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Chapter 1

Linear Systems

1 Linear Systems

1.1 Order-Two Formalism

Motivation

Consider the linear system of two equations contain-
ing two unknowns x and y,

ax+ by = e

cx+ dy = f ,

where all coefficients are assumed nonzero. One way
to solve the system begins by eliminating y, which
means to multiply the top and bottom equations by
d, b, respectively, and add the results:

x (ad− bc) = de− bf

Similarly, we can eliminate x to end up with

y (ad− bc) = af − ec ,

and it is now trivial to solve for x and y.
If it just so happens that ad − bc = 0, the equa-

tions for x and y become indeterminate, meanwhile
implying de = bf and af = ec. To visualize this,
treat each equation as a separate line

y1 = −a

b
x+

e

b

y2 = − c

d
x+

f

d
,

having respective slopes m1 = −a/b, m2 = −c/d.
Take the difference of slopes to find

m1 −m2 = −a

b
+

c

d
=

1

bd
(−ad+ bc) = 0 ,

implying the lines are parallel. Moreover, de = bf
causes the lines to have the same y-intercept, thus the
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4 CHAPTER 1. LINEAR SYSTEMS

two lines y1, y2 are identical. This reduces the num-
ber of equations in the system back down to one equa-
tion that has an infinite number of solutions on the
line y1,2. In the special case that e = 0 or f = 0, the
lines y1,2 are parallel but non-overlapping, in which
case no solutions exist at all.

Only when ad−bc is nonzero does the line y1 cross
y2 somewhere in the Cartesian plane at one point
(x0, y0). The intersection point is the ‘solution’ to
the system of equations.

Matrix Formulation

Start with the same two-dimensional system and re-
label all coefficients such that

A11x1 +A12x2 = b1 (1.1)

A21x1 +A22x2 = b2 ,

admitting a clean matrix representation

Ax⃗ = b⃗ ,

or [
A11 A12

A21 A22

] [
x1

x2

]
=

[
b1
b2

]
.

Determinant

The classification of solutions x⃗ depends on the quan-
tity A11A22 − A12A21, called the determinant of the
matrix A:

detA = det

[
A11 A12

A21 A22

]
= A11A22 −A12A21 (1.2)

If detA is nonzero, the vector x⃗ solves the system.
On the other hand, any matrix with detA = 0 is
called singular, having a non-obvious number of so-
lutions (zero or infinite, depending on b⃗). For the
non-singular case detA ̸= 0, the solution to the sys-
tem is given by:

x1 =
1

detA
(A22b1 −A12b2)

x2 =
1

detA
(A11b2 −A21b1)

Cramer’s Rule

In the above solutions for x1, x2, observe that the
quantities

A22b1 −A12b2

A11b2 −A21b1

are themselves the determinants of new matrices C1,
C2 such that

x1 =
1

detA
det

[
b1 A12

b2 A22

]
=

detC1

detA

x2 =
1

detA
det

[
A11 b1
A21 b2

]
=

detC2

detA

That is, the solution to the two-dimensional linear
system (1.1) with nonzero determinant is

xj =
detCj

detA
(1.3)

j = 1, 2 ,

with

C1 =

[
b1 A12

b2 A22

]
(1.4)

C2 =

[
A11 b1
A21 b2

]
.

The ‘recipe’ that got us to this point is called
Cramer’s Rule: if detA ̸= 0, there’s a solution to
the system.

1.2 Order-N Formalism

Generalizing the 2×2 linear system to have M equa-
tions and N unknowns, we begin with

A11x1 +A12x2 +A13x3 + · · ·+A1NxN = b1

A21x1 +A22x2 +A23x3 + · · ·+A2NxN = b2

A31x1 +A32x2 +A33x3 + · · ·+A3NxN = b3

. . .

AM1x1 +AM2x2 +AM3x3 + · · ·+AMNxN = bM ,
(1.5)

admitting the matrix representation Ax⃗ = b⃗:
A11 A12 A13 · · · A1N

A21 A22 A23 · · · A2N

A31 A32 A33 · · · A3N

· · · · · · · · · · · · · · ·
AM1 AM2 AM3 · · · AMN



x1

x2

x3

· · ·
xN

 =


b1
b2
b3
· · ·
bM


(1.6)

At this stage, the relationship between M and
N indicates the quality of solutions (if any) to the
system. If N > M , the system is said to be under-
determined, and there is not enough information to
choose a solution. On the other hand, if M > N , the
system is over-determined, and there may be zero, or
perhaps infinite solutions.

In order to proceed, the matrix A is taken to be
square with M = N . Then, the recipe for solving
a two-dimensional linear system extrapolates to N
dimensions. Although its not (yet) straightforward
how to calculate the determinant of A, we can still
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use Cramer’s rule to write down the components of
the solution vector x⃗, namely

xj =
detCj

detA
(1.7)

j = 1, 2, 3, . . . , N

The matrix Cj is constructed by starting with A and

replacing the jth column with b⃗. That is:

Cj =


A11 A12 · · · b1j · · · A1N

A21 A22 · · · b2j · · · A2N

A31 A32 · · · b3j · · · A3N

· · · · · · · · · · · · · · · · · ·
AN1 AN2 · · · bNj · · · ANN

 (1.8)

1.3 Row Operations

An important tool set called row operations can be
applied to matrices. To illustrate these, consider
again the N -dimensional linear system (1.5). The
‘game’ we play is to find ways to manipulate the
system of equations without losing any information.
Without much trouble, one finds the allowed opera-
tions to be:

• Exchange two rows.

• Multiply a row by a (nonzero) scalar.

• Replace a row by the sum of itself and another
row.

