Logic Circuits

MANUSCRIPT

William F. Barnes

ot

October 4, 2023

Contents

(1__Introduction| 1
I BasicCircuit] . . ... ......... 1
1.2 Digital Components] . . ... ... .. 2
1.3 Digital Logic] . . .. ... ... .... 2
1.4 Inversion and Splitting| . . . . . .. .. 3
1.5 Symbols| . . . ... ... ... ... 4
1.6 Logical Equivalencies|. . . . . . .. .. 5
IL1.7  Complete and Minimal Sets| . . . . . . 5
[8 TFeedbackl . ............... 6
I1.9  DBit Storagel . . . ... ... ... 6

[2  Simulating Logic Circuits| 7
2.1 Labeling Convention| . . . . . ... .. 7
2.2 Data Structuresf. . . . ... ... ... 8
2.3 Buttons and Lights . . . . . ... ... 8
R4 CircuitasDatal . . . ... ... .. .. 8
2.5 Circuit Statel . . . ... ... ... .. 9
2.6 Main Loop| . .. ... ... ... ... 10
2.7 Managing Input|. . . . ... ... ... 10
2.8 Updating Internal State| . . . . . . .. 11
2.9  Output and Summary| . . .. ... .. 12

[3 Switching and Latching| 14
3.1 SR Latch with FEnablel . . . . ... .. 14
B.2 SR Latch on Pulsel . . . .. .. .. .. 14
B3 DTatchl . . ... ..o 14

[4  Binary Addition| 15
4.1 Halt Adderl . . ... ... ....... 16
H2 TullAdder. . . . . oovv oo oo 16
43 Two Bit Adderl . . .. ... ... ... 17
44 More Bit Adders . . .. ... ... .. 19

[ Edge Detection| 20
.1 Edge Detector Circuit| . . . ... ... 21
.2 D Flip-Flop| . . .. ... ........ 22

[6_Counters| 23
[6.1 One Bit Counterd . ... ........ 23
6.2 Two Bit Counted . . . ... ... ... 24
6.3 Four Bit Counted . . . ... ... ... 24

1 Introduction

It’s impossible to exist today without having heard
some person assert ‘computers are all ones and ze-
ros’. While cryptic and perhaps a bit reductionist, it
is true, at a certain level, that all of digitized elec-
tronics can be reduced down to binary ‘on’ or ‘off’
conditions represented by ones and zeros.

Of course, opening an electronic device to reveal
its inner entrails will hardly betray its operation, even
while the device is running. The intention here is to
examine exactly what is turning on or off, and how
this could possibly be used to manage information
and build complex systems.

1.1 Basic Circuit

For a starting point, let us contrive an unspecified
but still* simple’ circuit using analog components as
sketched in Figure The region labeled Load is
where one would place any number of resistors, in-
ductors, capacitors, lights, fans, heaters, and so on.
Solid black lines are considered pure conductors,
or wires. Motivating the circuit is a direct current
voltage source, such as a battery, labeled DC Source.
Connected to the positive terminal on the voltage
source is a toggle switch that can open (turn off)

*Copyright (©) 2014-2023 by William F. Barnes. All rights reserved. Unauthorized retention, duplication, distribution, or
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or close (turn on) the circuit. By convention, the
current flow through the circuit originates from the
‘high’ ( + ) side of the voltage source, and flows back
in through the ‘low’ ( - ) side. (The actual electrons
go in reverse of the current.)

The total current entering the load is equal to the

DC Source +5V

total current leaving the load, and this can be mea-
sured by placing an Ammeter in series with the load.
The Voltmeter is a silent observer of the circuit with
infinite resistance (ideally, at least), which is why it
is always situated in parallel with the component(s)
being measured.

_(’H"\ Wire Current Flow

" il
Switch |
Load I
0 -
Woltmeter I
imete |
Ameer Return Flow B
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Figure 1: Basic circuit.
1.2 Digital Components vee

The load of an electric circuit may consist of ana-
log components, digital components, or both. Digital
components called chips are made from clever config-
urations of of silicon, carbon, and other common or
uncommon materials. The end product tends to ap-
pear as small ‘black box’ depicted in Figure [2| which
is a 74LS08 Quad 2-input AND Gate.

Figure 2: 74LS08 Quad 2-input AND Gate.

Making sense of the so-called 74LS08, or any chip
for that matter, requires a map called a pinout dia-
gram as shown in Figure [3]
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Figure 3: Pinout diagram of 74LS08 Quad 2-input
AND Gate.

The pinout diagram states the purpose of each
‘leg’, or pin of the chip. For the example on hand, we
see that pins 14 and 7 correspond to the high- and
low voltage sources required for the chip’s operation.

As a matter of program note, we will work in the
regime where positive five volts (+5 V') corresponds
to an ‘on’ state, using the shorthand symbol 1. Con-
versely, the ‘off’ state symbolized by 0 corresponds to
zero volts (0 V).

1.3 Digital Logic
AND Gate

Studying the pinout diagram of the 74L.S08, we can
see an embedding of four identical circuits, each hav-
ing a wire leading from one peg to one location on
a D-shaped glyph. This is the symbol for the AND
gate, and there are four such gates on the chip shown.
Taking the AND gate connected to pins [1], [2], and
[3], it follows that pins [1] and [2] correspond to the
inputs of the gate. The third pin [3] corresponds to



the output of the gate. A similar comment applies to
pins [4]-[6], and so on for all four gates.

The behavior of the AND gate is specified as fol-
lows:

e When both inputs are 1, the output is 1.
e When both inputs are 0, the output is 0.
e When either input is 0, the output is 0.

The same information is represented efficiently in
truth table form. The left columns are inputs, the
right column is output:

AND
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OR Gate

Similar to the AND gate and implemented on a sim-
ilar chip is the OR gate. Jumping right to the truth
table, the OR gate behaves as follows:

OR
0 0 0
0 1 1
1 0 1
1 1 1

That is, the OR gate returns 1 when either input is
1, and only returns 0 when both inputs are 0. Notice
that the truth table for the OR gate is similar to that
of the AND gate, as only the output column varies.

The astute reader may notice that the output
columns in the sixteen tables above express the num-
bers 0 to 15 in binary.

1.4 Inversion and Splitting

A different kind of component that partners with
logic gates is the INV gate, equivalently called a NOT
gate, also known as the inverter. The INV gate takes
a single input and returns a single output. If the in-
put is 1, return 0. If the input is O, return 1. The
inverter has a implies a simple truth table:

INV
0 1
1

Finally, there are instances when it’s necessary to
‘peel apart’ the voltage or current from one wire by

In fact, the input pairs (0,0), (0,1), (1,0), (1,1) are
the only combinations to consider when it comes to
input.

Fourteen More Gates

Writing the output of the AND gate as a minimal
list, and doing the same for the OR gate, we have

AND = {0,0,0,1}
OR = {0,1,1,1} .

By inspecting the output side of each truth table, we
see that the lists {0,0,0,1}, {0,1,1,1} are just two
members of sizteen possible lists, implying there are
fourteen siblings to the gates already listed. That is,
there are sixteen possible logic gates that could repre-
sent the unknown Figure |4, Throughputs are labeled
by letter rather instead of by number.
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Figure 4: Generic logic gate.

All sixteen gates are represented in truth tables
below. Certain logic gates are obligatory for com-
pleteness of the list but are otherwise trivial, for in-
stance the NULL gate returns zero regardless of its
inputs, whereas the A gate simply transmits what-
ever the first input is doing, and so on. The IMP
gate (or any mentioning it) is a bit esoteric and isn’t
needed for now. There are four gates though, namely
AND, OR, NOR, and XOR, that we’ll want to keep
handy.

transforming into two wires, and this is called split-
ting or dividing. Generically, a so-called split can be
thought of as a generic logic gate in reverse as shown
in Figure [

m

v

A
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Figure 5: Generic divider.

For our purposes, the generic divider need only
‘clone’ the voltage from input A and assign the same
value to the outputs B and C'. That is, the inside of
the ‘Split’ box is simply a junction of three wires.



NULL AND NIMP A
0] 0710 0] 0710 0] 0710 0] 0710
0] 10 0] 10 0] 1] 0 0] 10
1100 1100 1[0 |1 1[0 |1
1 [ 1]0 1T [ 1 [1 1 [ 1]0 I [ 1 [ 1

-(BIMP A) B XOR OR
0] 0710 0] 0710 0] 0710 0] 0710
0 1| 1 0 1 | 1 0 1 | 1 0 1 | 1
1100 1100 1[0 |1 1[0 |1
110 1 [ 1 [1 1 [ 10 1 [ 1 [1

NOR XNOR B B IMP A

0] 0] 1 0] 071 0] 071 0] 071
0] 10 0] 10 0] 10 0] 10
1 0] o0 1 0] o0 1[0 |1 1[0 |1
110 1 [ 1 [1 110 1 [ 1 [1

A IMP NAND ON
0] 0] 1 0] 0] 1 0] 0] 1 0] 0] 1
0 1|1 0 1|1 0 1| 1 0 1|1
1100 1100 1[0 |1 1[0 |1
I [ 1]o0 1|11 I [ 1]o0 1 [ 1 [1

1.5 Symbols
Logic and Flow

As seen with the AND gate, it turns out that all
circuit components already have designated symbols.
Several of these were shown back in Figure I} namely
the symbols for a voltage source and various meters.

