conic sections, recall that
e = 1 makes a parabola, e < 1 makes an ellipse, and
e > 1 makes a hyperbola. In terms of the dimension-
less energy E , this also means:

E = 0 → parabola
E < 0 → ellipse
E > 0 → hyperbola

Conserved Quantities

As a special case of the two-body central potential
system, we’ve aware that the inverse-square attrac-
tion supports conservation of energy E and conserva-
tion of angular momentum L.

Also conserved is the Runge-Lorenz vector

Z = v × L − Λ r̂ ,

which fixes the orientation of the total orbit in its
plane of motion. Take a time derivative to quickly
prove Z is constant:

d

dt
Z = dv

dt
× L +

�
�
��

v × dL

dt
− Λdr̂

dt

= − 1
m∗

Λ
r2 r̂ × (r ×m∗ v) − Λ d

dt

(r

r

)
= Λ

(
− (r̂ (r̂ · v) − v (r̂ · r̂))

r
− v

r
+ r̂

r
(r̂ · v)

)
= 0

Being constant, we’re free to evaluate Z anywhere
on the orbit. Choosing a perigee at rp = rp x̂ where
vp · rp = 0, we find:

Z = vp × (rp ×m∗ vp) − Λ r̂p

= m∗ rp (vp · vp) −m∗ v����(vp · rp) − Λ r̂p

=
(

L2

m∗rp
− Λ

)
r̂p = Λ

(
r0

rp
− 1
)

x̂

= Λ
(

1
ρp

− 1
)

x̂ = Λ
(

1 +
√

1 + E − 1
)

x̂

Z = Λe x̂

Conic Trajectory

Problem 14

Derive the dimensionless Runge-Lorenz vector
equation

r̂ + e x̂ = v × L

Λ ,

and then project r into each side to recover the equa-
tion of a conic section, namely

r = r0

1 + e cos (θ) .

Temporal Dynamics

The integral for the dimensionless time τ is straight-
forwardly solved with α = 1. Begin with

τ = ± 1
2π

∫ ρf

ρi

dρ√
E + 2/ρ− 1/ρ2

and assume E ̸= 0. Simplify a bit to get

τ = ±
√

E
2πe

∫ ρf

ρi

ρ dρ√
E
(
ρ
√

E + 1/
√

E
)2
/e2 − 1

.

Let ξ =
√

E
(
ρ
√

E + 1/
√

E
)
/e so that dξ = dρE/e

and
ρ dρ = e

(
ξe− 1

E2

)
dξ ,

giving
τ = ± 1

2πE3/2

∫ (ξe− 1)√
ξ2 − 1

dξ .

So far we’ve been a bit loose with the sign on E .
For E > 0, everything stays as-is. However for E < 0,
we have to propagate E → − |E| through the calcula-
tion. Maintaining both channels, we have:

τE>0 = ± 1
2π |E|3/2

∫ (ξe− 1)√
ξ2 − 1

dξ

τE<0 = ± 1
2π |E|3/2

∫ (ξe− 1)√
1 − ξ2

dξ

Let

ξE>0 = cosh (ψ)
ξE<0 = cos (ψ)

and each integral becomes trivial, setting arbitrary
integration constants to zero:

τE>0 = ± 1
2π |E|3/2 (e sinh (ψ) − ψ)

τE<0 = ± 1
2π |E|3/2 (ψ − e sin (ψ))
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The period of an elliptical orbit corresponds to
one full cycle in ψ, i.e. 0 ≤ ψ < 2π. For this we have

τperiod = 2 (τπ − τ0) = |E|−3/2
.

Problem 15
Use

τ = t

T0
= Lt

2πm∗r2
0

and let τ = |E|−3/2. Solve for t = T to recover Ke-
pler’s third law for elliptical orbits.

Radial Component

Using the ρ-substitution from the above integral,
namely

ρE>0 = eξ − 1
E

ρE<0 = eξ − 1
− |E|

,

we get solutions for ρ (ψ):

ρE>0 = e cosh (ψ) − 1
E

ρE<0 = 1 − e cos (ψ)
|E|

The perigee corresponds to ψ = 0. For E < 0, the
apogee is at ψ = π.

Zero-Energy Case

Returning to the equations of motion for τ , θ with
E = 0 and α = 1, we have

τ = ± 1
2π

∫ ρf

ρi

ρ dρ√
2ρ− 1

θ = ±
∫ ρf

ρi

dρ/ρ√
2ρ− 1 ,

resolving to, discarding the integration constants:

τ = ± 1
6π
√

2ρ− 1 (ρ+ 1)

θ = ±2 arctan
(√

2ρ− 1
)

3.4 Inverse Square Repulsion
Consider the central potential given by

U = Λ
r
,

as one finds with the repulsive Coulomb force. This
is the same as the inverse square attractive case with
the modification Λ → −Λ, and the recipe for the
equations of motion is essentially the same. Some
key results are:

ρ = 1
−1 +

√
1 + E cos (θ)

τ = ± 1
2π |E|3/2 (e sinh (ψ) + ψ)

ρ = 1
E

(e cosh (ψ) + 1)



Chapter 3

Thermodynamics

1 Heat and Energy
Thermodynamic System

A thermodynamic system is any collection of parts
that permits energy transfer between its members.
A closed thermodynamic system allows no energy or
material transfer across its boundary. Conversely, an
open thermodynamic system does allow such intere-
actions with its environment.

Temperature

Temperature is a scale used for quantifying the
amount of ‘hotness’ in a system. We’ll soon build up
the vocabulary to create a sophisticated definition of
temperature, but it suffices for now to say:

Temperature is a quantity that eventually
becomes the same for two systems after
sustained contact.

Typical temperature scale units, namely Fahren-
heit and Centigrade, aren’t defined in fundamental
terms of length, space, or time.

Problem 1
At atmospheric pressure (also known as standard

pressure), liquid water boils at 212◦F and freezes at
32◦F. On the centigrade scale, these temperatures
are 100◦C and 0◦C, respectively. Calculate the one
temperature at which the Fahrenheit and centigrade
scales, assumed linear with temperature, are in agree-
ment. Answer: −40◦F = −40◦C

Zeroth Law

Sustained contact between two systems can lead to a
state called thermal equilibrium, achieved when there
is zero net energy flowing between each system. This
idea is also contained in the zeroth law of thermody-
namics:

If system A and system B are each in
equilibrium with system C, then A and B
are in equilibrium with each other.

Quasistatic Approximation

The quasistatic approximation is the limit when ther-
modynamic processes occur ‘slowly’ enough such the
whole substance maintains instantaneous equilibrium
throughout any process.

1.1 Matter and Temperature
Thermal Expansion

The volume of an object is subject to its temperature.
Adding heat usually causes the volume to increase, an
effect called thermal expansion.

Taking a one-dimensional example, consider a
thin metal rod of length L0 and initial temperature
T0. An external heat source changes the rod’s tem-
perature by ∆T , and the length is observed to change
by ∆L. Restoring the temperature to T0, the length
restores to L0. It follows that a linear ‘law’ for ther-
mal expansion can be written as

L = L0 + αL0∆T , (3.1)

where the parameter α is the linear thermal expan-
sion coefficient, measuring typically around 10−5 per
degree centigrade. The temperature change ∆T may
be positive or negative, and the rod expands or con-
tracts, respectively.

Thermal expansion occurs in more than one spa-
tial dimensions For two dimensions, consider a plate
of area L0 ×W0. With a change in temperature, the
area of the plate becomes

A = L0W0 (1 + α∆T )2

≈ L0W0 (1 + 2α∆T ) . (3.2)

31
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For small temperature displacements, α2∆T 2 is a rea-
sonably small contribution to thermal expansion and
is ignored to first-order approximation. Thus the area
scales linearly with temperature, with effective ex-
pansion factor 2α.

For three dimensions, the effective expansion con-
stant is β = 3α. If the volume of the object is V0, this
means

V ≈ V0 (1 + β∆T ) . (3.3)
Problem 2

A circular piece with diameter d is removed from
a room-temperature sheet of aluminum. If the sheet
is heated in an oven, how does the area of the hole
change with temperature? Does the hole increase or
decrease in area? Answer: ∆A = πd2α∆T/2, in-
creasing.

Problem 3
On a cool 4◦C morning, a driver fills his aluminum

gasoline tank to the full capacity of 106.0 L. That
evening, he checks the fuel level and finds 103.4 L
remaining in the tank. The coefficient of volume ex-
pansion for gasoline is 9.5 × 10−4/◦C, and for alu-
minum is 7.25 × 10−5/◦C. What was the maximum
temperature reached by the fuel tank during the day?
Answer: 32.70◦C

Problem 4
Consider a metal rod having a thermal expansion

coefficient that varies with temperature such that
α(T ) = A + BT + CT 2. Derive a formula for the
length of the material as a function of temperature
change. Answer:

∆L = L0
(
A∆T +B∆T 2/2 + C∆T 3/3

)
Thermal Stress

An object confined in space may not be able to phys-
ically undergo thermal expansion (or contraction), in
which case the object undergoes thermal stress.

Suppose a thin metal rod of fixed length L0 is
held between two clamps at temperature T0 with no
initial forces on the ends of the rod. If the temper-
ature changes, the rod ‘wants’ to obey the thermal
expansion Equation (3.1), written here as

∆L
L0

= α∆T ,

where α is the linear thermal expansion coefficient.
Meanwhile, the Young’s modulus for the rod is

defined as Y = (F/A)/(∆L/L0), so we write

∆L
L0

= F

AY
,

where F is the linear tension in the rod (positive or
negative) and A is the cross-sectional area. Since ∆L
must be zero, we therefore have

F

A
= −Y α∆T . (3.4)

1.2 Thermal Energy

The phenomenon of ‘heat’ occurs as a consequence
of some type of energy expense: mechanical, chemi-
cal, electrical, nuclear, etc. We define thermal energy,
denoted Q, as the broad subset of energies and po-
tentials that couple strongly to temperature. Like
all other energies in physics, thermal energy must be
conserved.

It was known to Sir James Joule (1818-1889) and
his contemporaries that the amount of work required
to raise the temperature of water is directly propor-
tional to the temperature change. Energy was mea-
sured in calories, where one calorie (c) is the amount
of energy required to raise the temperature of one
gram of water by one degree centigrade. (One food
calorie, denoted with a capital C, is 1000 ordinary
calories.)

Experiments conducted by Joule found that one
calorie equals 4.186 energy units in the SI system,
also known as Joules. Contemporary to this is the
Btu, or British thermal unit, being 252 cal = 1055 J.
The Btu is defined as the amount of energy required
to raise one pound of water by one degree Fahrenheit.

Specific Heat

A small thermal energy quantity dQ transferred to a
substance of mass m (without changing the phase) is
linearly proportional to the change in temperature.
This means we write

c = 1
m

dQ

dT
, (3.5)

where the proportionality constant c is the specific
heat of the substance. Equation (3.5) can often be
integrated in the variable T , giving a more familiar
statement

Q = mc∆T . (3.6)

A typical solid metal has c around 300J per kilogram
of material per degree centigrade. In the same units,
liquid water has c = 4187 , frozen water has c = 2108,
and water vapor has c = 1996.
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Heat Capacity

The product of mass and specific heat yields the heat
capacity:

C = mc (3.7)

Like specific heat, the heat capacity is propor-
tional to Joules per degree centigrade, but the no-
tion of ‘per kilogram of material’ has been multiplied
away. Heat capacity refers to the whole object.

1.3 Phases of Matter
Phase is a term synonymous with ‘state of matter’,
used for classifying the overall spatial arrangement
and dynamics of the particles in a substance. Com-
mon phases of mater are solid, liquid, and gas - but
the list doesn’t stop there. More exotic phases such
as plasmas and liquid crystals occur in nature (and
the laboratory).

The phase of a given substance is chiefly deter-
mined by (i) the surrounding temperature, and (ii)
the surrounding pressure. This is visualized by us-
ing a phase diagram, which comes in two flavors: PT
and PV , standing for a pressure-temperature plot or
pressure-volume plot, respectively.

PT Diagram

Figure 3.1: PT phase diagram.

Figure 3.1 illustrates a typical PT diagram for
a typical substance (water for example). A small
enough ‘parcel’ of a substance occupies just one point
in the phase diagram at a given time, and the par-
cel’s ‘trajectory’ in a phase diagram is continuous over
time, but not necessarily smooth.

Boundaries between regions in the phase diagram
are associated with abrupt changes in the phase:

• Region A has low temperature and high pres-
sure, corresponding to the solid state.

• Region B has moderate temperature and mod-
erate pressure, corresponding to the liquid
state.

• Region C has high temperature and low pres-
sure, corresponding to the gaseous state.

• Region D indicates the supercritical state, a
phase mixture of liquid and gas.

• Solid lines are boundaries that separate two
phases.

• The junction of regions A, B, C is called the
triple point.