AND

MOT A —Dﬂ’— B
A

¥OR C
B

An alphabet unto their own, logic synbols and re-
lated items can be interlaced using wire to spell out
intricate circuits, the complexity of which would be
extremely difficult to grasp without the aid of sym-
bolic representation. We’ll be making heavy use of
six components depicted in Figure [6]

C OR

C MOR

Spiit

Figure 6: Symbols: AND, OR, INV, NOR, XOR, Split

Buttons and Lights

The inevitable concern of inputting information to a
circuit and reading information from a circuit is an-
swered by buttons and lights, respectively. Shown in
Figure [7] are the symbols for the push switch, tog-
gle switch, and light-emitting diode (LED). These
are minimalist representations of, for instance, a key-

board and a screen.
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Figure 7: Symbols: Push, Toggle, LED

1.6 Logical Equivalencies

One reason for not needing all logic gates simultane-
ously is that some gates can be built from others.
Ruling out XNOR

For a swift example, the output of the XNOR gate is
characterized by

XNOR = {1,0,0,1} ,

Sy
>o_|—

which as the name XNOR may suggest, is the inver-
sion of the XOR gate:

XOR = {0,1,1,0}

To simulate the output XNOR, one simply need
install the XOR gate and send the output through
a INV gate. For this reason, it suffices to exclude a
XNOR chip from the toolkit altogether, so long as
there is sufficient stock of INV and XOR chips.

Another way to replicate a XNOR gate, that does
not rely on XOR, is the arrangement of INV, OR, and
AND gates depicted in Figure

Figure 8: Equivalent XNOR gate.

OR Substitute

A case that actually saves skin in the laboratory is
one that builds an OR gate from a single AND gate
and three INV gates as depicted in Figure [9]

il c
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Figure 9: Poor man’s OR gate.

AND Substitute

It turns out that an AND gate can be made from
three NOR gates as depicted in Figure Note too
that the NOR gate is the linear composition of INV
and OR.

Figure 10: Pedant’s AND gate.

1.7 Complete and Minimal Sets

The phenomenon of logic gate equivalencies implies
a deeper pattern among logic gates than meets the
eye. One question that arises, which happens to have
multiple answers, concerns finding subsets of all logic
gates that can reconstruct the entire table. Even
more interestingly, is there a single logic that can
do the job?

Skipping the stressful derivations, the answers to
these questions go as follows:

e AND, INV form a complete set.

e OR, INV form a complete set.



e NAND forms a minimal set.
e NOR forms a minimal set.

Surprisingly, there are in fact two gates, NAND and
NOR, that can alone be used (with copies of them-
selves) to reconstruct all other gates, even the INV
gate. Figure |11 demonstrates this while introducing
the NAND symbol.

A—E}B

Figure 11: Using NAND to make INV.

The full derivation of all logic gates from NAND
alone or NOR alone is left as a research project for
the reader.

1.8 Feedback

While plenty can be accomplished using logic gates
in simple series and parallel configurations, a whole
new world opens when we make use of feedback, which
means using the output of a logic gate to influence its
own input.

SR Latch

An important and nontrivial example of a structure
that utilizes feedback is the set-reset latch, or SR
latch. The latch is composed of two NOR gates mu-
tually arranged as depicted in Figure One input
leading to each NOR gate comes in as ‘normal’ input,
whereas the second input on each gate is tied to the
output of its sibling.

e
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Figure 12: Set-Reset latch utilizing feedback.

As it turns out, the SR latch highlights a profound
ability of logic curcuits that one wouldn’t think was
possible. Though, working out the truth table for
feedback-driven circuits is sadly quite a chore and
takes some getting used to.

1.9 Bit Storage

Starting with the SR latch depicted in Figure[12] la-
bel the inputs using A, B, and also the two outputs

C, D. To be definite, associate A, C with the top
half, and B, D with the bottom half.

Going with a brute force analysis, we first con-
sider all possible states, even the wrong ones, that
could possibly take place in a circuit with two inputs
and two outputs. There are 42 = 16 of these in total,
and each can be stored in a state vector

S; ={4;,B;,Cj,D;}

where j ranges from 0 to 15. Now the game becomes
eliminating states that could not work for the SR
latch on hand.

To dig in, consider the state So = {0,0,0,0},
which has all inputs and outputs set to ‘off’. Con-
sulting the NOR truth table, we find this state to be
contradictory, as the output of each NOR gate should
be ‘on’ when both inputs are ‘off’. Thus we immedi-
ately dismiss the state Sp.

We can similarly analyze Sg = {1,0,0,0}, which
has one input set to ‘on’ with everything else ‘off’.
This is also a contradictory situation, as the nor gate
being fed two ‘off’ signals results with ‘on’. We can
by symmetry dismiss Sy = {0,1,0,0}. The states
Ss = {0,1,0,1} and S19 = {1,0,1,0} are also dis-
pensable for containing internal contradictions.

A family of states can be knocked away by ask-
ing how it’s possible for the two outputs be be ‘on’.
This only happens when all inputs are ‘off’; but out-
puts are touching inputs, and another contradiction
is reached. It follows that any state of the form
{A, B, 1,1} can be excluded, ruling out Ss, S7, Si1,
S15 as viable states.

Setting both inputs to ‘on’ leads to undefined
behavior. The states S;3 = {1,1,0,1} and Sy14 =
{1,1,1,0} are easily shown to be unattainable. The
state S12 = {1,1,0,0} is not forbidden, but like a
coin landing on its side, is an undefined state.

After all that, there are four surviving states al-
lowed for the SR latch:

&1 ={0,0,0,1} = reset
Sy =1{0,0,1,0} = set
S =90,1,1,0} = set
So ={1,0,0,1} = reset

SR Latch Analysis

Listing all possible SR latch states S1, S, Sg, Sy to-
gether, it stands out that the ‘rest’ state of the circuit,
i.e. that which is no inputs coming in, corresponds
to two different outputs. Left untouched, the circuit
could be in either state S; or Sy. For this reason we
see how the name ‘latch’ applies. The purpose of the
SR latch is to ‘remember’ one bit of data.



The state of the SR latch can be toggled by set-
ting one of the inputs to 1 (and optionally back to
0). Looking at states Sg and Sg, we see the so-called
‘set-reset’ operation will toggle the output of the gate
‘diagonal’ from the input being toggled. This means
the output state cannot be toggled by rapidly chang-
ing one input. Both inputs must be used to fully
toggle the circuit.

By convention, the symbols A, B, C, D are re-
placed by R, S, @, and @', respectively. The ‘set’
state applies to Q@ = 1, @' = 0, and the ‘reset’ state
is the opposite of this. In summary, the entirety of
the SR latch is represented in the following table:

SR Latch
RS Q|Q
0]0] 0 1 reset
0]0]|1 0 set
0|11 0 set
11010 1 reset
1| 1] 0| 0 | undefined

2 Simulating Logic Circuits

Electronic devices are widespread and inexpensive
thanks to the silicon/digital revolution, and this has
led to the gradual buildup of magnificent systems like
modern computers.

In this study, we shall walk the path backwards by
starting with a computer and writing a program to
simulate what happens in simple logic circuits. The
end product is to be a kind of ‘virtual breadboard’ de-
signed to capture all of the phenomena described pre-
viously, including feedback and data storage. (What
we are not shooting for is a full-blown simulator with
alternating currents, inductance, and all of the detri-
tus of electrodynamics.)

In real life, electric circuits are a rather bare-bones
implementation of the laws of electromagnetism and
quantum mechanics, and exactly ‘where’ and ‘when’
things occur in the circuit is a matter of the whims of

[10] l
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nature. By contrast, our tool of choice is a procedu-
ral programming language, which is executed linearly
and thereby unable to capture the immense simul-
taneity of a real electric circuit. The best we can do
is model the circuit using some kind of data structure
and run algorithms on the data to simulate the pas-
sage of time. By choosing the right structures and
rules, we can capture the circuit’s behavior.

With these considerations, the program we design
must be able to:

(i) load the specification of a circuit made from
components and wires.

(ii) receive real-time user input by simulating
switches and buttons on the keyboard.

(iii) employ an evaluation algorithm that properly
updates the circuit state.

(iv) display all outputs (including a summary of in-
puts) and the state of the circuit to the screen.

2.1 Labeling Convention

To make some headway on the problem, it’s required
to have a sufficient system for labeling the compo-
nents and wires in a circuit, along with all inputs
and outputs. To this end we shall use numbers as la-
bels, thus any number used to identify a component
or a wire is used solely for labeling and has no nu-
merical purpose. Formally, such a number is called
the identity.

For our purposes, it suffices to set up a system
with the following qualities:

e A number (in square brackets) [1] to [999] iden-
tifies a single component.

e A number (not in square brackets) above 1000
identifies a wire.

e Inputs are labeled in1, in2, in3, etc.

e Outputs are labeled outl, out2, out3, etc.

2005 7

[20] outl

Figure 13: Example on/off light switch using labeling convention.



Figure[I3]demonstrates the labeling convention to
depict a simple yet over-engineered on/off switch for
a single light. Importantly, notice that the junction
of three wires (i.e. Split) is considered a component
and has been assigned the label [10]. (The vertical ar-
row accompanying the [10] is to guide the eye, there
is not a stray current in the figure.)

2.2 Data Structures

Begin by defining a generic data type called Wire with
the following structure:

Type Wire:
Identity // 1000 to X
Pointer // [1] to [999]
Value // 0 or 1

The Identity is the wire’s own identity (1000-X).
The Pointer field contains the identity of the down-
stream component touching the wire. The value field
records the instantaneous voltage in the wire, just 1
or 0 for our purposes. Note there is not a field to
store the wire’s upstream connection.

Next, consider another generic type called
Element that contains (i) the specification of a single
component, and (ii) all wires touching the compo-
nent.

Type Element:
Species
Identity // [1] to [999]
A As Wire
B As Wire
C As Wire

The Species field stores a text abbreviation of the
component being represented. Previously we decided
there should be six of these:

Species = {AND, INV, NOR, OR, SPL, XOR}

For most logic gates, the wires A, B are inputs and
C' is the output. The INV gate treats A as the only
input and ignores wire C. The Split junction treats
A as the input and B, C as output.

Note that the Element type does not have an ex-
tra field to store the state of the component being
represented. The output wire (C and/or B) does this
job.

2.3 Buttons and Lights

More structure is required to handle interaction with
the circuit via buttons and lights. For this we need
just one generic data type called Interact as follows:

Type Interact:
Species
Identity // 1000 to X
Pointer // [1] to [999]
Value // 0 or 1

The Species field defines which device is being
represented. There are three kinds of buttons:

1. PSH: stays on when constantly depressed, off
when released

2. TOG: traditional toggle switch

3. PLS: auto-pulse

Figure [7| depicts the symbolic difference between
the PSH button and the TOG button. Meanwhile, there
is only one kind of light, designated LED for light-
emitting diode. All together, there are four possibili-
ties for the Species field:

Species = {PSH, TOG, PLS, LED}

The Identity field applies to the wire used to
connect the device to its associated component, and
the Pointer field is that component’s address. The
Value tracks the state of the interacting device. For
buttons, 1 means ‘pressed’. For lights, 1 means ‘on’.

2.4 Circuit as Data

Using the data types detailed above, three global ar-
rays are used to prepare space for circuit having up
to 999 components, 9 buttons, and 9 lights. The total
number of wires, i.e. the upper limit in 1000 to X,
is defined to (far) exceed three times the number of
components.

Shared Component(l To 999) As Element
Shared Button(l To 9) As Interact
Shared Light(1 To 9) As Interact

There must be a way to define and label compo-
nents, buttons and lights, along with all wires con-
necting these. To do this, circuits are built from
records containing six pieces of information:

NewComponent ->
Species, Identity,
Wire A ID, Wire B ID, Wire C ID,
Comp B Ptr, Comp C Ptr



Consistent with the Element type, a new compo-
nent is assigned a species and an identity, along with
the identity of any wire touching its terminals.

The final two ‘pointer’ fields contain the address
of any downstream component that is expected to re-
ceive information from the component being defined.
This redundancy is worth the investment in the sense
that the Wire type does not need to specify an up-
stream component address. When there is no down-
stream component, that pointer is set to —1.

Buttons and lights require less detail in their re-
spective definitions. Following the Interact type, we
have:

NewButton ->

Species, Identity, Pointer

NewLight ->

Species, Identity, Pointer

+=—0

On/Off Light Switch

Using the structures above, an entire circuit and all
aspects of its diagram can be encoded as data. It
takes little to imagine this same scheme can support
any combination of components.

Returning to the over-engineered on/off light
switch first depicted in Figure[I3] it turns out that the
same information, including all labels, is contained in
four total records:

Components:
("spL", 10, 1001, 2001, 2002, 20, 20)
("AND", 20, 2001, 2002, 2005, -1, -1)
Interacts:

(1, "TOG", 1001, 10)
(1, "LED", 2005, 20)
SR Latch

A fully-labeled SR latch circuit, including two inputs
and two outputs, is detailed in Figure [I4]

T 1001 - y
in1 > outl

3002

—_

+ —) -
in2 3001

00 005 o 7
3005 4005 E |f‘
out2
]@E.b [40]

Figure 14: Example SR latch circuit diagram using labeling convention.

Interpreting the SR latch circuit diagram as
records of data, we may jot down the following (ab-
breviated) form having four components and four in-
terfaces:

Components:
("NOR", 10, 1001, 1002, 1005, -1,
("NOR", 30, 3001, 3002, 3005, -1,
("SPL", 20, 1005, 3002, 2005,
("SPL", 40, 3005, 1002, 4005,
Interacts:
(1, "PSH", 1001, 10)
(2, "PSH", 3001, 30)
(1, "LED", 2005, 20)
(2, "LED", 4005, 40)

20)
40)
-1)
_1>

2.5 Circuit State

The state of the circuit is defined as the ensemble
of all Value fields among all wires. Note that com-
ponents themselves not carry state per se, as the

Element type intentionally lacks a Value field. Said
another way, the state concerns only the voltages
among wires in a circuit, and whatever is happening
inside a component is irrelevant.

Ground State and Stability

The ground state of a circuit occurs when all voltages
are off, i.e. the Value field for each wire stores 0. As
we’ll see, some can circuits remain in the ground state
when ‘powered on’. Other circuits cannot tolerate a
static ground state, and change to a stable state as
quickly as possible.

Thinking back to the analysis of the SR latch, we
now say ‘instability of the ground state’ is responsible
for the state {0,0,0,0} being forbidden.

State Record

While the computer has its own way of remembering
the state of a circuit, it is still instructive to have a



text readout of the circuit’s evolution. For this, define
a ‘state record’ of the format

S={...[Y]aBC...},

where [Y] is the identity of a given component, and
then the triplet ABC lists the state of that component’s
A-wire, B-wire, etc.

The complete state record contains a [Y] ABC-like
entry for each component. There will be inevitable
redundancies in the record, as any one wire often
touches two components. The C-variable is vestigial
and thus set to 0 in the case of INV.

Intermediate State

Continuing the example of the over-engineered on/off
light switch and using the labeling scheme from Fig-
ure [I3] the ground state of the circuit can be repre-
sented as:

Sor s = {[10] 000 [20] 000}

The first component [10] represents the junction
of three wires joining the switch in1 to both inputs
of the downstream AND gate, component [20].

Closing the switch to turn the light on, it takes
little to imagine the final state replaces all 0-bits with
1-bits, as in

Son = {[10]111 [20] 111} ,

which is surely true, but it’s worth going through
how that happens despite not yet having detailed the
state-updating algorithm.

Immediately after closing the switch but before
stability is reached, the circuit (as defined) jumps to
the intermediate state

Smea = {[10] 100 [20] 000} ,

which means the input to the junction [10] has ac-
knowledged a ‘high’ signal. Recursing on the inter-
mediate state leads to the on-state after one step.

As it turns out, the intermediate state actually
depends on the order in which components are de-
fined in memory, thus the intermediate state is more
of a ghost than anything else.

Indeed, if we take the same over-engineered on/off
light switch and swap address [10] with address [20],
the physically-equivalent circuit is defined:

Components:
("spL", 20, 1001, 2001, 2002, 10, 10)
("AND", 10, 2001, 2002, 2005, -1, -1)
Interacts:
(1, "TOG", 1001, 20)
(1, "LED", 2005, 10)

10

Closing the switch on this version, the intermedi-
ate state

Smea = {[10]000 [20] 100}

arises as one may expect. Unlike the previous case
though, the ‘on’ state does not come next. Instead,
a secondary intermediate state gets in the way

Seec = {[10]110[20] 111} ,

from which ‘on’ follows. Clearly then, the number
and order of intermediate states depends on how the
circuit is registered in memory.

Variability of the intermediate state is directly
analogous to effects in real-life circuits that arise from
mixing wire lengths, component brands, and so on.
Unless the technician makes a significant mistake, in-
termediate states are often imperceptible and require
tools more specialized than the ammeter and volt-
meter to detect.

Equilibrium

One way to summarize intermediate state analysis is
to say that equilibrium corresponds to the final state
being reached after all intermediate states have been
churned through.