PV Diagram

Figure 3.2: PV phase diagram.
A variation of the PT diagram is the PV dia-

gram, where the volume replaces temperature on the
horizontal axis. Figure 3.2 illustrates a typical PV
diagram for another typical substance, excluding the
solid state. The contour curves are called isotherms,
having constant temperature. The shaded area un-
der the dotted arch represents the liquid-vapor equi-
librium phase. The isotherm TC is the critical tem-
perature.

Mixtures and Dalton’s Law

A mixture of gases is itself a gas and may be treated
as a unit. For instance, if a pressurized vessel holds
a mixture of helium and nitrogen, then the gases are
fully mixed, sharing the same volume and same tem-
perature.

Each element also makes its own contribution to
the pressure, called a partial pressure, where the to-
tal pressure P is P = PHe + PNi for the example on
hand. This is known as Dalton’s law. In general, the
law of partial pressures reads

P =
∑

j

Pj , (3.8)

where index j sums over the species in the mixture.
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Latent Heat

Changing the temperature or pressure of a substance
causes some shift in the phase diagram. Crossing the
boundary between any two regions (see Figure 3.1)
corresponds to a phase change. At such a boundary,
molecular order of the substance changes radically,
which involves an energy change at the chemical level.

Now comes an important point about latent heat.
For a substance on a phase boundary at a given pres-
sure, all energy added or removed from the substance
contributes to phase change with the temperature re-
maining constant.

To illustrate, consider a glass containing an ice
+ water mixture having initial temperature 0◦C,
the freezing point of water. Placed in a room-
temperature environment, the mixture steadily ab-
sorbs heat from the surroundings. Does the tempera-
ture of the ice + water mixture increase? No, not for
a while. Rather, any new energy added to the sys-
tem contributes to melting the ice. Only when the
ice is melted will the system’s temperature begin to
increase. The same experiment works in reverse: if
instead the ice + water mixture were placed in a frigid
−100◦C environment, the temperature would remain
0◦C until all liquid water phase changes to ice. Only
after this point would the overall temperature begin
to plunge. (Of course, this all assumes that water is
a perfect conductor of heat.)

During a phase change, the thermal energy of a
substance is not governed by Q = mc∆T because ∆T
is zero during the change. Instead, the change in en-
ergy is called latent heat, which is proportional to the
mass of material being changed:

Q = mLα (3.9)

The amount of mass that changes phase per unit en-
ergy is a constant denoted Lα, where subscript α de-
notes which phase boundary is being crossed.

Subscript α = v stands for ‘vaporization’, cor-
responding to the liquid-gas boundary, and α = f
stands for ‘fusion’, corresponding to the solid-liquid
boundary. Water at atmospheric pressure has Lv =
2.256 × 106 J/kg and Lf = 3.34 × 105 J/kg.

Figure 3.3: Temperature curves for tea kettle prob-
lem.
Problem 5

A tea kettle is filled with ice at −10◦C and placed
on a burner that is steadily getting hotter. Over a
long enough time, the kettle empties due to evapora-
tion. Of the four curves drawn in Figure 3.3, which
best represents the temperature inside the kettle as a
function of time? Use the quasistatic approximation.
Answer: Top-left

Problem 6
How much ice at 0◦C must be added to a liter of

water at 80◦C so as to end up with all liquid at 20◦C?
Answer:

mice

m0
= 80◦C − 20◦C

20◦C + (Lf/c)water

Problem 7
A 15 g ice cube at 0◦C is mixed with 2 g of steam

at 100◦C in an isolated container. What is the final
state of the system?

Answer: (i) Since msteamLv − miceLf < 0, all
steam condenses, releasing 4512J, which melts 13.51g
of ice, leaving 1.49 g in the solid state. (ii) Next, the
2 g of hot water must come to equilibrium with the
melted ice, giving 0 = 2 (x− 100◦C) + 13.51x, where
x solves to 12.9◦C. (iii) Finally, let 15.51g of water at
12.9◦C come to equilibrium with the remaining ice,
giving 0 = 15.51 (y − 12.9◦C)+1.49Lf/c. Solving for
y, the final system has 17 g of water at about 5◦C.

Problem 8
A 20 g ice cube at −10◦C is mixed with 2 g of

steam at 100◦C in an isolated container. What is the
final state of the system?

Answer: (i) Energy required to warm ice to 0◦C:
422 J. (ii) Amount of steam condensed to accom-
plish this: 0.187 g. (iii) Energy required to melt ice:
6680J. (iv) Energy released by remaining steam con-
densation: 4090 J. (v) Energy released from cooling
2 g of water from 100◦C to 0◦C: 837 J. (vi) Energy
available to melt ice: 4927J. (vii) Mass of ice melted:
14.8 g. (viii) Final state has about 5 g of ice and 17 g
of water at 0◦C.
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1.4 Heat Transfer
Conduction

Conduction is heat transfer due to microscopic mo-
tions of particles, where more rapidly-moving parti-
cles exchange kinetic energy by collision with ‘colder’
particles. A material’s affinity to conduct heat in this
way is the thermal conductivity, k, measured in Watts
per meter per degree centigrade. (Incidentally, most
materials that easily conduct electric currents also
have high thermal conductivity.)

Consider two objects H and C that are main-
tained at constant temperatures TH and TC , re-
spectively. The ‘hotter’ object H is connected to
the ‘colder’ object C by a conductor having cross-
sectional area A and thermal conductivity k.

From ordinary classical mechanics, we can write
the rate of energy flow dQ/dt across the conductor:

dQ

dt
= − d

dt

∫
∇U · dx = −

∫
∇U · dx

dt

The gradient ∇U term is proportional to (i) the
temperature difference ∆T = TC − TH , and (ii) the
conductor cross section A. The dx/dt term repre-
sents the rate and direction of energy flow across A,
proportional to the thermal conductivity k. The dif-
ferential equation for heat conduction is therefore

dQ

dt
= −kA∆T , (3.10)

where ∆T is known as the temperature gradient. The
negative sign reminds that heat flows from hot to
cold.

R-Value

The R-value of a material is equal to the thickness
(along the direction of heat flow) divided by the con-
ductivity:

R = L

k

One inch of wood has R ≈ 1. Typical New England
houses have R ≈ 19 for the walls and R ≈ 30 for
the roof. The R-value is an additive quantity, i.e.
Reff = R1 +R2 + ....

Problem 9
The walls of a house are insulated with 2.0 cm

of Styrofoam (kSF = 0.01 W/mK), and 15.0 cm of
fiberglass (kFG = 0.04 W/mK). The Styrofoam is on
the exterior of the house. The outside temperature
is 0◦C, and the interior of the house is maintained

at 20◦C. (i) Calculate the temperature on the SF-
FG interface. (ii) What is the rate of heat transfer
per m2 through both layers of insulation? (iii) Which
provides greater net insulation, an additional 1.0 cm
of Styrofoam, or an additional 5.0 cm of fiberglass?
Answer: 6.96◦C, 3.5 W, fiberglass.

Problem 10
Inside a conductive cylinder of length L and ra-

dius R, heat flows radially from the axis r = 0 toward
the wall at R with T (0) > T (R). Calculate the ther-
mal energy flow rate between any two radii r1 and r2
in cylinder. Answer:

dQ/dt = k2πRL (T1 − T2) / ln (r2/r1)

Problem 11
If a tank of water initially at 0◦C is left in very

cold conditions (assume −10◦C), a sheet of ice forms
on the water surface and grows downward over time.
Supposing all heat transfer takes place through the
ice, and not through the container walls: (i) De-
termine the thickness Z of the ice as a function of
time t. (ii) Calculate the thickness of the ice sheet
that will form in one day. (iii) If the tank is 50 cm
deep, how many days does it take to freeze all of
the water? (iv) If the tank is 10 m deep, how many
days does it take to freeze all of the water? An-
swer: (i) Z = (∆T2k/(ρLf ))1/2√

t, (ii) 9.49 cm, (iii)
2.40 × 106 sec, (iv) 6.40 × 106 days

Convection

Convection is heat transfer due to macroscopic dis-
placement of a fluid. The displacement can be spon-
taneous, as when steam carries heat away from a hot
cup of tea - or forced, as done inside a refrigerator
compressor.

For example, consider a pot of water initially at
10◦C that sits on a kitchen stove burner maintained
at 110◦C.

1. Conduction: Heat is introduced to the liquid by
contact with the bottom of its metal container,
in contact with the heat source.

2. Convection cells: Fluid parcels nudge their way
to the surface, spreading horizontally, and sub-
merging when displaced by warmer fluid.

3. Turbulence: The bottom of the fluid becomes
much warmer than the surface, and the convec-
tion cells burst into mushroom-cloud shapes.

4. Boiling: Discernible patterns vanish, and the
fluid expels its heat by ejecting the most ener-
getic particles.
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5. Steam: Steam rapidly expands (if not con-
strained), doing work on the atmosphere.

Steps (2) through (5) each involve convection.

Electromagnetic Radiation

Electromagnetic radiation is energy transfer that uses
photons as a carrier. All objects continuously absorb
and expel energy through photon exchange with the
environment. The net rate of heat flow is given by
Stefan’s law,

dQ

dt
= Aeσ

(
T 4

obj − T 4
env
)
, (3.11)

where A is the object’s exposed surface area, e is
the emissivity (0 ≤ e ≤ 1) of the material, and σ is
the Stefan-Boltzmann constant, 5.67×108Wm−2K−4.
Note the temperature is counted in Kelvin units,
which scales proportionally to the centigrade scale
but equals zero at T = −273.15◦C.

A hot electric stove coil emits intense infrared
radiation with wavelengths ranging from 103 nm to
106 nm. (Your skin easily detects these rays.) With
increasing power, the range of emitted wavelengths
widens, and eventually the coil visibly glows red with
λ = 700 nm. (Your eyes easily detect these.) With
even more increasing power, the stove coil becomes
‘white hot’, emitting a very wide spectrum of wave-
lengths.

A hypothetical object useful for discussing radia-
tion is the blackbody, which has e = 1, absorbing all
incident radiation. Contrastly, a reflector absorbs no
radiation.

Problem 12
Earth’s upper atmosphere receives roughly 1.50×

103 W/m2 of energy from the sun by thermal radi-
ation. The distance from the earth to the sun is
1.50 × 1011 m, and the radius of the sun 6.96 × 108 m.
Use conservation of flux to calculate the surface tem-
perature of the sun. Answer: About 6000 Kelvin.

Problem 13
Wandering in the Desert: Consider an unfortu-

nate person walking at 5 km/h on a hot day in the
desert, wearing only a bathing suit. The person’s skin
temperature tends to rise due to four mechanisms:

• Energy is generated by metabolic reactions in
the body at a rate of 280 W, and almost all of
this energy is converted to heat that flows to
the skin.

• Heat is delivered to the skin by convection from
the outside air at a rate equal to k′Askin(Tair −
Tskin), where k′ is 54 J/◦C m2h, the exposed
skin area Askin is 1.5 m2, and the air tempera-
ture Tair is 47◦C.

• The skin absorbs radiant energy from the sun
at a rate of 1400 W/m2.

• The skin absorbs radiant energy from the envi-
ronment, which has temperature 47◦C.

Assume the emissivity of the skin is e = 1 and the
skin temperature is 36◦C. (i) Determine the net heat
flow into the person due to the four mechanisms. (ii)
At what rate (in liters per hour) must perspiration
evaporate from the person’s skin to maintain a con-
stant skin temperature? (Assume sweat is made of
water which has Lv = 2.42 × 106 J/kg.) (iii) Suppose
instead that the person is protected by light colored
clothing with e = 0 such that the skin exposed is
0.45 m2. (The convective heat exchange is not af-
fected by the clothing.) What is the rate of perspi-
ration now required? Answer: (i) 280 W, 0.248 W,
2.10 × 103 W, 893 W, (ii) 4.87 L/h, (iii) 1.75 L/h

1.5 Atmospheric Qualities
Vapor Pressure

The vapor pressure of a substance is the pressure at
which the vapor phase is in equilibrium with the solid
or liquid phase at a given temperature. For example,
water and air in a sealed container will begin mixing
by evaporation and condensation (of water molecules
in and out of the air). Equilibrium is achieved when
the partial pressure PW of water in the air is equal
to the vapor pressure P0.

The following table maps out the vapor pressure
of water as a function of temperature:

Temperature Vapor Pressure
(◦C) (Pa × 103)
10 1.23
12 1.40
14 1.60
16 1.81
18 2.06
20 2.34
22 2.65
24 2.99
26 3.36
28 3.78
30 4.25
40 7.34
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Note one Pascal (Pa) is equal to one Newton per
square meter.

Humidity

The relative humidity is defined as the ratio

H = PW

P0
,

always expressed as a percentage and never exceed-
ing 100%. Because Earth’s atmosphere is considered
open instead of closed, H is typically much less than
unity. On a rainy day, H becomes close to unity.
In either case, P0 is much less than the atmospheric
pressure PA, which is near 105 Pa.