2.6 Main Loop

When it comes to actually executing the simulated
circuit, it’s necessary to have a real-time algorithm,
sometimes called a main loop or game loop, that will:

(i) scan for user input (including auto-pulse).
(ii) update the internal state.
(iii) display output and summary.

For the simulated to ‘feel real’ and achieve equi-
librium quickly in response to input, the entirety of
the game loop should refresh minimally at 30 Hz, i.e.
30 frames per second.

2.7 Managing Input

During the game loop, an input-polling routine must
scan for keystrokes and inform the circuit whether a
button has been pressed.



PSH

For buttons of the PSH species, the following pseudo-
code does the job:

Let i = index of i’th button (1 to 9)
If key(i) pressed {q = 1}
Else {q = 0%}

r = Button(i).Identity // 1000 to X
j = Button(i).Pointer // [1] to [999]
If (r = Component(j).A.Identity) {

Component (j) .A.Value = q}

ElseIf (r = Component(j).B.Identity) {
Component (j) .B.Value = g}

ElseIf (r = Component(j).C.Identity) {
Component (j) .C.Value = q}

Note that the input-polling routine changes the
circuit state by editing the voltage value in the wire
identified by r that connects the button to the com-
ponent at address j. This behavior is applied to each
button type.

TOG

The TOG case is slightly more complicated:

Let i = index of i’th button (1 to 9)
If key(i) pressed:
r = Button(i).Identity // 1000 to X
j = Button(i).Pointer // [1] to [999]
If (r = Component(j).A.Identity) {
q = Component (j).A.Value
If (q = 0) {Component(j).A.Value = 1}
Else {Component(j).A.Value = 0}}
ElseIf (r = Component(j).B.Identity) {
q = Component(j).B.Value
If (q = 0) {Component(j).B.Value = 1}
Else {Component(j).B.Value = 0}}
ElseIf (r = Component(j).C.Identity) {
q = Component(j).C.Value
If (g =0) {
Component (j).C.Value = 1}

Else {Component(j).C.Value = 0}}

Like its sibling, the TOG routine changes the cir-
cuit state.

PLS

The PLS button behaves automatically without re-
quiring user interaction. In real time, the component
connected to PLS will receive 2/3 seconds of ‘high’,
and then 1/3 seconds of ‘low’, repeating forever. The
overall frequency is 1 Hz. As pseudo-code, this looks
like:
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Let i = index of i’th button (1 to 9)
If key(i) pressed:
t = Timer (to “ms precision)

t =t - Int(t):
If (¢t >=2/3) {q = 1}
Else {q = 0}

r = Button(i).Identity // 1000 to X

j = Button(i).Pointer // [1] to [999]

If (r = Component(j).A.Identity) {
Component (j) .A.Value = g}

ElseIf (r = Component(j).B.Identity) {
Component (j) .B.Value = q}

ElseIf (r = Component(j).C.Identity) {

Component (j).C.Value = g}

2.8 Updating Internal State

As any input of the circuit is manipulated, the volt-
age value is immediately changed in the wire leading
to the affected component. Propagation stops there
momentarily, leaving a certain ‘tension’ on the com-
ponents touching active inputs. Control then passes
to the subroutine that updates internal state - the
true heart of the simulation that we detail now.

Binary Cases

For each binary logic gate k in the circuit, internal
state is updated in two steps:

(i) Leading into k, the values from input wires A
and B are compared using the proper truth ta-
ble for that component’s species. The resulting
1 or 0 is written to k’s output wire C.

(ii) Downstream from k is a different component j
whose input A’ or B’ must be overwritten to
reflect the change in C.

Step (i) can be implemented in a fashion captured
in the following pseudo-code:

a = Component (k) .A.Value
b = Component (k) .B.Value
Switch Component (k) .Species:

Case "AND"

Component (k) .C.Value = BinaryAND(a, b)
Case "NOR"

Component (k) .C.Value = BinaryNOR(a, b)
Case "OR"

Component (k) .C.Value = BinaryOR(a, Db)
Case "XOR"

Component (k) .C.Value = BinaryXOR(a, b)

Step (ii) proceeds as follows:



j = Component (k) .C.Pointer
If (j <> -1) {
g = Component (k) .C.Identity
¢ = Component (k) .C.Value
If (Component(j).A.Identity = g) {
Component (j).A.Value = c}
ElseIf (Component(j).B.Identity = g) {
Component (j) .B.Value = c}}

Special Cases

There are two exceptions to the above, namely the
INV gate and the Split (junction). Each obeys the
same two-step process, however special treatment is
needed for A, B, and C if used. Jumping right to
pseud-code, we have, for the INV-case:

a = Component (k) .A.Value
// step (i)
Component (k) .B.Value = BinaryINV(a)
// step (ii)
j = Component (k) .B.Pointer
If (j <> -1 {
g = Component (k) .B.Identity
b = Component (k) .B.Value
If (Component(j).A.Identity = g) {
Component (j).A.Value = b}
ElseIf (Component(j).B.Identity = g) {
Component (j) .B.Value = b}}

Finally, the Split-case needs to update two down-
stream wires and needs its own:

a = Component (k) .A.Value
// step (i)
Component (k) .B.Value
Component (k) .C.Value
// step (ii)
j = Component (k) .B.Pointer
If (j <> -1) {
g = Component (k) .B.Identity
b = Component (k) .B.Value
If (Component(j).A.Identity = g) {
Component (j).A.Value = b}
ElseIf (Component(j).B.Identity = g) {
Component (j) .B.Value = b}}
j = Component (k) .C.Pointer
If (5 < -1) {
g = Component (k) .C.Identity
¢ = Component (k) .C.Value
If (Component(j).A.Identity = g) {
Component (j).A.Value = c}
ElseIf (Component(j).B.Identity = g) {
Component (j).B.Value = c}}

a

a

2.9 Output and Summary

With all steps thoroughly detailed, it’s straightfor-
ward to write source code in a procedural program-
ming language that simulates logic circuit behavior.
Using @QB64 as a weapon of choice, the efforts of this
study culminate to a single program that executes in
a single window as demonstrated in Figure
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Example 4: SR Latch on Pulse
[101
[20]
[301
[401
[501
[60]
[vo]

NOR
3SPL
NOR
3SPL
AND
3SPL
AND

1001
1005
Jool
Joos
5001
6001
7001

1002
Jooz
Jooz
1002
5002
5002
7002

*

Circuit Data

1005 -1
2005 30
Joes -1
4005 10
1001 -1
7002 50
Jool -1

20
-1
40
-1
10

30

Input:
(50:5001)0 {60:600131 (70:7001)0

Output:
(20:2005)1 (40:4005)0

State:

<:| Inputs / Outputs

Glyph:

Button:

Light:

)

Visualization

[10]1001[20]1111[30]1010[40]1000[501010[601111[701010
[101001[201111[301010[401000[501000[601100[70 1000
[101001[201111[301010[401000[501000[60 100070 1000
[10]1001[20]1111[30]1010[40]1000[501010[601011[701010

<::| State History

Figure 15: Sample output window showing a simulated logic circuit.

The output window has four distinct regions, one
that never changes (purple arrow), and three that re-
ceive updates often (yellow arrows).

Circuit Data

In the top-left, the precise layout of the circuit is
summarized in a way resembling how the circuit is de-
fined by the programmer. All relevant relationships
between components and wires can be read from the
summary.

Text Readout

The bottom-left region contains a text readout of all
active inputs (buttons) and outputs (lights), followed
by the state of the circuit and its history.

Glyph

The right side of the Figure is for real-time visual-
ization. In the top-right we place the so-called glyph,
which is in essence a bad circuit diagram not so much
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unlike the real wires and components in a real cir-
cuit. Nonetheless, the glyph shows the specific rela-
tionships among components, and also indicates the
voltage throughout.

Buttons and Lights

Under the glyph is a row of button and light indica-
tors, and this is the chief output section of the circuit.
On a breadboard, the lights would be a row of LEDs.
All colors are decidedly yellow, with a filled square
(CJ) denoting the ‘on’ state.

The keyboard numerals 1 to 9 are mapped to cor-
responding buttons inl to in9. For the example
shown, only keys 1 and 3 are of the PSH species as
indicated by a circle (@). Button 2, with its trian-
gular indicator (A), is of the PLS species and self-
operates on a timer. Buttons 4 to 9 are unused in the
example, and are displayed as diminished placehold-
ers. Not shown (yet) are buttons of the TOG species,
which appear as squares (H) when used.



3 Switching and Latching

Much ado has been made of the SR latch, which is
arguably the simplest nontrivial circuit that can store
either 1 or 0. From there, it takes little to imagine
that the latching phenomenon can be stacked to en-
code complex data structures, record storage, lists of
instructions, etc. - in other words, modern comput-
ing. Starting simple though, we begin here with a

5001

few modifications to the original SR latch.