Problem 14
At 24◦C and at 50.0% relative humidity, what

is the partial pressure of water vapor in the atmo-
sphere? Answer: PW = 1.50 × 103 Pa

Problem 15
At 24◦C and at 50.0% relative humidity, what is

the mass density of the water vapor in the air? (Hint:
M = 18 × 10−3 kg/mol.) Answer: ρ = 0.0109 kg/m3

Dew Point

Consider an ice-cold glass sitting in a room. Af-
ter a short time, water droplets form on the outside
of the glass. To explain this, observe first that the
air surrounding the glass, which itself contains water
molecules, is cooled by conduction. The vapor pres-
sure of the surrounding molecules therefore decreases
(see table above), causing the relative humidity sur-
rounding the glass to increase. When the relative hu-
midity reaches 100%, the corresponding temperature
is called the dew point, denoted Tdew.

At the dew point temperature, further cooling
cannot result in increased humidity, which is already
at unity, so the density of water molecules surround-
ing the glass must decrease. The excess molecules
stick to the glass to form droplets. Note that the
dew point is always less than the surrounding room
temperature. The higher the relative humidity, the
closer the dew point is to the ambient temperature.

Problem 16
Suppose the air temperature in a laboratory is

24◦C, and a physics student cools a half-filled drink
by adding ice. He finds that water begins to condense
on the glass when it’s temperature reaches 12◦C.
What is the relative humidity in the room? Answer:
46.8%

Clouds and Fog

Clouds and fog are easily explained in the terms de-
fined above. Simply put, condensation (100% relative
humidity) occurs at the altitude where the air tem-
perature equals the dew point.

Problem 17
Consider a spring day when the air temperature

on the ground is 24◦C and the relative humidity is
50%. Assume that the partial pressure of water does
not change with elevation, and that the air tempera-
ture decreases with altitude at a rate of 0.06◦C/100m.
(i) At what altitude will clouds form? (ii) If the rela-
tive humidity on the ground is higher, will the clouds
form at a higher or lower altitude? (iii) If the temper-
ature gradient is less, will the clouds form at higher
or lower altitude? Answer: (i) 1833 m, (ii) lower, (iii)
higher

1.6 Ideal Gas
The chain of discoveries leading to the understanding
of gases spans across several centuries.

Boyle’s Law

In the seventeenth century, Robert Boyle (1627 -
1691) performed numerous studies on the properties
of gases using the materials of his day (simple glass-
ware and metals). The most famous fruit of his effort,
called Boyle’s Law, states that the pressure of a fixed
amount of gas maintained at constant temperature is
inversely proportional to the volume of the gas:

P ∝ 1/V

Charles’s Law

A similar discovery about gases that came out of
France in the 1780s, now known as Charles’s Law,
stating that the volume of a fixed amount of gas main-
tained at constant pressure is directly proportional to
the absolute temperature of the gas:

V ∝ T

Lord William Kelvin

The linear relationship between volume V and tem-
perature T found by Charles has an interesting fea-
ture that he probably didn’t notice. All experimental
data was indicating that any plot that displays V (T )
for any substance at any pressure has an x-intercept
at −273.15◦C. Scottish physicist Kelvin realized the
significance of this in 1848, and seized the opportu-
nity to name a new temperature scale after himself.
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The Kelvin temperature scale resembles the centi-
grade system in every way with one exception:
the bottom of the scale, 0 Kelvin, corresponds to
−273.15◦C, also known as absolute zero. As it turns
out, absolute zero is the limit low temperature for
any object in the universe.

Avogadro’s Law

Italian scientist Amedeo Avogadro made his contribu-
tion in 1811, hypothesizing correctly that the volume
of a gas at constant temperature and pressure is pro-
portional to the number of particles N composing the
gas:

V ∝ N

Ideal Gas Equation

Compiling the above achievements into a single equa-
tion of state, we arrive at the ideal gas equation:

PV = NKBT (3.12)

Equation (3.12) describes the macroscopic behav-
ior of all N particles in a gas at pressure P and tem-
perature T (in Kelvin) occupying volume V . The
constant KB is the Boltzmann constant, and has the
experimental value 1.381 × 10−23 J/K.

Sometimes in physics (and more often in chem-
istry) the quantity NKB is written instead as nR,
where n is the number of moles of the gas, and R is
the ideal gas constant, measured as 8.315Jmol−1 K−1

(Joules per mole-Kelvin).

Ideal Gas Model

The ideal gas law is an approximate (but usually ac-
curate) description of a realistic gas. As an equation
of state, (3.12) holds if the following assumptions can
be safely made:

• The volume of the container holding the gas is
much greater than the total volume of the con-
stituent gas particles.

• The separation between gas particles is much
greater than the diameter of a given particle.

• A given particle’s position and direction of
travel (not its speed) is completely random.

• Particles do not interact among themselves,
with the exception of perfectly elastic collisions.

• The container walls exchange momentum with
the gas particles isotropically and don’t deform.

• At a given instant, P , V , N , and T are uni-
form throughout the gas (quasistatic approxi-
mation).

Typically, the subscript B is typically dropped
from the Boltzmann constant; thus we simply write
K for now on.

Problem 18
A rigid box of capacity 0.5 m3 is initially open,

but is then sealed, trapping air inside at 20◦C at at-
mospheric pressure. The box is then heated until the
pressure inside becomes 3 times that of the atmo-
sphere. Calculate the temperature of the trapped air
(in Kelvin) after heating. How many particles are in
the box? Answer: T = 879.45K and N = 1.25×1025.

2 Kinematic Gas Theory
Consider a sealed rigid vessel of volume V containing
N non-interacting particles, not necessarily ideal gas.
Such a gas has constant pressure and temperature at
equilibrium.

2.1 Relative Velocity
Of all N particles in the gas, choose any two of them,
where particle ‘1’ has mass m1 and moves with veloc-
ity v1. Similar can be said for particle ‘2’. Borrowing
from two-body analysis, we can write the kinetic en-
ergy of the pair as

T = 1
2m

∗v2
rel + 1

2 (m1 +m2) v2
0 ,

where v0 is the velocity of the center of mass, vrel is
the relative velocity between the partices, and m∗ is
the reduced mass. If m1, m2 are equal to the same
mass m then m∗ reduces to m/2.

Starting with the relative velocity

vrel = v2 − v1 ,

square both sides and take the average of each term
to write

⟨vrel⟩ =
√

⟨v1⟩2 + ⟨v2⟩2 − 2 ⟨v1 · v2⟩ .

If we assume all particles are identical, then the
averages ⟨v1⟩, ⟨v2⟩ are equal to the same velocity ⟨v⟩.
Furthermore, we have that ⟨v1 · v2⟩ resolves to zero,
because all velocity vectors are random and uncorre-
lated. From this we conclude

⟨vrel⟩ =
√

2 ⟨v⟩ ,

which is to say the average relative velocity between
each particle is about 1.41 times the average absolute
velocity of the particles in the gas.
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Mean Free Path

Assuming a particle in the gas are spherical with ra-
dius r, the size of a the particle is characterized by
the cross-sectional area σ given by

σ = π (2r)2
.

In the time ∆t between any two collisions, a par-
ticle carves out a Gaussian ‘tube’ of volume

V = σ ⟨vrel⟩ ∆t ,

where ⟨vrel⟩ is the relative speed between the particle
and its target (another particle).

We can also write the collision rate f = ∆N/∆t.
At the least, f is proportional to the density of the
gas N/V , and is also proportional to the the product
σ ⟨vrel⟩. Thus we write

f = ∆N
∆t = σ ⟨vrel⟩

N

V
.

Borrowing from wave mechanics, a frequency f is
associated with a wavelength λ by a velocity term:
λf = ⟨v⟩, and works out to be

λ = ⟨v⟩
f

= ⟨v⟩
σ ⟨vrel⟩ (N/V ) = 1

σ
√

2
V

N
. (3.13)

The distance λ is the mean free path for particles
of radius r in the gas. Notice the inverse proportion-
ality to the density and the cross-sectional area. The
smaller the particles and the less dense they are, the
longer they go before a collision.

Problem 19
Show that the mean free path for ideal gas

molecules is

λ = 1
σ

√
2
KT

P
.

2.2 Pressure

We advance on the kinematic gas problem by calcu-
lating the pressure in two not so very different ways.
For a setup we continue considering a sealed con-
tainer with volume V containing gas as temperature
T . Starting from so little, the only freebie we get
is that the particle number density is uniform and
equalt to N/V . Going forward we’ll refere to N/V
as density, but remember there are no mass units in-
volved.

Heuristic Pressure Calculation

Inside the vessel, consider a cylindrical Gaussian
cylinder of length L, held so the longitudinal z-axis
is perpendicular and adjacent to the inner surface of
the vessel with intersection area A, assumed circu-
lar. At any given instant, particles contained in the
membrane are moving in all directions.

Question: How many of the particles ∆N enclosed
in the membrane will collide with the container wall
in time interval ∆t? Answer: Statistically half of
the enclosed particles collide with the wall (the other
half are heading away). A particle will collide with
the wall in a time interval ∆t if it is heading toward
the wall and within a distance L = |vz| · ∆t of the
wall, where vx is the x-component particle’s absolute
speed,

√
⟨v2⟩. The collision rate is also proportional

to the overall density of the gas, N/V . Therefore we
may write

∆N = (1/2) (A |vz| ∆t) (N/V ) .

On any collision with the container wall, there are
two contributions to the momentum exchange: (i) the
wall first absorbs momentum pz to momentarily stop
the gas particle, and (ii) the wall then imparts mo-
mentum −pz to the particle, with a total exchange of
∆p = 2mvz per collision.

By the impulse-momentum theorem Fdt = mdv,
the definition of pressure gives

P = F

A
= ∆N 1

A

∆p
∆t ,

and after inserting what we know about ∆N and ∆p,
we have

P = N

V
m ⟨vz⟩2

.

Assuming the gas to be isotropic and living in three
dimensions, it follows that〈

v2〉 =
〈
v2

x

〉
+
〈
v2

y

〉
+
〈
v2

z

〉
= 3

〈
v2

z

〉
,

bringing us to the result

P = 1
3
N

V
m
〈
v2〉 . (3.14)

Problem 20
In a 60 sec interval, 700 hailstones strike a 0.5 m2

glass window at an angle of 45◦ with respect to the
normal to the window surface. Each hailstone has
mass of 4.0 g and speed 8.0 m/s. If the collisions are
purely elastic, Calculate the average force and pres-
sure on the window.
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Formal Pressure Calculation

Inside the vessel, a given particle has any speed be-
tween zero and infinity in any direction. Introducing
f(v) as a generalized velocity distribution, we write
the normalization condition as

1 =
∫

all v

f (v) ddv ,

where d is the number of dimensions in velocity space.
Performing the prior analysis using more vector

language, the same Gaussian cylindrical membrane
of length L inside the vessel touches the inner z-wall
with common area element −dAẑ, where dA = dxdy.
For particles with speed v inside the Gaussian cylin-
der, the length is represented by the vector L = (dt)v.
The number of particles ∆N destined to collide with
the wall is proportional to the macroscopic density
N/V times the volume dA · L = dAdtvz. Upon col-
lision, the particle reverses the z-component of its
momentum, with dpz = 2pz. Particles with negative
pz are heading away from the wall and don’t collide.

Collecting these observations, write the ‘pressure
operator’ as

[Pv] = ∆N dF

dA
= ∆N dpz/dt

dA
= N

V
vz2pz ,

and the total pressure is given by

P =
∫

v

[Pv] f (v) d3v ,

expanding to:

P =
∫ vx=∞

vx=−∞

∫ vy=∞

vy=−∞

∫ vz=∞

vz=0
×

N

V
vz2pzf (v) dvxdvydvz

Note the careful choice of limits on the vz variable:
no particles are coming from outside the container.

Since f (v) is an even function by symmetry argu-
ments, it does no harm to integrate over the interval
−∞ < vz < ∞ and divide by a factor of 2. The
integral simplifies to

P = N

V

∫
v

(vzpz) f (v) d3v = N

V
⟨vzpz⟩ ,

where the statistical definition of average has been
used. Finally, note again from symmetry that
3 ⟨vzpz⟩ = ⟨vp⟩, and the pressure takes a form remi-
niscent of Equation (3.14):

P = 1
3
N

V
⟨vp⟩

2.3 Effusion
Effusion takes place as gas particles are allowed to
escape through a small aperture in the enclosing ves-
sel. While the substance is losing particles, energy,
and so on - we still work within the quasistatic ap-
proximation to gain insight into the phenomenon.

Effusion Rate

Let us calculate the rateR (measured in s−1) at which
particles that strike a small patch of area A from in-
side the vessel. This is analogous to the pressure
calculation, however now we ignore momentum ex-
change. For this, we begin with

R =
∫

v

[Rv] f (v) d3v

such that
[Rv] = A

N

V
vz .