3.1 SR Latch with Enable

Starting with the original SR latch circuit, suppose
the input is piped through a pair of AND gates as
shown in Figure In addition, the unused inputs
of each AND gate are joined and controlled by an
additional PSH button.

P [60]

7001

Figure 16: Enabled SR latch circuit.

The purpose of the ‘enable’ feature is to verify the
inputs entering the circuit. That is, nothing happens
unless the PSH button in2 is depressed, thereby en-
abling the latch to change state.

As for circuit data, we append the specification of
the SR latch with three additional components (two
ANDs plus a junction), along with the ‘enable’ but-
ton as shown:

Components:
("NOR", 10, 1001, 1002, 1005, -1, 20)
("spL", 20, 1005, 3002, 2005, 30, -1)
("NOR", 30, 3001, 3002, 3005, -1, 40)
("sPL", 40, 3005, 1002, 4005, 10, -1)
("AND", 50, 5001, 5002, 1001, -1, 10)
("spL", 60, 6001, 5002, 7002, 50, 70)
("AND", 70, 7001, 7002, 3001, -1, 30)
Interacts:
(1, "PSH", 5001, 50)
(2, "PSH", 6001, 60)
(3, "PSH", 7001, 70)
(1, "LED", 2005, 20)
(2, "LED", 4005, 40)
3.2 SR Latch on Pulse

The circuit represented in Figure [15]is another mod-
ified SR latch, called the ‘pulsed” SR latch. This is
identical to the enabled SR latch, except the manual

PSH enable button is replaced by an automatic PLS
species. This amounts to the following edit to the
Interacts section:

Interacts:
(2, "PLS", 6001, 60)

3.3 D Latch

An elegant modification to the enabled SR latch is
the so-called D latch, which conjoins the two circuit
inputs while inverting one of them as shown in Figure
or eqivalently as data:

Components:
("NOR", 1, 1001, 1002, 1005, -1, 2)
("spPL", 2, 1005, 3002, 2005, 3, -1)
("NOR", 3, 3001, 3002, 3005, -1, 4)
("spL", 4, 3005, 1002, 4005, 1, -1)
("AND", 5, 5001, 5002, 1001, -1, 1)
("SPL", 6, 6001, 5002, 7002, 5, 7)
("AND", 7, 7001, 7002, 3001, -1, 3)
("spL", 8, 8001, 7001, 9001, 7, 9)
("INv", 9, 9001, 5001, 0, 5, -1)
Interacts:
(1, "PSH", 8001, 8)
(2, "PSH", 6001, 6)
(1, "LED", 2005, 2)
(2, "LED", 4005, 4)
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5001

o] ' 51
5002
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4005
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Figure 17: D latch circuit.

By convention, the outputs of the circuit labeled
outl, out2 are known as @ and @', respectively. Be-
cause the output values are always in disagreement,
the ‘main’ output is delegated to @, whereas Q' is
typically downplayed as Qs opposite. The same con-
vention says the input inl is designated D (think
D for ’data’), and the input in2 is designated F for
‘enable’.

D Latch Analysis

Analysis of the D latch is slightly more complicated
than that of the plain SR latch, but we can play
the same state-listing game to understand it’s behav-
ior. Begin by writing a generic state vector for the D
latch, namely

S; =1{Dj, E;,Q;,Q}} .

Now, one could use a pen-and-paper method to
deduce the allowed states of the D-latch. On the
other hand, since we’re in this to build a simulation,
it should be just as good to construct the circuit and
perform testing in software space. Regardless of how
it is done, one should find, for allowed states:

&1 =1{0,0,0,1}
S, ={0,0,1,0}
S5 ={0,1,0,1}
So ={1,0,0,1}
S0 =1{1,0,1,0}
S1e={1,1,1,0}

To make sense of these, note that the pair Sy, Sy
begin the same but have the output states swapped.
The same can be said for the pair Sg, S19. All four of
these states have the E-input set to 0, meaning the
circuit is not enabled, thus the state of @, Q' remain
fixed regardless of D’s value.

The states S5, S14 correspond to E = 1, thus the
circuit is free to exhibit SR-like behavior. When en-
abled, setting D = 1 causes = 1, whereas D = 0
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causes (Q = 0. All of this is summarized in the fol-
lowing D latch truth table:

D Latch
D E| Q|
010]Q|Q
110]Q|Q
0O]11]0 1
1 ({1]1]0

Note finally that the state S; = {0,0,0,0} is
not supported in any SR latch or D latch. When
a latch-containing circuit is initially turned on from
the ground state, latches quickly find their way out
of 50.

4 Binary Addition

The task of adding two integers can be automated
using logic circuits. Given the binary nature of logic
gates, numbers involved in calculations addition must
be translated to a base-two format before touching a
physical circuit.

Starting with the simplest possible case, consider
the addition problem

A+B=C,

where A and B can each be either of 0 or 1. This is a
simple-enough problem to list all possible outcomes,
which are:

0+0=00
0+1=01
1+0=01
1+1=10

The output C is written in two-digit format, and the
digits are named, for perhaps obvious reasons, carry
and sum, respectively:

C = (Carry, Sum)



4.1 Half Adder

The scenario indulged so far is called the half adder,
and the task now is to capture its behavior in a cir-
cuit. Without knowing the components just yet, we
can nonetheless see that there should be two inputs
and two outputs. Further, we can write a truth table
for how the circuit ought to behave:

Half Adder
A | B | Carry | Sum
010 0 0
011 0 1
110 0 1
111 1 0

From this, the right-hand columns in isolation

read

Carry = {0,0,0,1}
Sum = {0,1,1,0} ,

which are identical to the output columns of the AND
and XOR gates, respectively:

AND = {0,0,0,1}
XOR = {0,1,1,0} .

Evidently the truth table of the circuit maps cleanly
to our arsenal of components. Thus, let us propose
the half adder circuit take the form depicted in Figure

K|

1001 y
1005
1002 /-

3001 F

I 2001 [20]
+=—0 O
inl [40]
J
+=—0
in2 4001

300!

300

Figure 18: Half adder circuit.

As circuit data, the half adder is captured by:

Components:
("XOR", 10, 1001, 1002, 1005, -1, -1)
("sPL", 20, 2001, 1001, 3001, 10, 30)
("AND", 30, 3001, 3002, 3005, -1, -1)
("sPL", 40, 4001, 1002, 3002, 10, 30)
Interacts:
(1, "PSH", 2001, 20)
(2, "PSH", 4001, 40)
(1, "LED", 1005, 10)
(2, "LED", 3005, 30)
4.2 Full Adder

While the half adder is perfectly suited for adding a
pair of one-bit numbers, it would be nice to perform
addition on two-, three-, four-bit numbers and so on.
From the outset, we want to do this without having
to reason out each circuit from first principles.

To break down the task we speak of the full adder,
which is a streamlining of the half adder suited for
integration into larger circuits. In particular, we
will see that addition of larger-bit numbers is accom-
plished by daisy-chaining identical copies of the full
adder circuit in a particular arrangement.

To begin, note that the half adder never attains
the output state C' = (1, 1), which is to say the ‘carry’
and ‘sum’ values are never simultaneously high. For

such a state to be attainable, a third input, thus a
third button is needed, and here is the beautiful part:
the third input shall be the ‘carry’ value from a so-
far unmentioned adder-like circuit that is upstream
of the one being discussed. It’s purpose is to add 1
to the sum being calculated.

Without knowing which components to use or how
they’re arranged, we can still work out the truth table
for the full adder:

Full Adder
inl | in2 | Carry-In | Carry-Out | Sum
0 0 0 0 0
0 1 0 0 1
1 0 0 0 1
1 1 0 1 0
0 0 1 0 1
0 1 1 1 0
1 0 1 1 0
1 1 1 1 1

When the Carry-In (synonymous with in3) value
is set ‘low’, the full adder does exactly what the half
adder does. With Carry-In set to ‘high’, we consult
the bottom half of the truth table to jot down

Carry-Out = {0,1,1,1}
Sum = {1,0,0,1} .
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Comparing these to the lexicon of logic gates, we find

OR = {0,1,1,1}
XNOR = {1,0,0,1} ,

which is a little troublesome due to the presence of
XNOR.

To skirt the problem we exploit the XNOR-
equivalent arrangement depicted in Figure [8| Ignor-
ing the pair of INV gates momentarily, we see that

X
+=—0 O

BOO1 [ 6001

80]

the bulk of the XNOR-equivalent circuit consists of
a pair of AND gates leading to an OR gate, and that
is the motif we shall borrow for the full adder.

The exact marriage of the half adder and the
Franken-XNOR is a bit tricky to arrange, but
nonetheless the full adder circuit is finished in Fig-
ure An extra NOR gate has been slipped into the
circuit as a necessity, and in hindsight of this we see
that the full adder really is a configuration of two half
adders.

[20]

inl 6002

a0

N oD
E BO0S
7. I

]

DT';‘ 1005

[90] 300!

i il
+=—0
in2

5001

—_

1001 ;
1002 /<

4001

140}

+—0 o——
n.

7001

7002

4002 5001

[50] 5005

5002

Figure 19: Full adder circuit.

Equivalently, the full adder circuit is specified by
the following data:

Components:
("X0R", 10, 1001, 1002, 1005, -1, -1)
("spL", 20, 6005, 1001, 4002, 10, 40)
("spL", 30, 3001, 1002, 4001, 10, 40)
("AND", 40, 4001, 4002, 5001, -1, 50)

("OR", 50, 5001, 5002, 5005, 10, 30)

("XOR", 60, 6001, 6002, 6005, -1, 20)

("AND", 70, 7001, 7002, 5002, -1, 50)

("sPL", 80, 8001, 6001, 7002, 60, 70)

("SPL", 90, 9001, 6002, 7001, 60, 70)
Interacts:

(1, "PSH", 8001, 80) // ini

(2, "PSH", 9001, 90) // in2

(3, "PSH", 3001, 30) // carry-in

(1, "LED", 5005, 50)
(2, "LED", 1005, 10)

// carry-out

// sum

4.3 Two Bit Adder

Having so carefully prepared the full adder circuit
to play nice among similar structures, the addition
of higher-bit numbers becomes a matter of linking a
number of identical adder circuits.

The simplest application is the two bit adder,
which as the name suggests, adds a pair of two-bit
binary numbers. Such a circuit contains five total in-
puts: a pair for each input, plus a carry-in bit. There
are three outputs: one pair for a two-bit result, plus
a carry-out bit. Letting the circuit diagram to do the
rest of the talking, the two bit adder is depicted in
Figure
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Figure 20: Two bit adder circuit.
Note that the four ‘regular’ inputs to the circuit (4, "TOG", 19001, 19) // bl
are buttons of the TOG species, where as per usual, (1, "LED", 15005, 15) // carry out
the carry-in bit is represented by a PSH button. The (2, "LED", 11005, 11) // sumil
whole diagram and all of its labeling is equivalent to (3, "LED", 1005, 1) // sum0

the circuit data:

Components:
("XO0R", 1, 1001, 1002, 1005, -1, -1)
("SPL", 2, 6005, 1001, 4002, 1, 4)
("spL", 3, 3001, 1002, 4001, 1, 4)

("AND", 4, 4001, 4002, 5001, -1, 5)
("OR", 5, 5001, 5002, 5005, -1, 13)
("XOR", 6, 6001, 6002, 6005, -1, 2)
("AND", 7, 7001, 7002, 5002, -1, 5)
("spL", 8, 8001, 6001, 7002, 6, 7)
("SpL", 9, 9001, 6002, 7001, 6, 7)
("XOR", 11, 11001, 11002, 11005, -1, -1)
("SPL", 12, 16005, 11001, 14002, 11, 14)
("sSpL", 13, 5005, 11002, 14001, 11, 14)
("AND", 14, 14001, 14002, 15001, -1, 15)
("OR", 15, 15001, 15002, 15005, -1, -1)
("XOR", 16, 16001, 16002, 16005, -1, 12)
("AND", 17, 17001, 17002, 15002, -1, 15)
("sPL", 18, 18001, 16001, 17002, 16, 17)
("SPL", 19, 19001, 16002, 17001, 16, 17)
Interacts:

(9, "PSH", 3001, 3) // carry in

(1, "TOG", 8001, 8) // a0

(2, "TOG", 9001, 9) // 10

(3, "TOG", 18001, 18) // a1l
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Two Bit Adder Analysis

Having five total inputs, there are 2° = 32 distinct
states of the two bit adder. The outputs are limited
to 23 = 8 possibilities though, thus there is significant
non-uniqueness in the result as expected for addition.
For this reason, coming up with a complete truth ta-
ble for such a circuit is a redundant thankless chore
to be avoided.

Instead, it’s quite easy to predict on paper how
the circuit ought to appear. The sum handled by the
two bit adder can be represented by

Ni+No+Cipy = Cout + 5,

where the left side is

N; = {00,01,10,11}
N, = {00,01,10,11}
Cz’n = {07 1} )

and the right is

Cout = {Oa 1}
S = {00,01,10,11} .



For an example, consider the case

Ny =10
Ny, =01
Cin :Oa

which represents the addition problem
24+14+0=Chus +S.

The right side is obviously 3, which comes in the form
(0,1,1). That is, the carry-out bit is 0, and the sum
contains 3 in binary, namely 11.

The same problem is represented in Figure [21] us-
ing buttons and lights. In particular, buttons 1, 3
correspond to Ny, and buttons 2, 4 correspond to

Ns. The carry-in digit is delegated to the right as
button 9.

Button:

Light:

Figure 21: The sum 1 +2+0 = 3.

Modifying the example, we can set the carry-in
bit to 1 instead of 0, which kicks the output state
to 4, represented by 100 in binary. This means the
S-field contains 00, and the carry-out bit is set to 1
as depicted in Figure

Buttom:

Light:

Figure 22: The sum 1 +2+ 1 =4.

4.4 More Bit Adders

As demonstrated while building the two bit adder,
adding yet more bits is a matter of linking yet more
full adder circuits. As the adder circuits grow, pre-
cisely how the inputs correspond to the outputs needs
further elaboration that is reserved for the four bit
case below.

Three Bits
Without laboring any details and skipping to a result,

Figure 23] displays a portion of the QB64 output win-
dow while running the three-bit adder.
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Button:

Light:

Figure 23: Partial output window showing a three bit
adder circuit.

Four Bits

Figure [24] depicts the four bit adder circuit.

BOOL |

6001
. {lrlo—ﬁﬁ‘ﬁ B 6005 2 Lul:I A, -
. 500! - - 00

in 001

18001 15 16001 .
o—ﬂ 00 00
16002
: i) 005
9001 B 002

Figure 24: Four bit adder circuit.

Having nine total inputs, the four bit adder cir-
cuit uses the full range of available buttons. Like the
two bit adder, we can begin analysis by writing

N1+ No + (:%n = Cout + é;v



where, now, the left side is
N; = {0000, 0001, ...,1111}
N, = {0000,0001,...,1111}

Cin = {07 1} )
and the right is
Cout = {0, 1}

S = {0000,0001, ...,1111} .

Particularly, the numbers N7, Na, and S are each one
of sixteen possibilities, i.e. the integers 0 to 15. The
greatest result the four bit adder can produce is 31,
which in binary is 11111.

With the carry digit reserved to button 9 as usual,
the circuit receives input as follows: The digits of Ny
are inputted using the keys 1, 3, 5, 7, and the digits
of Ny are inputted using the keys 2, 4, 6, 8. Keeping
in mind the context is base two, this further means:

e Buttons 1, 2 are the ones column.
e Buttons 3, 4 are the tens column.
e Buttons 5, 6 are the hundreds column.

e Buttons 7, 8 are the thousands column.

For example, suppose we want to compute the
sum
94+134+0=22.

Breaking this down, we have
N; = 1001
Ny = 1101
Cin=0
Since we know the answer is 22, we also have that
Cout +5 =10110,

where the right side is 22 in binary.

As far as circuit input goes, we consult the expres-
sions of N1, Ns, and, reading right to left, discern that
we press buttons 1, 2, 6, 7, 8 while leaving the rest
alone. By doing this, the lights that go ‘high’ should
be 1, 3, 4.

Buttomn:

Light:

Figure 25: Partial output window demonstrating the
sum 9 + 13 = 22.

Containing the same information depicted in Fig-
ure the four bit adder circuit data is listed below
for completenss:
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Components:

("XOR", 1, 1001, 1002, 1005, -1, -1)
("SPL", 2, 6005, 1001, 4002, 1, 4)
("sPL", 3, 3001, 1002, 4001, 1, 4)

("AND", 4, 4001, 4002, 5001, -1, 5)

("OR", 5, 5001, 5002, 5005, -1, 13)

("XOR", 6, 6001, 6002, 6005, -1, 2)

("AND", 7, 7001, 7002, 5002, -1, 5)

("SPL", 8, 8001, 6001, 7002, 6, 7)

("SPL", 9, 9001, 6002, 7001, 6, 7)

("XOR", 11, 11001, 11002, 11005, -1, -1)

("SpL", 12, 16005, 11001, 14002, 11, 14)

("SPL", 13, 5005, 11002, 14001, 11, 14)

("AND", 14, 14001, 14002, 15001, -1, 15)

("OR", 15, 15001, 15002, 15005, -1, 23)

("XOR", 16, 16001, 16002, 16005, -1, 12)

("AND", 17, 17001, 17002, 15002, -1, 15)

("spL", 18, 18001, 16001, 17002, 16, 17)

("spL", 19, 19001, 16002, 17001, 16, 17)

("XOR", 21, 21001, 21002, 21005, -1, -1)