Expressed in 3D spherical coordinates, the effu-
sion rate is

R =
∫ ϕ=2π

ϕ=0

∫ θ=π/2

θ=0

∫ v=∞

v=0
×

A
N

V
v cos (θ) f (v) v2dv sin (θ) dθdϕ ,

where the z-axis is perpendicular to the container
wall on the patch A. The gas exists only above the
z = 0 plane, as indicated by the choice of limits on
the variable θ. In this coordinate system, it follows
that the normalization condition is∫ ∞

0
f (v) 4πv2dv = 1 .

Using the statistical definition of average velocity, the
instantaneous effusion rate simplifies down to

R = A

4
N

V
⟨v⟩ . (3.15)

Effusion Energy

With the effusion rate known, it’s possible to frame
the calculation for the average energy per particle
carried away by effusion. Begin with the definition of
the average energy

⟨E⟩ =
∫

v

[Ez] f (v) d3v ,

and use

[Ez] =
(

1
R

)(
A
N

V
vz

)(
mv2

z

2

)
.
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Note that the θ-integral resolves via∫ π/2

0
cos3 (θ) sin (θ) dθ = 1

4 ,

and simplify the ⟨E⟩ expression to deduce

⟨E⟩ = m

4

〈
v3〉
⟨v⟩

. (3.16)

Problem 21
Show that the average effusion energy per ideal

gas particle is ⟨E⟩ = KT . Explain why the to-
tal energy carried away per effused particle is 2KT .
Compare with 3NKT/2 to explain why the temper-
ature of the vessel holding an effusing gas decreases
so rapidly.

2.4 Maxwell Speed Distribution
Our recent calculations for pressure and effusion are
generally applicable and have not assumed the ideal
gas model. To gain traction on the ideal gas, we bor-
row from a more general study of Boltzmann factors
to write the Maxwell(-Boltzmann) speed distribution:

D (v) dv =
( m

2πKT

)3/2
4πv2e−mv2/2KT dv (3.17)

The chance of finding an ideal gas particle with speed
within the interval [v1, v2] equals the area under D (v)
curve spanning that interval, or

P (v1 < v < v2) =
∫ v2

v1

D (v) dv .

The curve ‘opens up’ parabolically near speed v = 0,
has a finite peak, and dies off exponentially for very
large v. D (v) is already normalized such that P = 1
for the interval [0,∞].

Note also there is one dependent variable in D (v),
but it is indeed a three-dimensional equation: the
4πv2 term is byproduct of spherical coordinates in
‘velocity space’.

Average Speed

With D (v) on hand, we use Gaussian integrals to
calculate the average speed ⟨v⟩ for the ideal gas:

vave = ⟨v⟩ =
∫ ∞

0
v D (v) dv =

√
8KT
πm

(3.18)

Problem 22

Use Gaussian integrals to prove the following:〈
v2〉 = 3KT

m〈
v3〉 = 4KT ⟨v⟩

m〈
v4〉 =

5KT
〈
v2〉

m

Maximum Speed

A single derivative of Equation (3.17) determines the
peak vmax:

vmax =
√

2KT
m

(3.19)

RMS Speed

The root mean square speed is defined as
√

⟨v2⟩, or

vrms =
√

3KT
m

. (3.20)

Writing each result side-by-side, we see:

vmax < vave < vrms ,

or √
2KT
m

<

√
8KT
πm

<

√
3KT
m

The numerical coefficients are approximately 1.414,
1.596, and 1.732 respectively.

Problem 23
Ideal gas molecules in a container have the follow-

ing measured speed distribution:

Speed (m/s) Percentage
220 10%
250 10%
500 15%
650 30%
900 20%
1300 15%

Calculate the average speed, the rms speed, and the
most probable speed. If the system is ideal gas of
molecular mass M = 50 × 10−3 kg/mol, what is the
temperature? Answer: 690 m/s, 768 m/s, 650 m/s,
1180 K

Problem 24
The escape speed for a particle to leave the grav-

itational influence of a massive body is given by
(2GM/R)1/2. The temperature near the top of
Jupiter’s multicolored cloud layer is about 140K. The
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temperature of Earth’s atmosphere at 20km is 220K.
Calculate the RMS speed of H2 molecules in each of
those environments. Give the answer as a fraction of
the escape speed from the respective planet. Answer:
14.7% for Earth and 2.16% for Jupiter, explaining the
rarity of H2 in Earth’s atmosphere. Jupiter’s atmo-
sphere consists of 89%H2 plus other gases.

Problem 25
Ceres is an asteroid with a mass equal to 0.014

times the mass of the Moon, has density 2400 kg/m3,
and surface temperature around 200 K. Can this ob-
ject support an O2 atmosphere? Answer: vrms/vesc =
72.9% thus O2 will largely leave the asteroid.

2.5 Equipartition of Energy
Internal Energy

Assuming gas particles do not mutually interact at a
distance, the quantity m

〈
v2〉 /2 represents the aver-

age internal energy per particle in the system. Ac-
cording to Equation (3.14), we find the general result

⟨U⟩ =
m
〈
v2〉

2 = 3PV
2N ,

or, scaling by all N particles,

U = 3
2PV , (3.21)

where for an ideal gas, the internal energy resolves to

U = 3
2NKT .

Focusing on the factor of 3 momentarily, recall
that it arises from symmetry by generalizing to three
dimensions from one. Let us further generalize the
idea of ‘dimension’ to mean ‘degree of freedom’. That
is, point-like gas particles in a box have three trans-
lational degrees of freedom. When molecules are not
point-like, their motions may include rotation and
vibration. These modes of motion (unavailable to
points or spheres) make new contributions to the in-
ternal energy.

For an ideal gas comprised of non-point-like
molecules, we will eventually prove the internal en-
ergy obeys

U = f

2NKT , (3.22)

where f is the number of degrees of freedom avail-
able to a given molecule. Note that each degree of
freedom must be quadratic with respect to its de-
pendent variable. Kinetic energy is mv2/2, and sim-
ilarly rotational and vibrational energies are Iω2/2
and k∆x2/2, respectively.

Problem 26
Insert the ideal gas Equation (3.12) into the in-

ternal energy Equation (3.21) to recover the formula
for vrms.

Problem 27
The temperature of 7.00 mol of helium gas, con-

sidered ideal, is increased by 2.00 K. What is the
change in internal energy?

Equipartition Theorem

Equation (3.22) is a corollary of a more general state-
ment called the equipartition theorem, stating:

The internal energy per molecule gains
a factor of KT/2 for each independent
quadratic degree of freedom.

This theorem can be derived in full generality us-
ing statistical mechanics (also accounting for non-
quadratic potentials), but is beyond the scope of this
study.

Diatomic Molecules

Consider a generalized ideal gas made of N dumbbell-
shaped H2 molecules. In accordance with (3.22), we
count the quadratic degrees of freedom per molecule
as follows:

• Three translational modes, so f is at least 3.

• Two degrees of rotational freedom. The di-
atomic molecule may spin like a baton in two
orthogonal modes, however rotations about the
axis joining the atoms do not change during col-
lision. So far, f = 3 + 2.

• Two contributions from the single vibrational
mode (a combination of both kinetic and po-
tential energies), increasing f again by 2.

We expect therefore that the energy of a diatomic
gas is

Udia = (7/2)NKT .

However, f = 7 is only observed at high tempera-
tures. Experiments performed on H2 gas have shown
that only translational modes occur at temperatures
under 200 K. Below this, the rotational and vibra-
tional energies are ‘frozen out’ and don’t contribute
to the internal energy. By 400 K, the two rotational
modes are fully active. Vibrational modes finally
show themselves around 4000 K. Evidently, diatomic
molecules have f appearing as 3, 5, or 7, depending
on T .



2. KINEMATIC GAS THEORY 43

Problem 28
Use the equipartition theorem to find the total

rotational energy of the molecules in 4.00 mol of di-
atomic gas at 310 K.

2.6 Heat Capacity
The heat capacity is the factor that couples energy
change to temperature change for a given substance
(not news):

C = dQ

dT
(3.23)

It is generally wrong to assume that all added en-
ergy contributes to the kinetic energy of the gas, as
some effort is ‘wasted’ on volume expansion of the
system. We therefore frame heat capacity calcula-
tions somewhere between two extremes: constant vol-
ume and constant pressure, where C gains a respec-
tive V - or a P -subscript.

Ideal Gas at Constant Volume

Consider a sample of ideal gas inside a sealed, in-
finitely rigid container of fixed volume V . It follows
that all added heat contributes to the kinetic energy,
as only the pressure and temperature are variable.
Using equations (3.22) and (3.23), we find

CV = f

2NK . (3.24)

For one mole of monatomic gas with point-like con-
stituents with f = 3 (such as helium or argon), the
prediction for CV evaluates to

CVmon = 3
2R = 12.47 J

mol · K ,

in very good agreement with experiments. Due to
complications that are later solved by quantum me-
chanics, Equation (3.24) is only accurate for some
gases.

Ideal Gas at Constant Pressure

For systems allowed to change volume while main-
tained at constant pressure, the added energy ∆Q
splits according to

∆Q = ∆Uint + P∆V ,

where the increase in translational, rotational, and
vibrational motions of the molecules is all contained
in ∆Uint, and P∆V is the energy needed to shove
the environment out of the way as the gas expands.
Taking a T -derivative of the above yields

CP = CV +NK , (3.25)

where P∆V/∆T has been replaced using the ideal
gas equation.

Gamma Factor

The dimensionless ratio CP /CV is called the gamma
factor, which comes out to

γ = CP

CV
= 1 + 2

f
. (3.26)

Problem 29
Methane (CH4) is a 3-dimensional molecule - a

tetrahedron with carbon in the center. Determine
the best approximations for CV and γ. Answer:
24.9 J mol−1K−1 and 1.33

Elemental Solids

The equipartition theorem allows easy calculation of
the heat capacity of many solids. For our purposes,
a solid is regarded as a semi-frozen ideal gas, which
we take as a periodic arrangement of molecules with
no contributions to thermal energy from translational
or rotational motions. The structure is held together
by quadratic potentials, thus such solids have six de-
grees of freedom per molecule: three components of
kinetic energy due to vibration and three correspond-
ing quadratic potentials.

According to (3.24), one mole of ‘frozen gas’ with
f = 6 has

CVsolids = 6
2R = 24.9 J

mol · K ,

which is obeyed by all elemental solids at high enough
temperature, known as the rule of Dulong and Petit.

2.7 Van der Waals Model
The van der Waals model is an extension of the ideal
gas law that accounts for the particle size and the in-
teractions between particles. To write a generalized
ideal gas law, two experimental constants enter the
mix - blandly named a and b.

The starting point is the ideal gas model, with
equation of state PV = NKT . Supposing each of N
particles in a sample (gas or liquid) has volume b, we
make the replacement

V → V −Nb ,

where the variable V is understood as the volume
available for the sample to occupy. The particles
themselves do not contribute to V .
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Next we assume particles interact through the at-
tractive Leonnard Jones potential. Without increas-
ing temperature, particle interactions lead to an in-
crease in number density N/V and pressure P , as
evident by considering a particle on the surface layer
of the sample. On the surface layer, the net force
on a particle is inward, proportional in strength to
N/V . The total force inward is proportional to the
surface area of V , contributing another factor N/V .
It follows that the correction to pressure is

P → P + a (N/V )2
,

where a is a constant of dimension kg m5 s−2.
The van der Waals equation is(

P + aN2

V 2

)
(V −Nb) = NKT , (3.27)

and is accurate for many types of gases and flu-
ids. Water vapor has a = 0.5507 J m3 mol−2 and
b = 3.04 × 10−5 m3/mol. In the same units, N2 gas
has a = 0.1361 and b = 3.85 × 10−5, and H2 gas has
a = 0.0247 and b = 2.65 × 10−5.

3 First Law

3.1 First Law of Thermodynamics
Thermodynamic ystems are subject to energy con-
servation as any other machanical system would. If
U is the internal energy of a substance at pressure
P and volume V , any thermal energy dQ added (or
removed) must follow

dU = dQ− PdV , (3.28)

known as the first law of thermodynamics.
To make sense of the sign of the PdV term, imag-

ine adding heat +dQ to a gas sample using a candle.
If the experiment is prepared such that the temper-
ature does not change, making dU = 0, then the gas
necessarily expands its volume. The PdV term must
appear negative to balance out dQ.

3.2 Thermodynamic Processes
A thermodynamic process is any change in the state
variables characterizing a thermodynamic system. In
many cases, only some variables may change, such
as temperature and pressure, while other variables
remain vixed, such as volume and number of parti-
cles. In the following we classify some of the common
thermodynamic processes.

Isothermal Process

An isothermal process is one that leaves the system’s
temperature unchanged, which generally means there
is no change in the system’s internal energy. The first
law with dU = 0 reads 0 = dQ− PdV .

Isochoric Process

A process that leaves the system’s volume unchanged
(easier said than done) is classified as isochoric. The
dV term in the first law is zero by construction, so
all heat added to the system contributes to internal
energy via dU = dQ− 0.

Isobaric Process

A process that leaves the system’s pressure un-
changed (easily said and easily done) is classified as
isobaric. For example, the macroscopic work done
on a gas is not an integral

∫
PdV , but simply the

product P∆V .

Adiabatic Process

Adiabatic processes are those that have zero net heat
transfer into or out of the system. The first law of
thermodynamics quantifies this by dU = 0 − PdV ,
where any internal energy change dU is balanced out
by response in pressure and volume.

Reversible Processes

Many processes in classical mechanics (oscillations,
orbits, etc.) are reversible, where the system may
backtrack along its path in configuration space by
reversing time t → −t without violating any laws
of physics or probabilistic expectations. Only some
thermodynamic processes are reversible, and only if
conditions are right, with one example being isother-
mal phase change between water and ice at 0◦C in a
sealed container.

In reality, thermodynamic phenomena are natu-
rally irreversible, such as when a bomb explodes, or
when scrambling an egg. Witnessing either of these
in reverse would be extremely unlikely. To restore
such a system to its original state, an external re-
organizing force would have to intervene.

3.3 Ideal Gas Processes
We now examine the consequences of thermodynamic
processes for a controlled sample of ideal gas, always
obeying the ideal gas Equation (3.12).
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Isothermal

For isothermal expansion in ideal gas, the total en-
ergy entering the gas equals the total work done on
the environment, given by the integral

W =
∫
PdV =

∫ Vf

Vi

NKT

V
dV ,

simplifying to

W = NKT ln
(
Vf

Vi

)
. (3.29)

That is, all added heat contributes to volume expan-
sion.

Isochoric

An isochoric process permits no volume change,
which we studied when writing the heat capacity of
ideal gas at constant volume. The first law tells us
dQ = dU , where meanwhile we know dQ/dT = CV =
fNK/2. It follows that the work done during an iso-
choric process is

W = CV ∆T = f

2NK∆T . (3.30)

Isobaric

For an ideal gas, we found CP = CV + NK, leading
to

W = CP ∆T =
(
f

2 + 1
)
NK∆T . (3.31)

Adiabatic

An adiabatic process usually involves a rapid expan-
sion or compression of a gas that is ‘too fast’ for ex-
ternal heat transfer, making dQ = 0 = dQ − PdV .
Inserting the ideal gas internal energy relation (3.22)
into the first law, we write a differential equation

f

2 dT = −T dV
V

, (3.32)

implying:

PV γ = constant
TV γ−1 = konstant (3.33)

Problem 30
For a purely kinetic ideal gas, show that V U3/2 is

constant.

The work entering an ideal gas during an adia-
batic process is

W =
∫
P dV = NK

∫
T

V
dV = NK

f

2 (Ti − Tf ) ,

simplifying to

W = −PV

T

f

2 ∆T . (3.34)

Note the term (PV/T ) may be evaluated at any point
during the adiabatic process, so long as the combina-
tion of P , V , and T are known simultaneously. Using
relation (3.26), we may alternatively write

W = 1
1 − γ

(VfPf − ViPi) . (3.35)

The variable γ is always > 1 by construction, thus
(3.35) has a buried negative sign. If the overall sign
of W is positive, the work is done by the gas. If neg-
ative, the work is done on the gas.

Free Expansion of Ideal Gas

Consider a sealed, perfectly-insulating vessel with
ideal gas contained within half of its total volume.
The other half of the vessel is vacuum, and a thin
membrane separates the two compartments. The
membrane is then punctured and the gas is allowed
to freely expand into the vacuum until the two com-
partments are in equilibrium. (The system is not
quasistatic during expansion.)

Such free expansion is an adiabatic process, as
no heat enters or leaves the vessel through the insu-
lated walls. The system does zero work, as no force
is required to expand into vacuum. The temperature
change is zero according to Equation (3.34), thus the
internal energy change is also zero. In summary, we
see

Q = W = ∆T = ∆U = 0 ,
showing the energy state of the gas is unchanged.
Of course, the gas will never accidentally find itself
crammed into one side of the box again; work would
be required to compress the system to its original
state. Free expansion of ideal gas is therefore irre-
versible.

Problem 31
Take a P -derivative of Equation (3.33) to derive

dT

dP
= 2
f + 2

T

P
. (3.36)

Problem 32
Consider an ideal gas of N particles with initial

temperature Ti and initial volume Vi that is com-
pressed to final volume Vf . Which, process requires
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more energy compress the gas, isothermal or adia-
batic?

Problem 33
At height z in the Earth’s atmosphere, (i) show

that a horizontal thin layer of air with (massless) vol-
ume density ρ(z) and pressure P (z) obeys the equa-
tion dP/dz = −mgρ(z) at mechanical equilibrium,
where m is the average mass of molecules in the air.
(ii) Consider a bubble of gas that moves upward fast
by expanding or shrinking adiabatically. Show that
the temperature gradient experienced by the bubble
is given by

dT

dz
= −mgρ (z) 2

f + 2
T

P
.

(iii) At low altitudes above sea level, the pressure de-
creases by about 1.2 kPa for every 100 m. For higher
altitudes within the troposphere, show that

P (z) = P0 e
−mgz/KT0 ,

where P0 and T0 are measured at sea level (P0 ≈
101325 Pa, T0 ≈ 288.15 K).

Problem 34
A scuba diver is swimming a depth of 25 m where

the pressure is 3.5atm. The air she exhales forms bub-
bles 8.0mm in radius, which rise to the surface where
the pressure is 1 atm. Assume the bubbles remain
at the uniform 300 K temperature of the surrounding
water. How much work is done by each bubble as it
expands to the rising surface? Answer: 0.953 J

Problem 35
When a quantity of monatomic ideal gas expands

at a constant pressure of 4.00 × 104 Pa, the volume of
the gas increases from 2.00×10−3m3 to 8.00×10−3m3.
(i) What is the change in internal energy of the gas?
(ii) Does heat flow into out of the gas? (iii) What is
the magnitude of the heat flow? Answer: 360J, 600J
into the gas.

3.4 Thermodynamic Cycles
A thermodynamic cycle is a chain of processes that
bring an open system’s state variables to a previous
configuration. It follows that the net internal energy
change ∆U is zero for a complete thermodynamic cy-
cle, meaning that any heat added to a system must
be removed somewhere in the same cycle.

During any infinitesimal volume change, work
done is equal to PdV . Integrated over a thermo-
dynamic cycle, the total work done equals the area

enclosed by the loop on the PV diagram. If the
loop traces out in a clockwise direction, the work out-
put of the system is positive. When going counter-
clockwise, the system absorbs work over a complete
cycle.

Heat Engine

A heat engine is a device that utilizes a thermody-
namic cycle in repetition to perform ‘useful’ work.
The efficiency of a heat engine is defined as the ratio
of output work over input heat energy. Using the first
law we write

e = W

QH
= Q− ∆U

QH
= Q

QH
. (3.37)

Through a complete thermodynamic cycle, the net
heat flow Q equals QH +QC . The efficiency is there-
fore

e = QH +QC

QH
= 1 −

∣∣∣∣QC

QH

∣∣∣∣ ,
using the fact that QC is negative for a typical heat
engine.

Problem 36
Two moles of an ideal diatomic gas are taken

around the cycle abc as shown in Figure 3.4. Data:
Pa = 1.00×105 Pa, Pc = 1.40×105 Pa, Va = 0.049m3.
If the path from b to c is isothermal, calculate the
work done by the gas. Answer: −2300 J

Problem 37
Two moles of an ideal diatomic gas are taken

around the cycle abc as shown in Figure 3.4. Data:
Pa = 1.00×105 Pa, Pc = 1.40×105 Pa, Va = 0.100m3.
If the path from b to c is adiabatic, calculate the vol-
ume of the gas at point c. Answer: 0.13 m3

Figure 3.4: PV diagram showing thermodynamic cy-
cle.

Problem 38
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A cylinder with a piston contains 0.150 mol of ni-
trogen at 1.80×105 Pa at 300K. The nitrogen may be
treated as an ideal diatomic gas whose molecules can
rotate, but not vibrate. The gas is first compressed
isobarically to half its original volume. It then ex-
pands adiabatically back to its original volume, and
is finally heated isochorically to its original pressure.
(i) Do the arrows on the corresponding PV diagram
point clockwise or counterclockwise? Draw it. (ii)
Compute the temperatures at the beginning and end
of the adiabatic expansion. (iii) Compute the mini-
mum pressure. (iv) Compute the work done by ni-
trogen during one thermodynamic cycle. Answer: (i)
counterclockwise, (ii) 150K, 114K, (iii) 6.82×104 Pa,
(iv) −75 J

Otto Cycle

Many automobiles operate on the gasoline-burning
Otto cycle. Inside Otto engines, a fuel-air mixture
(approximately ideal gas) is compressed inside a pis-
ton and then ignited with a spark, resulting in rapid
volume expansion to ‘blast’ the piston outward, ap-
plying work that ultimately reaches the wheels. The
spent fuel-air mixture is ejected from the piston and
the process repeats. Engines in general have a differ-
ent number of steps required to complete their ther-
modynamic cycles, with popular conventions being
‘two-stroke’ and ‘four-stroke’.

The Otto cycle consists of four thermodynamic
processes illustrated in Figure 3.5. We begin analyz-
ing an Otto engine piston as it is fully expanded at
volume Vmax and filled with a fuel-air mixture (ap-
proximately ideal gas), ready to ignite. In this ‘cool’
state, the piston has temperature is T0 pressure P0.

1. Compression stroke (adiabatic): An external
force (work left over from a previous cycle)
rapidly compresses the piston to volume Vmin.
The pressure of the fuel-air mixture thereby in-
creases to P1, and the temperature increases to
T1. Because no significant heat is added to the
cylinder during the compression stroke, it is an
adiabatic process.

2. Fuel ignition (isochoric): With the piston fully
compressed, a spark ignites the fuel-air mixture,
quickly releasing a great deal of kinetic energy
QH into the gas. The pressure jumps quickly
to P2, and likewise the temperature to T2. The
volume remains constant at Vmin. The energy
added follows the relation:

QH = nCV (T2 − T1) ,

where n is the number of moles of fuel-air mix-
ture in the piston.

3. Power stroke (adiabatic): The cylinder’s vol-
ume expands to Vmax following ignition, and
whatever device is attached to the moving part
of the piston receives organized work W (driv-
ing the car forward, for instance). The pres-
sure drops to P+ during this process, but not
quite down to P0. The spent fuel-air mixture is
still ‘hot’ at this point, having temperature T+,
slightly greater than T0.

4. Exhaust stroke (isochoric): The cylinder expels
the spent fuel-air mixture of energy QH to the
environment and takes in a new fuel-air packet,
returning the pressure to P0. The piston effec-
tively remains at Vmax (after intake of new fuel),
and is ready again for a compression stroke.
The (negative) energy added follows the rela-
tion

QC = nCV (T0 − T+) .

Figure 3.5: Otto cycle.
The efficiency of the Otto engine is straightfor-

ward to calculate by Equation (3.37), giving

e = 1 + QC

QH
= 1 + T0 − T+

T2 − T1
,

but we can do better. The Otto cycle’s two adia-
batic transitions obeys Equation (3.33), allowing all
T -variables to cancel. Meanwhile, define the piston
compression ratio r = Vmax/Vmin so the formula for
e boils down to

e = 1 − 1
rγ−1 . (3.38)

Problem 39
How much of QC may be used to bolster to the

power stroke of an engine? Answer: None, not even
theoretically.

Problem 40
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A gasoline engine takes in 8.00 × 103 J of heat
and delivers 1.60 × 103 J of work per cycle. The heat
is obtained from gasoline with a heat combusion of
4.6×104 J/g. (i) What is thermal efficiency? (ii) How
much heat is discarded in each cycle? (iii) What mass
of fuel is burned in each cycle? (iv) If the engine goes
through 70.0 cycles per second, what is the power
output in watts? (v) What is the power in horse-
power? Answer: 0.212, 6.70 × 103 J, 1.85 × 10−4 kg,
1.62 × 105 W, 217 hp.

Problem 41
A Toyota Celica GT has a four cylinder Otto-cycle

engine with a compression ratio of r = 9.50. The di-
ameter of each cylinder, called the bore of the engine
is 87.1 mm. The distance that the piston moves dur-
ing the compression, called the stroke of the engine
is 90.9 mm. The initial (and minimal) pressure of
the air - fuel mixture (when the volume is maximal)
is 8.50 × 104 Pa, and the initial temperature is 300 K
(same as the environment). Assume that 200J of heat
is added to each cylinder in each cycle by burning the
fuel (gasoline), which has CV = 20.5 Jmol−1K−1 and
γ = 1.40. (i) Calculate the work done in each cy-
cle. (ii) Calculate the thermal energy released when
the gas is cooled to the temperature of the outside
air. (iii) Calculate the minimal volume of the air -
fuel mixture. (iv) Calculate P , V , and T just be-
fore ignition. Answer: 119 J, 81.3 J, 6.05 × 10−4m3,
1.99 × 106 Pa, 6.37 × 10−5m3, 738 K

Diesel Cycle

Some automobiles and nearly all road shipping vehi-
cles (excluding hybrid drives) operate on the diesel
cycle. Like the Otto cycle, the diesel cycle entails
four thermodynamic processes. Inside a diesel en-
gine piston however, fuel-air mixture (approximated
as ideal gas) is compressed until it self-ignites without
the help of a spark, causing the power stroke. The
ignition takes place in a constant-pressure condition,
and the volume jumps almost instantly, much unlike
the Otto cycle’s ignition scenario.