("SPL", 22, 26005, 21001, 24002, 21, 24)

("SPL", 23, 15005, 21002, 24001, 21, 24)

("AND", 24, 24001, 24002, 25001, -1, 25)

("OR", 25, 25001, 25002, 25005, -1, 33)

("XOR", 26, 26001, 26002, 26005, -1, 22)

("AND", 27, 27001, 27002, 25002, -1, 25)

("SPL", 28, 28001, 26001, 27002, 26, 27)

("SPL", 29, 29001, 26002, 27001, 26, 27)

("XOR", 31, 31001, 31002, 31005, -1, -1)

("SPL", 32, 36005, 31001, 34002, 31, 34)

("SPL", 33, 25005, 31002, 34001, 31, 34)

("AND", 34, 34001, 34002, 35001, -1, 35)

("OR", 35, 35001, 35002, 35005, -1, -1)

("XOR", 36, 36001, 36002, 36005, -1, 32)

("AND", 37, 37001, 37002, 35002, -1, 35)

("SPL", 38, 38001, 36001, 37002, 36, 37)

("SPL", 39, 39001, 36002, 37001, 36, 37)
Interacts:

(9, "PSH", 3001, 3) // carry in

(1, "TOG", 8001, 8) // a0

(2, "TOG", 9001, 9) // b0

(3, "TOG", 18001, 18) // al

(4, "TOG", 19001, 19) // bl

(5, "TOG", 28001, 28) // a2

(6, "TOG", 29001, 29) // b2

(7, "TOG", 38001, 38) // a3

(8, "TOG", 39001, 39) // b3

(1, "LED", 35005, 35) // carry out

(2, "LED", 31005, 31) // sum3

(3, "LED", 21005, 21) // sum2

(4, "LED", 11005, 11) // suml

(5, "LED", 1005, 1) // sumO

5 Edge Detection



Here we address an important and subtle phenomenon that occurs in real-world circuits called edge
detection. Consider a circuit where, somewhere in a given wire (either caused by a button or a component),
the value (perhaps rapidly) turns on and off as depicted in Figure

1

Figure 26: Changing value in a wire.

Next, suppose we are interested in capturing only the moments when the value changes from 0 to 1. To
illustrate, Figure [27] overlays a colored edge onto the so-called ‘rising edges’ of the previous sketch as shown.

1

Figure 27: Rising edge overlay.

A proper edge detector is designed to convert rising edges into short pulses. Continuing the example on
hand, this amounts to turning the red portion in the previous sketch into pulses of their own as depicted in

Figure 28

1
0
Figure 28: Pulses derived from rising edges.
5.1 Edge Detector Circuit reaching the second AND gate input. From this we

see suddenly switching the input to 1 causes a brief
moment where both inputs on the AND gate are 1,
and a quick high pulse is emitted.

Astonishingly, it’s possible to build an edge detec-
tor circuit from a strange but simple configuration
of logic gates. The idea is to couple both inputs to

an AND gate, but to invert one of them as shown in
Figure 29] Extended Edge Detector

The particular make and model of the INV gate cho-

— D— sen for an edge detector circuit, along with the qual-

—Do—|_ ity of the wires involved, has direct influence over

its proper functionality. That is, some chips evaluate

very quickly, sending a very narrow pulse downstream
that is too slender to use.

The key is to realize that the ‘evaluation time’ This is compensated for by adding an additional

of a given logic gate is not instant, and the presence INV gates to the circuit in even pairs. as shown in

of the INV gate momentarily lags down the signal Figure [30]

S

Figure 30: Extended edge detector circuit.

Figure 29: Edge detector circuit.
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The extra pair of INV gates helps to slow the sig-
nal reaching the low AND gate input, thus making
the detected edge last longer. As it turns out, this
idea must also be exploited in simulation because the
order in which components are defined has an effect
on internal state. In order to guarantee a ‘proper’
pulse from the AND gate, the safer option is the ex-
tended edge detector. Our version of the extended
edge detector takes the form:

Components:
("sPL", 1, 1001, 2002, 3001, 2, 3)
("INV", 2, 2002, 4001, 0, 4, -1)
("AND", 3, 3001, 3002, 3010, -1, -1)
("INV", 4, 4001, 5001, 0, 5, -1)
("Inv", 5, 5001, 3002, 0, 3, -1)
Interacts:
(1, "PSH", 1001, 1)
(1, "LED", 3010, 3)

It’s worth having a precise look at the state of
the extended edge detector. Starting with the ground
state, we first have

Sor 7 = {[1]000[2] 000 [3] 000 [4] 000 [5] 000} ,

which is in fact unstable, and the circuit jumps
quickly to the rest state:

Srest = {[1]000[2] 010 [3] 010 [4] 100 [5] 010}

From here, let us examine what happens by press-
ing and holding button 1. Doing so causes the inter-
mediate state

Simea = {[1]100[2] 010 [3] 010 [4] 100 [5] 010} .

Immediately after this, the circuit jumps to the
curious intermediate state

Sedge = {[1]111[2] 100 [3] 101 [4] 010 [5] 100} ,

which momentarily flashes the circuit’s only light.
This indicates that the so-called edge has been suc-
cessfully detected and any downstream components
are now aware. Note the off-color behavior of the
AND gate [3] at this moment: the inputs disagree,
but the output is high.

Finally, with the button still pushed and held, the
state becomes

Shota = {[1] 111 [2] 100 3] 100 [4] 010 [5] 100} .

Letting go of the button, the circuit returns to the
rest state.

5.2 D Flip-Flop

Quickly reviewing the story of bit storage, we know
that a clever use of feedback gives rise to the SR latch,
and then the inputs to the circuit can be edited to give
the ‘enabled’ SR latch. Modifying the input further
produces the elegant D latch.

Here we continue the SR latch evolution story by
incorporating edge detection. In particular, begin
with the D latch and place an extended edge detec-
tor circuit immediately after the ‘enable’ button as
shown in Figure

18]

001

Figure 31: D flip-flop circuit.

This construct is called a D flip-flop. Different
from the D latch, the ‘enable’ function only triggers
on the leading edge of the enable button (in2). That
is, the circuit is only enabled in pulses, not continu-
ously. Internally, the D flip-flop does the same job as
the D latch and obeys the same truth table.

The corresponding data for the D flip-flop circuit
is as follows:

Components:
("NOR", 1, 1001, 1002, 1005, -1, 2)
("spL", 2, 1005, 3002, 2005, 3, -1)
("NOR", 3, 3001, 3002, 3005, -1, 4)
("spL", 4, 3005, 1002, 4005, 1, -1)
("AND", 5, 5001, 5002, 1001, -1, 1)
("spL", 6, 6001, 5002, 7002, 5, 7)
("AND", 7, 7001, 7002, 3001, -1, 3)
("spL", 8, 8001, 7001, 9001, 7, 9)
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("INv", 9, 9001, 5001, 0, 5, -1)

("spL", 11, 11001, 12002, 13001, 12, 13)

("INv", 12, 12002, 14001, 0, 14, -1)

("AND", 13, 13001, 13002, 6001, -1, 6)

("INv", 14, 14001, 15001, 0, 15, -1)

("1Nv", 15, 15001, 13002, 0, 13, -1)
Interacts:

(1, "PSH", 8001, 8) // D

(2, "PSH", 11001, 11) // E

(1, "LED", 2005, 2) // Q

(2, "LED", 4005, 4) /] Q

D Flip-Flop Symbol

As it turns out, the D flip-flop is popular enough to
have its own symbol as shown in Figure The
input D, along with outputs Q, Q' are labeled ac-
cordingly (with Q' equivalent to Q). The ‘set’ (9)
and ‘reset’ (R) pins can be ignored for our purposes,
which leaves the strange triangular symbol on the left
for the ‘enable’ function. This input is by convention
called the clock.

|
DS

Q

RO
T

Figure 32: D flip-flop symbol.

6 Counters

The D flip-flop can be put to use in a variety of in-
teresting ways, and we scratch the surface here by
building a few counters.

6.1 One Bit Counter

Begin with the D flip-flip, and perform the strange
surgery of removing the D-input, and re-routing its
wire to the Q' output as shown in Figure Also
ignore the Q-output for a moment and only look at

Q'

li

[80]

141

700!

800;

outl

Figure 33: One bit counter circuit.

Such a modified D flip-flop is called a one bit
counter. To ‘count’ a one bit number isn’t very excit-
ing, as the circuit merely amounts to a button that
turns a light on or off. The subtlety is, the circuit
only responds to the moment the button is pressed,
i.e. on the rising edge of the input.

Evolution of State

Slightly less interesting than the states allowed in
circuit is the order in which they occur. From the
ground state Spp, pushing and holding the input leads
to the state S;;. Releasing the button gives Spp.
From there, pressing the button again gives Sy, and
releasing it a second time gets back to Spo. In sum-
mary, we find the sequence of states to be:

Soo—>811—>801—>810—>500—)...
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In other words, the light stays on after the button is
released. It takes a second push to turn the light off.

outl

Figure 34: One bit counter circuit in terms of D flip-
flop symbol.