Problem 42
Figure 3.6 is the PV diagram for the diesel cycle.

The compression stroke, the instant of fuel ignition,
power stroke, and exhaust stroke are labeled 1, 2, 3,
4, respectively. Assuming steps 1 and 3 are adiabatic,
show that the efficiency of the diesel engine is given
by

e = 1 − 1
γ

(c/b)−γ − (c/a)−γ

(c/b)−1 − (c/a)−1 ,

where volumes a, b, and c are indicated on the hori-
zontal axis and γ is the ratio CP /CV .

Figure 3.6: Diesel cycle.

Refrigerators

A refrigerator operates as a heat engine in reverse:
work is required to displace heat from the cold reser-
voir to the hot reservoir. The working substance that
circulates inside a refrigerator is a fixed amount of wa-
ter, freon, or ammonia (no chemical exhaust). The
operation is outlined as follows:

1. Starting in the gaseous phase, the working sub-
stance is forced through a compressor, emerg-
ing with reduced volume and increased temper-
ature and pressure.

2. The substance goes through a long heat-
conducting tube called the condenser, which
is in thermal contact with the environment
(hence the refrigerator needs to ventilate). In
the condenser, the working substance loses heat
QH < 0 and changes phase to liquid.

3. The working substance then encounters a very
small ‘bottleneck’ called the throttle that hin-
ders most of the circulation. On the input side
of the throttle, the temperature and pressure of
the working substance are relatively high. The
output side is at much lower temperature and
pressure.

4. As a cold liquid, the working substance passes
through the refrigerator body, warming again to
the gaseous phase, absorbing energy QC > 0.

Like the heat engine, the refrigerator obeys the
first law

QH +QC = Qin = ∆U +W ,
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where ∆U = 0 and W < 0. The merit of a refrig-
erator is not its efficiency, but instead the coefficient
of performance, defined as the ratio of heat removed
from the refrigerator body over the work required to
do so. That is,

K = |QC |
|W |

= |QC |
|QH | − |QC |

. (3.39)

Problem 43
An ideal air conditioner takes heat from a room at

68.5◦F and transfers it to the environment, which is
at 93.1◦F. For each joule of electrical energy required
to operate the air conditioner, how many joules of
thermal energy are removed from the room?

Problem 44
Liquid refrigerant at a pressure of 1.34 × 105 Pa

leaves the expansion valve of a refrigerator at −22◦C.
It then flows through the vaporization coils inside the
refrigerator and leaves as vapor at the same pressure
at a temperature of −18◦C, the same temperature as
the inside of the refrigerator. The boiling point of
the refrigerant at this pressure is −18◦C, the heat of
vaporization is 1.60 × 105 J/kg, and the specific heat
capacity of the vapor is 485 Jkg−1K−1. The coeffi-
cient of performance of the refrigerator is K = 2.52.
If 8.00 kg of refrigerant flows through the refrigera-
tor each hour, find the electric power that must be
supplied to the refrigerator. Answer: 123 W

Problem 45
A heat pump designed for southern climates ex-

tracts heat from the outside air, and delivers air at
20◦C to the inside of the house. Compute the co-
efficient of performance of the heat pump (i) in the
south, where the outside temperature is 5◦C; (ii) in
the north, where the outside temperature is −10◦C.
(iii) Two identical houses, one in the north and one
in the south, are heated by this pump, and maintain
temperatures of 20◦C. Considering heat loss though
the walls, windows, and roof, what is the ratio of
the electrical power required to heat the two houses?
Answer: (i) 18.5, (ii) 8.77, (iii) 4.0

Carnot Cycle

Sadi Carnot (1796-1832) designed an engine with
maximal efficiency by using only reversible isothermal
and reversible adiabatic processes. All heat transfer
during the Carnot cycle occurs on isotherms; there is
no heat transfer across finite temperature differences.
No machine using the Carnot cycle would be ‘fast’
enough for industrial standards, but Carnot engines
are still the most efficient type.

The gaseous working substance within a Carnot
engine piston never leaves the piston, and undergoes
no chemical change. Carnot engines rely on a lit-
eral ‘hot’ reservoir from which to draw energy, and
a similar ‘cold’ reservoir to deposit energy. These
two reservoirs may in practice be as simple as hot
and cold containers of water. The four stages of the
Carnot cycle go as follows:

1. Slow isothermal: A piston in the ‘compressed’
state enclosing a gas of volume Vmin is attached
to a reservoir at high temperature TH and ab-
sorbs heat QH isothermally. The volume swells
to V1, and the reservoir is removed. Recall from
Equation (3.29) that

QH = NKTH ln
(

V1

Vmin

)
.

2. Fast adiabatic: The gas expands adiabati-
cally, lowering its temperature from TH until
it reaches TC . The volume swells once more to
reach a maximum Vmax.

3. Slow isothermal: The system moves to contact
the cold reservoir of temperature TC , where
isothermal compression takes the volume to V2
(with V2 < V1). The discarded energy is

QC = −NKTC ln
(
Vmax

V2

)
.

4. Fast adiabatic: The system moves away from
the cold reservoir and the gas is compressed adi-
abatically, raising its temperature from TC until
it reaches TH . The volume returns to Vmin.

The efficiency of the Carnot engine, according to
definition (3.37), is

e = QH +QC

QH
= 1 − TC

TH

ln (Vmax/V2)
ln (V1/Vmin) ,

where Equation (3.33) for adiabatic processes tells us
Vmax/V2 = V1/Vmin, and thus

QC

QH
= −TC

TH
. (3.40)

Astonishingly, the efficiency depends on neither the
construction of an engine nor the properties of the
working substance, only the reservoir temperatures:

e = 1 − TC

TH
(3.41)

Problem 46
Consider a Carnot engine operating between tem-

peratures TH and TC , where TC is above the ambient
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temperature T0. A second engine operates between
the temperatures TC and T0. Show that the overall
efficiency of this system is equal to the efficiency of a
single Carnot engine operating between TH and T0.

Problem 47
A Carnot engine operating between two thermal

reservoirs has an efficiency of e. When it is run in
reverse, it becomes a Carnot refrigerator. Calculate
the coefficient of performance. Answer: (1 − e) /e

Reversible Loops

By riding isothermal and adiabatic curves, Carnot
successfully identified a closed loop in the PV dia-
gram that is entirely reversible. It should follow that
we may consider any reversible path as a stack of
Carnot cycles. To capture this idea, write Equation
(3.40) in the form

QC

TC
+ QH

TH
= 0

where a path made of many isothermal and adiabatic
segments must obey∑ Q

T
= 0 .

Heat transfer on shared isotherms cancel, and the
sum refers only to the boundary of the PV -curve.
Taking a finer resolution, the sum generalizes to a
path integral ∮

dQ

T
= 0 . (3.42)

Evidently, there is something that links quantity
dQ/T to the reversibility of thermodynamic pro-
cesses.

4 Second Law
4.1 Entropy
The entropy of system is a quantity representing its
‘reversibility’. First surfacing in Equation (3.42), let
us define the entropy as

S =
∫
dQ

T
. (3.43)

For reversible processes, the entropy can be found
by direct integration of the above. For two states
linked by an irreversible process, it suffices to calcu-
late the entropy over some other path (in the PV
diagram) consisting of reversible process that would
connect those two states.

Adding to our list of terms for thermodynamic
processes, any process that is both adiabatic and qua-
sistatic is called isentropic, which means there is no
entropy change in the process.

Problem 48
When 1.00 kg of water at 0◦C is frozen to make

ice, what is the entropy change? Answer: −1200 J/K

Problem 49
An object of mass m1, specific heat c1, and tem-

perature T1 is placed in contact with a second object
mass m2, specific heat c2, and temperature T2 > T1.
As a result, object 1 heats to temperature T and ob-
ject 2 cools to T ′. (i) Show that energy conservation
requires that m1c1(T − T1) = m2c2(T2 − T ′). (ii)
Show that the entropy increase of the system is

∆S = m1c1 ln (T/T1) +m2c2 ln (T ′/T2) .

Isothermal Expansion of Ideal Gas

For isothermal expansion of ideal gas, we wrote the
energy entering the system as Equation (3.29), im-
plying ∆Q = NKT ln (Vf/Vi). By the definition of
entropy, it follows that

S = NK ln
(
Vf

Vi

)
. (3.44)

Isochoric Expansion of Ideal Gas

For isochoric expansion of ideal gas, we wrote the en-
ergy entering the system as Equation (3.30), implying
dQ/dT = CV . By the definition of entropy, it follows
that

S =
∫
dQ

dT

dT

T
= CV ln

(
Tf

Ti

)
. (3.45)

Isobaric Expansion of Ideal Gas

For isobaric expansion of ideal gas, we wrote the en-
ergy entering the system as Equation (3.31), implying
dQ/dT = CP . By the definition of entropy, it follows
that

S =
∫
dQ

dT

dT

T
= CP ln

(
Tf

Ti

)
. (3.46)

Adiabatic Process in Ideal Gas

Starting with the definition of entropy, an adiabatic
process in ideal gas obeys

S =
∫
dQ

T
=
∫
dU + PdV

T

= NK

∫ (
f

2
dT

T
+ dV

V

)
= 0 ,
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which evaluates to zero because the terms inside the
integral are equal and opposite by Equation (3.32).

Free Expansion of Ideal Gas

In discussing the free expansion of ideal gas, we found
that no energy changes whatsoever, i.e., ∆U = ∆Q =
W = 0. However, we also found that ideal gas expan-
sion is irreversible, so the entropy shouldn’t be zero.

To calculate the entropy of free expansion of ideal
gas, imagine the effort required to isothermally com-
press the gas to its original volume. This is precisely
the same condition that gave us Equation (3.44), thus
the entropy is

S = NK ln
(
Vf

Vi

)
.

A change in entropy implies a change in the ‘qual-
ity’ of the energy in a system. This means ideal gas
freely-expanding through a hole, as opposed to es-
caping into a vacuum, could instead be used to do
something that keeps energy ‘organized’, such as to
wind up a spring connected to a turbine.

Entropy of Light

A ‘gas’ of photons, also referred to as blackbody radi-
ation, is subject to entropy. Recall that Stefan’s law
(3.11) states that the rate of electromagnetic energy
transfer is given by

dQ

dt
= Aσ

(
T 4

obj − T 4
env
)
,

where e = 1 and for simplicity we’ll take Tenv to be
constant. The total energy in a volume V of photon
gas is

Q = σ

c

(
T 4

obj − T 4
env
) ∫

d3x = V σ

c

(
T 4

obj − T 4
env
)
,

and it follows that dQ = (V σ/c)4T 3
objdT . Thus the

entropy S as a function of Tobj is

S =
∫
dQ

T
= 4V σ

c

∫
T 2 dT = 4V σ

3c
(
T 3

obj − T 3
0
)
.

If we approximate Tenv = 0 and T0 = 0, the entropy
becomes

S = 4
3
Q

T
.

4.2 Second Law of Thermodynamics
The second law of thermodynamics is a restriction on
the entropy of closed systems. The following state-
ments more-or-less equally capture the second law:

Entropy statement

The entropy of a closed system can never decrease.
The entropy of an open system can be forced to de-
crease, but the net entropy of the system + surround-
ings necessarily increases.

Engine statement

It is impossible for any system to undergo a cyclic
process in which it absorbs heat at a single tempera-
ture and converts the heat completely into mechanical
work.

Refrigerator statement

It is impossible for any process to have as its sole
result the transfer of heat from a cooler to a hotter
body.

4.3 Systems in Contact
Systems placed in contact will exchange energy, tem-
perature, particles, and so on - depending on the in-
timacy of contact. Such conjoined systems always
tend toward some kind of equilibrium state, and we
take advantage of this to re-understand the notion
temperature, pressure, etc.

Thermal Equilibrium

Consider two thermodynamic systems A and B that
are in separate, rigid, sealed containers. With TA >
TB initially, the systems are then placed in contact
to allow internal energy exchange by conduction or
radiation, with the total U = UA + UB remaining
constant.

A heat packet dQ = −dUA = dUB exchanged be-
tween systems changes the entropy of both:

dSA = −|dQ|
TA

dSB = |dQ|
TB

To accommodate the temperature terms, the entropy
loss of the hotter system A is smaller in magnitude
than the entropy gain of the cooler system B. The
sum dSA + dSB is necessarily positive, thus the en-
ergy exchange in irreversible. Thermal equilibrium
is achieved when the entropy stops increasing, corre-
sponding to TA = TB = T , or

1
T

= dSA

dUA
= dSB

dUB
= 1
T
.
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Definition of Temperature

Given the the role of entropy in thermal equilibrium,
we seize this opportunity to actually define the notion
of temperature as an entropy maximum with respect
to internal energy (for fixed V and N):

T =
(
∂S

∂U

)−1

V,N

(3.47)

Mechanical Equilibrium

Supposing the partition between systems A and B
were made flexible but not porous, the systems tend
toward mechanical equilibrium, where maximum en-
tropy corresponds to equal pressures. Supposing
TA = TB with VA > VB initially, the heat packet
exchanged between systems is purely mechanical as
dQ = −PAdVA = PBdVB .

Using the same arguments as above, we may re-
place instances of dQ with PdV terms to get:

P

T
= dSA

dVA
= dSB

dVB
= P

T

Alas, we’re in position to relate pressure to entropy
as we did the temperature. The equation

P = T

(
∂S

∂V

)
U,N

(3.48)

describes systems with fixed internal energy and fixed
number of particles. Note that the above is merely a
tool for calculation, not a refined definition of pres-
sure.

Diffusive Equilibrium

We now let systems A and B exchange both en-
ergy and particles through a non-flexing porous mem-
brane. Placed in contact, the systems achieve diffu-
sive equilibrium in addition to thermal equilibrium.

The heat dQ exchanged between systems is pro-
portional to the number of particles dN that move
across the membrane. The proportionality factor be-
tween energy and particles is called the chemical po-
tential, denoted µ, as

dQ = µdN .

implying
−µ
T

= dSA

dNA
= dSB

dNB
= −µ

T
.

We thus define the chemical potential in terms of
the entropy:

µ = −T
(
∂S

∂N

)
U,V

(3.49)

The minus sign in Equation (3.49) reminds us that
particles flow from regions of higher µ to lower. When
there are multiple particle species present in a sys-
tem, µ adopts a subscript j for each species, and the
quantity µdN becomes

∑
µjdNj .

5 Thermodynamic Variables
5.1 Extensive and Intensive
Most thermodynamic variables belong to one of two
classifications. A quantity may be extensive, where
the scale of the variable goes with the size of the sys-
tem, or it may be intensive, where the scale of the
variable doesn’t care about the scale of the system.
To illustrate, consider a thermodynamic system with
the laundry list of state variables. If the system is
duplicated and attached to itself, we ask which vari-
ables scale appropriately, versus which variables stay
the asme? You should conclude:

Extensive: M , V , N , U , S

Intensive: P , T , µ, ρ

Properties of intensive and extensive variables:

• An extensive quantity multiplied by an inten-
sive quantity yields an extensive quantity.

• The sum of two extensive quantities is also ex-
tensive.

• A ratio of extensive quantities yields an inten-
sive quantity.

• The product of two extensive quantities is rare
in calculations - check twice if you encounter
this.

• The sum of an extensive quantity and an inten-
sive quantity should never arise.

5.2 First Thermodynamic Identity
Recall the first law of thermodynamics as stated in
Equation (3.28), namely

dU = dQ− PdV .

Our study of thermal and diffusive equilibrium has
shown dQ coming in two flavors as dQ = TdS and
dQ = µdN , respectively. It follows that the first law
has a special form

dU = TdS − PdV + µdN , (3.50)

which we’ll call the first thermodynamic identity.
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Entropy of the Universe

The whole universe consists of any given system plus
its total environment such that Suni = Ssys +Senv. It
follows that Equation (3.50) lets us write:

dSuni = dSsys +
(

1
T

(dU + PdV − µdN)
)

env
(3.51)

5.3 Free Energies
The meaning of the term thermal energy or thermody-
namic potential can vary depending on the conditions
surrounding a system. The distinction is characteried
by the free energy of the system.

Enthalpy

In an environment with fixed pressure P , the total
energy required to create a system with internal en-
ergy U and volume V is called the enthalpy, defined
as

H = U + PV . (3.52)

Enthalpy is the internal energy of a system plus
the work required to shove the environment out of the
way in order to make room the system. Conversely,
H is the total energy recovered if you could annihilate
the system.

Problem 50
Show that the enthalpy of an ideal gas is H =

5NKT/2.

The differential enthalpy is dH = dU + PdV +
V dP , where substituting Equation (3.50) gives a new
identity

dH = TdS + V dP + µdN . (3.53)

The enthalpy is generally not extremized as the
system tends toward equilibrium. In the special case
that P and S are constant, the enthalpy is minimized
at equilibrium.

Helmholtz Free Energy

In an environment with fixed temperature T , one
who creates a system with constant V and constant
N shall borrow energy from the environment by an
amount equal to TS, where S is the entropy of the
system. The net work required is therefore

A = U − TS , (3.54)

called the Helmholtz Free Energy. This is the energy
recovered if the system is destroyed in the same con-
ditions.

The differential Helmholtz free energy is dA =
dU −TdS−SdT , where substituting Equation (3.50)
gives another identity

dA = −SdT − PdV + µdN . (3.55)

By assuming the system has fixed T , V , N , we
assume the same about the environment. In accor-
dance with Equation (3.51), we have that a such a
system plus its environment will follow

dSuni = dSsys +
(

1
T

(dU + P��dV − µ��dN)
)

env
.

The energy exchanged between the two are equal and
opposite, i.e. dUsys = −dUenv. All in terms of system
variables, the above becomes

dSuni = −1
T

(dU − TdS) .

On the right side of the above, the parenthesized
expression is the differential Helmholtz free energy
for constant T , i.e.

dSuni = −1
T

(dA)T,V,N .

Thus, we find that such a system will do whatever it
can to minimize the Helmholtz free energy.

Gibbs Free Energy

In an environment with fixed temperature T and
pressure P , creating a system requires the Gibbs free
energy

G = U + PV − TS , (3.56)
which means you supply the internal energy U plus
the work PV to shove the environment out of the way.
The environment supplies TS for you, hence the mi-
nus sign. In the same conditions, G is the energy
recovered if the system is annihilated.

Taking the differential Gibbs free energy and sub-
stituting (3.50) gives a corresponding identity:

dG = −SdT + V dP + µdN (3.57)

At constant temperature and pressure, the dT - and
dP -terms are zero, leaving us with dG = µdN , which
integrates to

G = µN . (3.58)
Notice this readily generalizes to a gas with multiple
species of particles:

G =
∑

j

µjNj

You might wish that a similar relation connects
A to N by starting with µ = (∂A/∂N)T,V . How-
ever, adding particles while maintaining fixed T and
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V causes the density to slowly increase, which directly
changes µ.

Assume the system and the environment have
fixed T , P , N . In accordance with Equation (3.51),
we have that a such a system plus its environment
will follow

dSuni = dSsys +
(

1
T

(dU + PdV − µ��dN)
)

env
.

The energy and volume exchanged between the two
are equal and opposite, i.e. dUsys = −dUenv, dVsys =
−dVenv. All in terms of system variables, the above
becomes

dSuni = −1
T

(dU + PdV − TdS) .

On the right side of the above, the parenthesized
expression is the differential Gibbs free energy for
constant T and P , i.e.

dSuni = −1
T

(dG)T,P,N .

Such a system will do whatever it can to minimize
the Gibbs free energy. Note if T is allowed to vary,
the system instead minimizes the enthalpy.

Summary

The above is summarized as follows:

• Fixed U , V :
Maximize entropy (S).

• Fixed P :
Minimize enthalpy (H = U + PV ).

• Fixed T , V :
Minimize Helmholtz (A = U − TS).

• Fixed T , P :
Minimize Gibbs (G = U + PV − TS).

Grand Free Energy

A grouping of terms useful for describing irreversible
processes in open systems is the grand free energy,
defined as

Φ = U − TS − µN . (3.59)

The quantity (3.59) is the energy recovered by re-
ducing the system to zero size; putting all particles
and energy back into the reservoir. Using Equation
(3.58), it’s straightforwardly shown that

Φ = −PV . (3.60)

Suppose a system of fixed V is allowed to ex-
change both U and N with its environment. Assume
the chemical potential µ of the system is already in
equilibrium with the environment, as is the temper-
ature T . The differential version of Φ reads

dΦ = dU − TdS − µdN ,

which is the right hand side of Equation (3.51). It
immediately follows that

dSuni = − 1
T

(dΦ)T,V,µ ,

meaning a system with fixed V in thermal and diffu-
sive equilibrium with the environment will minimize
the grand free energy.

Energy Checksum

A handy consistency check on the internal energy U
can be derived in terms of TS, PV and µN , avoid-
ing terms like H, A, G, and Φ. Start with the first
thermodynamic identity

dU = TdS − PdV + µdN ,

and ask: which potential could be added to dU in
order to make the right side a total derivative? De-
noting such a term Ξ, we write

d (U + Ξ) = d (TS) − d (PV ) + d (µN) ,

where clearly,

dΞ = SdT − V dP + dµN .

Notice though that this is (minus) the differential ver-
sion of Φ + PV , which is identically zero, meaning
that Ξ is exactly zero. Integrating the above gives

U = TS − PV + µN ,

the familiar formula for the Gibbs free energy.

Gibbs-Duhem Equation

The arrangement of thermodynamic state variables
that gives zero on either side of the equation gives a
special result relating differential chemical potentials.
Begin with the Grand free energy as given by (3.59),
and add the PV term onto the left to get zero on the
right:

Φ + PV = U − TS −
∑

i

µiNi + PV = 0

Note this discussion applies to a multi-species sys-
tem, as indicated by the sum over particles with their
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corresponding chemical potentials. Taking the differ-
ential version, we find

d (Φ + PV ) = −SdT + V dP −
∑

i

dµiNi = 0 ,

where for conditions of constant temperature and
constant pressure, we arrive at the Gibbs-Duhem
equation: ∑

i

dµiNi = 0 (3.61)

5.4 Legendre Transform
We have found that the energy state of a system is be-
holden to its (sometimes controlled) relationship with
the environment. For example, at fixed temperature,
volume, and number of particles, the best represen-
tation is the Helmholtz free energy A (T, V,N). Here
we address why to ever bother with different poten-
tials - that is, why not simply write U = U (T, V,N)
and deal with internal energy all the time?

Staying in the Helmholtz regime, to assign U as
a function of T is patently incorrect, as temperature
is already defined by Equation (3.47), namely

T =
(
∂S

∂U

)−1

V,N

.

It is appropriate however to express the inter-
nal energy in terms of the entropy instead as U =
U (S, V,N). To proceed, consider a given point P on
a U(S) curve, and determine the slope ∂U/∂S = T
at that point. Draw a straight line through point P
having slope T , and extend the line until it hits the
U -axis. The U -intercept is precisely the Helmholtz
free energy A. That is, we have drawn the line

U (S, V,N) = A (T, V,N) + S

(
∂U

∂S

)
V,N

,

which is equivalent to the usual formula A = U−TS.
Subtracting TS from U in this way is called the Leg-
endre transform. A similar procedure extends to each
of the thermodynamic potentials.

5.5 State Variables as Derivatives
Thermodynamic identities (3.50), (3.53), (3.55), and
(3.57) can be arranged to express certain state vari-
ables. For completeness, these are:

dU = TdS − PdV + µdN

dH = TdS + V dP + µdN

dA = −SdT − PdV + µdN

dG = −SdT + V dP + µdN

From these, one readily derives the following:

Derivatives of Entropy

1
T

=
(
∂S

∂U

)
V,N

P

T
=
(
∂S

∂V

)
U,N

−µ

T
=
(
∂S

∂N

)
U,V

Derivatives of Helmtoltz

−S =
(
∂A

∂T

)
V,N

−P =
(
∂A

∂V

)
T,N

µ =
(
∂A

∂N

)
T,V

Derivatives of Gibbs

−S =
(
∂G

∂T

)
P,N

V =
(
∂G

∂P

)
T,N

µ =
(
∂G

∂N

)
T,P

Heat Capacity

CV =
(
∂U

∂T

)
V,N

= 3
2NK

CP =
(
∂H

∂T

)
P,N

= 5
2NK

Thermal Expansion

As a partial derivative, the coefficient of thermal ex-
pansion, namely β = 3α from Equation (3.3) may be
written as

β = 1
V

(
∂V

∂T

)
P

.

A similar property of matter is the isothermal com-
pressibility κT , defined as

κT = − 1
V

(
∂V

∂P

)
T

.
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Problem 51
Assume some equation of state (not necessarily

the ideal gas equation) connects a system’s pressure
P , temperature T , and volume V . For the infinitesi-
mal change P → P + dP , T → T + dT with V fixed,
(i) show that (∂V/∂P )T dP + (∂V/∂T )P dT = 0. (ii)
Next show that

dP

dT
=
(
∂P

∂T

)
V

= −
(∂V/∂T )P

(∂V/∂P )T

.