In terms of the D flip-flop symbol, the one bit
counter is represented in Figure The equivalent
as circuit data reads:

Components:



("NOR",
("SPL",
("NOR",
("sPL",
("AND",
("SPL",
("AND",
(HSPLH s
("InNv",
("SPL",
("INV",
("AND",
(IIINVII s
("INv",
Interacts:

9,

11,
12,
13,
14,
15,

11001,
12002,
13001,
14001,
15001,

1002,
3002,
3002,
1002,
5002,
5002,
7002,
7001,
5001,

(1, "PSH", 11001, 11)
(1, "LED", 8001, 8)

12002,
14001,
13002,
15001,
13002,

1005,
2005,
3005,
8001,
1001,
7002,
3001,
9001,
0,

-1, 2)
3, -1)
-1, 4)
1, 8)
-1, 1
5, 7)
-1, 3)
7, 9)
5, -1)
13001, 12,
0, 14, -1)
6001,
0, 15, -1)
0, 13, -1)

Clock
QJ

//
//

13)

-1, 6)

6.2 Two Bit Counter

One can straightforwardly build a two bit counter by
linking a pair of one bit counters in series as shown
in Figure

—0 S Q —0 S of—
X 11001 |
+—0 O
inl — —
RO RO
| |
BOO! 28001

outl out2

Figure 35: Two bit counter circuit in terms of D flip-
flop symbol.

For clarity we have employed the symbolic nota-
tion for the D flip-flop, but keep in mind the circuit
being described isn’t precisely trivial. For complete-
ness, the corresponding circuit data reads:

Components:
("NOR", 1, 1001, 1002, 1005, -1, 2)
("spL", 2, 1005, 3002, 31001, 3, 31)
("NOR", 3, 3001, 3002, 3005, -1, 4)
("spL", 4, 3005, 1002, 8001, 1, 8)
("AND", 5, 5001, 5002, 1001, -1, 1)
("spL", 6, 6001, 5002, 7002, 5, 7)
("AND", 7, 7001, 7002, 3001, -1, 3)
("spL", 8, 8001, 7001, 9001, 7, 9)
("INV", 9, 9001, 5001, 0, 5, -1)
("spL", 11, 11001, 12002, 13001, 12, 13)
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("INv", 12, 12002, 14001, 0, 14, -1)
("AND", 13, 13001, 13002, 6001, -1, 6)
("INV", 14, 14001, 15001, 0, 15, -1)
("INv", 15, 15001, 13002, 0, 13, -1)
("NOR", 21, 21001, 21002, 21005, -1, 22)
("spL", 22, 21005, 23002, 22005, 23, -1)
("NOR", 23, 23001, 23002, 23005, -1, 24)
("SPL", 24, 23005, 21002, 28001, 21, 28)
("AND", 25, 25001, 25002, 21001, -1, 21)
("spL", 26, 26001, 25002, 27002, 25, 27)
("AND", 27, 27001, 27002, 23001, -1, 23)
("spL", 28, 28001, 27001, 29001, 27, 29)
("INV", 29, 29001, 25001, 0, 25, -1)
("spL", 31, 31001, 32002, 33001, 32, 33)
("INv", 32, 32002, 34001, 0, 34, -1)
("AND", 33, 33001, 33002, 26001, -1, 26)
("INV", 34, 34001, 35001, 0, 35, -1)
("INv", 35, 35001, 33002, 0, 33, -1)
Interacts:

(1, "PSH", 11001, 11)
(1, "LED", 8001, 8)
(2, "LED", 28001, 28)

The two bit counter still operates on a single in-
put. The so-far unused @ output of the first counter
is sent as the input to the next, and the state of the
counter is read from the pair Q' outputs.

The two bit counter’s qualitative behavior ex-
tends that of the one bit, namely that the output
state changes only when the input is initially pressed.
Starting from the ground state and listing only the
output values, the two bit counter yields the output
sequence

00—-01—-10—-11—-00— ...,
or in base ten,
0-1=-2=23—-0—....

That is, the circuit counts from 0 to 3 and repeats
forever.

6.3 Four Bit Counter

Given the plug-and-play flexibility the one bit adder
circuit, it’s very easy to extend the two bit counter
to add three, four, or any number of bits. Granted,
it becomes more difficult to manage the such circuits,
which is why D flip-flip circuits are often printed to
chips.
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Figure 36: Four bit counter circuit.

A four bit counter has been prepared and is shown ("INV", 49, 49001, 45001, 0, 45, -1)
in Figure which looks rather tame in terms of the ("SPL", 51, 51001, 52002, 53001, 52, 53)
D flip-flop symbol. Such a device uses four outputs to ("INV", 52, 52002, 54001, 0, 54, -1)
cycle through the integers 0000 to 1111, also known ("AND", 53, 53001, 53002, 46001, -1, 46)

as zero to fifteen. As circuit data, this one is a mon- ("INV", 54, 54001, 55001, 0, 55, -1)
ster: ("INV", 55, 55001, 53002, 0, 53, -1)
("NOR", 61, 61001, 61002, 61005, -1, 62)
Components: ("SPL", 62, 61005, 63002, 62005, 63, -1)
("NOR", 1, 1001, 1002, 1005, -1, 2) ("NOR", 63, 63001, 63002, 63005, -1, 64)
("spL", 2, 1005, 3002, 31001, 3, 31) ("SPL", 64, 63005, 61002, 68001, 61, 68)
("NOR", 3, 3001, 3002, 3005, -1, 4) ("AND", 65, 65001, 65002, 61001, -1, 61)
("SpPL", 4, 3005, 1002, 8001, 1, 8) ("SPL", 66, 66001, 65002, 67002, 65, 67)
("AND", 5, 5001, 5002, 1001, -1, 1) ("AND", 67, 67001, 67002, 63001, -1, 63)
("spPL", 6, 6001, 5002, 7002, 5, 7) ("spL", 68, 68001, 67001, 69001, 67, 69)
("AND", 7, 7001, 7002, 3001, -1, 3) ("INV", 69, 69001, 65001, 0, 65, -1)
("spL", 8, 8001, 7001, 9001, 7, 9) ("spL", 71, 71001, 72002, 73001, 72, 73)
("INV", 9, 9001, 5001, 0, 5, -1) ("InNv", 72, 72002, 74001, 0, 74, -1)
("spL", 11, 11001, 12002, 13001, 12, 13) ("AND", 73, 73001, 73002, 66001, -1, 66)
("INV", 12, 12002, 14001, 0, 14, -1) ("INV", 74, 74001, 75001, 0, 75, -1)
("AND", 13, 13001, 13002, 6001, -1, 6) ("INV", 75, 75001, 73002, 0, 73, -1)
("INV", 14, 14001, 15001, O, 15, -1) Interacts:
("INV", 15, 15001, 13002, O, 13, -1) (1, "PLS", 11001, 11)
("NOR", 21, 21001, 21002, 21005, -1, 22) (1, "LED", 8001, 8)
("spL", 22, 21005, 23002, 51001, 23, 51) (2, "LED", 28001, 28)
("NOR", 23, 23001, 23002, 23005, -1, 24) (3, "LED", 48001, 48)
("spL", 24, 23005, 21002, 28001, 21, 28) (4, "LED", 68001, 68)

("AND", 25, 25001, 25002, 21001, -1, 21)
("SPL", 26, 26001, 25002, 27002, 25, 27)
("AND", 27, 27001, 27002, 23001, -1, 23)
("SPL", 28, 28001, 27001, 29001, 27, 29) As a reward for patience, the PSH button has been

Output

("InNV", 29, 29001, 25001, 0, 25, -1) upgraded to species PLS, freeing the user’s hand.
("spL", 31, 31001, 32002, 33001, 32, 33) Letting the circuit run, the output section cycles
("INV", 32, 32002, 34001, 0, 34, -1) through the numbers 0 to 15 as follows:

("AND", 33, 33001, 33002, 26001, -1, 26) Light:

("INV", 34, 34001, 35001, 0, 35, -1)

("Inv", 35, 35001, 33002, 0, 33, -1)

("NOR", 41, 41001, 41002, 41005, -1, 42) Light:

("SPL", 42, 41005, 43002, 71001, 43, 71)

("NOR", 43, 43001, 43002, 43005, -1, 44)

("SPL", 44, 43005, 41002, 48001, 41, 48) Light:

("AND", 45, 45001, 45002, 41001, -1, 41)

("SPL", 46, 46001, 45002, 47002, 45, 47)

("AND", 47, 47001, 47002, 43001, -1, 43) Light:

("SPL", 48, 48001, 47001, 49001, 47, 49)
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Light:

Light:

Light:

Light:

Light:

Light:
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