Problem 52
Near room temperature, liquid water has a ther-

mal expansion coefficient β = 2.5 × 10−4 K−1 and
isothermal compressibility κT = 4.5 × 10−10 Pa−1.
Estimate the pressure that must be exerted on a drop
of water in order to prevent it from expanding while
increasing from 20◦C to 30◦C. Use this result to ex-
plain why it is easier to measure CP rather than CV .
Answer: 55.8 atm

Problem 53
For a van der Walls fluid obeying Equation (3.27)

at fixed T and N , use the thermodynamic identity
(3.57) to show that the Gibbs free energy is:

G = −NKT ln (V −Nb)

+ N2bKT

V −Nb
− 2aN2

V
+ C (T ) (3.62)

5.6 Maxwell Relations
A trick from calculus allows a deeper relationship
between derivatives and state variables. Consider
a function f of two variables x and y. It’s easy to
see that the mixed second derivatives of f are identi-
cal: ∂xyf = ∂yxf . Applying this to thermodynamics,
Take for example the differential Helmholtz free en-
ergy, dA, with a fixed number of particles. By Equa-
tion (3.55), we have

dA = −SdT − PdV .

From the rules of partial derivatives, dA also reads

dA =
(
∂A

∂T

)
V

dT +
(
∂A

∂V

)
T

dV ,

where from calculus, we must have(
∂

∂V

(
∂A

∂T

)
V

)
T

=
(
∂

∂T

(
∂A

∂V

)
T

)
V

Substituting state variables for the inner deriva-
tives, but leaving the outer ones, we arrive at a
Maxwell relation:(

∂S

∂V

)
T

=
(
∂P

∂T

)
V

(3.63)

In the same spirit, we can do the same for dU , dH,
and dG, where the number of particles is fixed in all
cases. Respectively, the results are:(

∂T

∂V

)
S

= −
(
∂P

∂S

)
V

(3.64)

(
∂T

∂P

)
S

=
(
∂V

∂S

)
P

(3.65)

(
∂S

∂P

)
T

= −
(
∂V

∂T

)
P

(3.66)

6 Chemical Physics
6.1 Thermochemistry Tables
In response to change, a thermodynamic system’s
state variables will adjust in accordance with envi-
ronmental conditions. At ‘standard’ room tempera-
ture (298 K) and at ‘standard’ atmospheric pressure
(1 atm), also known as STP conditions, the enthalpy
H, entropy S, and Gibbs free energy G of common
substances behave as listed in the following thermo-
chemistry table, also called an entropy table:

Symbol Species Enthalpy Entropy Gibbs free energy
∆H S ∆G[

kJ mol−1] [
J mol−1K−1] [

kJ mol−1]
H2O Liquid Water -285.83 69.95 -237.15
H2O Water Vapor -241.83 188.84 -228.59
H2 Hydrogen Gas 0 130.7 0
O2 Oxygen Gas 0 205.07 0
O Monatomic Oxygen 249.170 161.055 231.731
N Nitrogen Gas 472.704 153.298 455.563
NH3 Ammonia -45.90 192.77 -16.37
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Electrolysis of Water

Consider a 1 mol sample of liquid water at standard
temperature and pressure conditions. When electric
current is applied through the sample, the reaction

H2O → H2 + 1
2O2

takes place. Using the data above, we may calculate
the energy required to drive the reaction.

Rummaging through the various energy quanti-
ties studied previously, observe that the enthalpy
H = U + PV matches the scenario. From ther-
mochemistry data, we find that the enthalpy de-
creases by ∆H = −286 kJ. (Note: of the 286 kJ
that enters the system, an amount of work equal to
1atm×∆V = 4kJ is spent on shoving aside the atmo-
sphere to make room for the new gases, with 282 kJ
remaining.)

The entropy of the reaction is

∆S = SH2+ 1
2 O2 − SH2O

=
(

131 + 205
2 − 70

)
J K−1

= 163 JJ K−1 ,

thus the environment contributes (positive) energy

T∆S = (298 K)
(
163 J K−1) = 49 kJ .

Finally, the change in Gibbs free energy G =
H−TS works out as ∆G = ∆H−T∆S = −286kJ+
49kJ = −237 kJ, which ‘predicts’ the top-right value
in the thermochemistry table. Evidently, the device
driving electrolysis must only provide 237kJ per mole
of water.

6.2 Phase Change
At a boundary on a PT diagram, such as the gas-
liquid boundary where the substance is stable in ei-
ther form, the Gibbs free energy is the same on each
side of the boundary:

Ggas = Gliquid

Using Equation (3.57) and noting that dGgas =
dGliquid, we write for each side of the boundary (as-
suming N constant):

(−SdT + V dP )gas = (−SdT + V dP )liquid

Solving for dP/dT , one finds

dP

dT
= Sgas − Sliquid

Vgas − Vliquid
= ∆S

∆V .

Next, recall that the latent heat of phase transfor-
mation at constant temperature is written L, which
we interpret as equal to T∆S. From this we write

dP

dT
= L

T∆V ,

also known as the Clausius-Clapeyron relation.

Vapor Pressure

In the case that L is constant, and also that Vgas ≫
Vliquid such that ∆V ≈ Vgas = V , we further assume
that the evaporated gas is ideal gas. In this case,
replace V to write

dP

P
= L

NK

dT

T 2 ,

solved by
P = ψ e−L/NKT ,

where ψ is a constant. Often, we set N to corre-
spond to one mole of substance, and the final answer
is written

P = ψ e−L/RT ,

known as the vapor pressure equation.

6.3 Entropy of Mixing
Consider two systems such gases, equally-dense liq-
uids, certain solids, or any other ideal mixtures A
and B that are in thermal contact but in diffusive
isolation by a partition. When the partition is re-
moved, the change in entropy is strictly due to mix-
ing, thus the analysis is highly analogous to ideal gas
expansion. For each system respectively, start from
Equation (3.44) to write

∆SA = NAK ln
(

1 + VB

VA

)
∆SB = NBK ln

(
1 + VA

VB

)
,

and let y equal the volume and number ratio of
species B to species A.

The sum ∆SA + ∆SB is the entropy of mixing
formula:

∆Smix = NAK [(1 − y) ln (1 − y) − y ln y] (3.67)

Letting χα equal the ratio the volume and number ra-
tio of either species over the total, the above formula
is equivalent to:

∆Smix = − (NA +NB)K (χA lnχA + χB lnχB)
(3.68)
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Problem 54
Show that the entropy of mixing for two equal

portions N = NA = NB of ideal gas resolves to

∆S = 2NK ln 2 .

Free Energy of a Mixture

Consider (the same) two systems (gases, equally-
dense liquids, certain solids) A and B that are in
thermal contact but in diffusive isolation by a parti-
tion. Before the partition is removed, the Gibbs free
energy is

G = µANA + µBNB ,

where letting N = NA +NB and x = NB/N , we have

G = µAN (1 − x) + µBNx = (1 − x)G0
A + xG0

B ,

where G0
A = µAN and G0

B = µBN denote the un-
mixed energies. When the partition is removed, the
total Gibbs free energy is simply

Gmix = (1 − x)G0
A + xG0

B + T∆Smix . (3.69)

Dilute Solutions

Consider a system that initially consists of NA parti-
cles of species A. According to Equation (3.58), the
Gibbs free energy reads

G = NAµ0 (T, P )

at fixed temperature and pressure. The volume of the
system may be considered as the sum of NA volume
elements.

A single particle of species B added to the system
will ‘freely expand’ (isothermally) into the existing
volume in analogy to Equation (3.44), contributing
−KT ln (NA) to the Gibbs free energy. The chemi-
cal binding energy is represented by some unknown
function f (T, P ), so we write the energy change as

dG = f (T, P ) −KT ln (NA) .

Adding a second particle of species B is not a mat-
ter of taking dG → 2dG due to the indistinguishabil-
ity of particles. It follows that for two particles of
species B, the total correction to the Gibbs free en-
ergy is

dG = 2f (T, P ) − 2KT lnNA +KT ln 2 .

Generalizing to NB particles while maintain-
ing the dilute limit NB ≪ NA particles is
straightforward. The KT ln 2 term generalizes to

KT ln (NB !), which by Stirling’s approximation be-
comes KT (NB lnNB − NB). Finally, we have the
Gibbs free energy of a dilute solution,

G =NAµ0 (T, P ) +NBf (T, P ) −NBKT lnNA

+NBKT lnNB −NBKT . (3.70)

The chemical potentials of species A and B are
readily calculated from the Gibbs free energy. These
are:

µA =
(
∂G

∂NA

)
T,P,NA

= µ0 (T, P ) − NBKT

NA
(3.71)

µB =
(
∂G

∂NB

)
T,P,NB

= f (T, P ) +KT ln
(
NB

NA

)
(3.72)

6.4 Osmotic Pressure
Consider a system of total volume V and number of
particles solvent NA. Next, divide the system with a
semipermiable membrane and introduce some num-
ber of solute particles NB on one side of the mem-
brane. The membrane is tuned to allow the passage
of solute particles, but not solvent particles. It fol-
lows that the pressure is weakly discontinuous across
the membrane, and so too is the chemical potential
on either side of the membrane, leading us to write

µ0 (T, P2) ≈ µ0 (T, P1) + (P2 − P1) ∂µ0

∂P
.

Using Equation (3.71) for the chemical potential
of the solvent particles, arrive at

(P2 − P1) ∂µ0

∂P
= NBKT

NA
.

Of course, the derivative ∂µ0/∂P is simply V/NA at
constant T and N , and we arrive at

(P2 − P1) = NBKT

V
, (3.73)

a result known as the van’t Hoff formula. The pres-
sure difference P2 −P1 is known as the osmotic pres-
sure.

6.5 Fugacity
As a dilute solution tends to equilibrium, the pres-
sure required for the system to become diffuse and
behave like ideal gas is called the fugacity. Begin by
considering the entropy of freely-expanding ideal gas

S = NK ln
(
Vf

Vi

)
,
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which also obeys PiVi = PfVf . Next, insert S into
the definition (3.49) of chemical potential to get

µ = µ0 +KT ln
(
Pf

Pi

)
,

where the µ0 term has been imposed into the equa-
tion to handle dilute solutions. The ideal gas has
µ0 = 0.

The above result generalizes to multiple dilute so-
lutions. Let the ‘initial’ pressure Pi equal the sum P
of all partial pressures, so drop the subscript. The
j-th partial substance thus obeys

µj = µ0 +KT ln
(
Pj

P

)
, (3.74)

which generalizes again to non-ideal gases by intro-
ducing a van der Waals constant b as

µj = µ0 +KT ln
(
Pj

P

)
+ bP ,

which is equivalent to adding a dimensionless term
ϕ into the ln-term of Equation (3.74). Note that we

have deployed a simplified van der Waals equation
P (V −Nb) = NKT .

Problem 55
Show that:

bP = KT lnϕ

The dimensionless quantity ϕ is called the fugac-
ity coefficient, and the bare term ‘fugacity’ typically
refers to the modified pressure

f = ϕP . (3.75)

Fugacity comes into play when describing non-ideal
gases near the ideal gas limit. Paraphrasing the dif-
ferential version of Equation (3.74) for one chemical
species, we define a formula that replaces pressure
with fugacity:

dµ = KTd (ln f) (3.76)

Immediately following definition (3.76), we solve for
f to write

f = exp
(
µ− µ0

KT

)
.
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acceleration, inverse-square, 11
angular momentum, 11
apocalypse problem, 17
apogee, 14
area, Kepler’s second law, 15

bound orbit, 20

center of mass, 10
central potential, 23
circular orbit, 21
collision of shperes, 7
conic trajectory, 14
conservation of energy, 7, 17
conservation of momentum, 7

density, variable, 18
dimensionless variables, 27
displacement, relative, 10

Earth, local gravity, 19
eccentricity, 13, 21
ellipse, 15
elliptical orbit, 20
energy conservation, 17
energy, gravity potential, 16
escape velocity, 19

gravitation, universal, 12
gravitational potential energy, 16
gravity near Earth, 19
gravity, self energy, 18

harmonic law, 16
hole through Earth problem, 20
hyperbolic orbit, 21

inverse cube attraction, 17
inverse-square acceleration, 11

Kepler’s first law, 15
Kepler’s laws, 15
Kepler’s third law, 16
kinetic energy, 17

law of ellipses, 15

law of equal areas, 15

mass, center, 10
mass, reduced, 10
momentum, angular, 11

Newton’s law, second, 9
Newton’s law, third, 9

orbit, 20
orbit, bound, 20
orbit, circular, 21
orbit, elliptical, 20
orbit, hyperbolic, 21
orbit, parabolic, 20
orbit, unbound, 21

parabolic orbit, 20
perigee, 14
planetary motion, 9
potential energy, gravity, 16
potential, power law, 26
power law potential, 26

reduced mass, 10
relative displacement, 10
Runge-Lorenz vector, 13

self energy, gravity, 18
shell theorem, 9, 22
solid sphere, 18
spheres, collision, 7
stress, thermal, 32

theorem, shell, 9, 22
thermal stress, 32
trajectory, conic, 14
two-body problem, 9

unbound orbit, 21
universal gravitation, 12

variable density, 18
variables, dimensionless, 27
vector, Runge-Lorenz, 13
velocity, escape, 19
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