For the sake of assigning symbols to the above
row operations, let us denote row exchanges as E,
scalar multiplication as M , and a row replacement
as R. Using a four-dimensional square matrix as an
example, row operations explicitly look like:

E23A =


A11 A12 A13 A14

A31 A32 A33 A34

A21 A22 A23 A24

A41 A42 A43 A44



M2
αA =


A11 A12 A13 A14

αA31 αA32 αA33 αA34

A21 A22 A23 A24

A41 A42 A43 A44


R2

3A =
A11 A12 A13 A14

A31 +A21 A32 +A22 A33 +A23 A34 +A24

A21 A22 A23 A24

A41 A42 A43 A44


Note that the subscripts and superscripts on the sym-
bols E, M , R are mere convenience of notation, often-
omitted.

2 Determinants

The determinant is a scalar calculated from the com-
ponents of a square (N ×N) matrix A. Of the many
things the determinant can tell us, we’ve already seen
that detA indicates the ‘quality’ of solutions to a lin-
ear system. Namely, if the determinant is nonzero,
the linear system has a solution given by Cramer’s
rule. The determinant of a two-dimensional square
matrix is given by (1.2).

2.1 Three Dimensions

Consider the three-dimensional linear system

A11x1 +A12x2 +A13x3 = b1 (1.9)

A21x1 +A22x2 +A23x3 = b2

A31x1 +A32x2 +A33x3 = b3 ,

and we’re interested in the determinant of the matrix

A =

A11 A12 A13

A21 A22 A23

A31 A32 A33

 .

Labeling each row R1, R2, R3, respectively, we de-
ploy row operations to (i) multiply R2 by a factor of
A11/A21, and then (ii) replace R2 with R2 −R1:

A →

A11 A12 A13

0 A11A22

A21
−A12

A11A23

A21
−A13

A31 A32 A33


Next, (iii) multiply R3 by a factor of A11/A31, and
(iv) replace R3 with R3 −R1:

A →

A11 A12 A13

0 A11A22

A21
−A12

A11A23

A21
−A13

0 A11A32

A31
−A12

A11A33

A31
−A13


With the matrix configured as such, observe that

the ‘important’ information is crammed into the
lower 2 × 2 portion of the transformed matrix. Ac-
cordingly, we deploy the determinant formula (1.2)
to write

detA ∝
(
A11A22

A21
−A12

)(
A11A33

A31
−A13

)
−

(
A11A23

A21
−A13

)(
A11A32

A31
−A12

)
,

which after simplifying, becomes

detA

(
A21A31

A11

)
∝ A11 (A22A33 −A32A23)

−A12 (A21A33 −A31A23)

+A13 (A21A32 −A31A22) .
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Keepping in mind that the determinant of A is a
single number that characterizes the solutions to the
system, it follows that the right-side quantity in the
above contains all of the required information. It’s
also easy (enough) to see that exchanging two rows
in the original A will lead to the same final form of
detA, up to numerical factors and/or negative signs.

In conclusion, we take the the order-three determi-
nant to be

detA = A11 (A22A33 −A32A23) (1.10)

−A12 (A21A23 −A31A33)

+A13 (A21A32 −A31A22) .

2.2 Four Dimensions

Having witnessed the trick of performing row operations on an order-three square matrix A to condense all
relevant information into a 2× 2 square sub-matrix, this should also work for higher-order matrices. Indeed,
the order-four matrix

A =


A11 A12 A13 A14

A21 A22 A23 A24

A31 A32 A33 A34

A41 A42 A43 A44

 ,

permits a similar process to reduce the order of the problem. Doing so, the order-four determinant becomes
the sum of four terms:

detA = A11 det

A22 A23 A24

A32 A33 A34

A42 A43 A44

−A12 det

A21 A23 A24

A31 A33 A34

A41 A43 A44

 (1.11)

+A13 det

A21 A22 A24

A31 A32 A34

A41 A42 A44

−A14 det

A12 A22 A23

A31 A32 A33

A41 A42 A43


2.3 Sub-Matrix and Matrix Minor

Taking another look at the three- and four-
dimensional determinant formulas, we see the right
side contains the sum of several ‘cross sections’ of the
original matrix, each having dimension N − 1.

Sub-Matrix

The sub-matrix Sjk removes the jth row and the kth
column from the original matrix A.

Matrix Minor

The matrix minor, denoted Mjk is the determinant
of the sub-matrix Sjk. With matrix minor notation,
equations (1.10), (1.11) can be written:

detA(3) = A11M11 −A12M12 +A13M13

detA(4) = A11M11 −A12M12 +A13M13 −A14M14

2.4 N Dimensions

Using matrix minor notation, the three and four-
dimensional determinant formulas suggest of how to
handle the N -dimensional case. Formally, the proce-
dure is to use row operations to condense down-andd-
right all of the information on the matrix. After the

dust settles, the general formula for the determinant
of an order-N matrix is remarkably simple:

if N = 1 : detA = det
[
A11

]
if N > 1 : detA =

N∑
j≤N
k=1

(−1)
j+k

AjkMjk (1.12)

Note too that the summation can take place over rows
or columns, meaning

if N > 1 : detA =

N∑
j≤N
k=1

(−1)
j+k

AkjMkj

also holds. Note that the variable j is fixed at some
integer less than N . Only the k-variable is summed
over.

2.5 Properties

Multiplication Rules

Readily shown from the properties of determinants
are various multiplication rules. A scalar α multi-
plied by a matrix A of dimension N has the result

det (αA) = αN detA .
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Meanwhile, for the product of two matrices A, B:

det (AB) = det (A) det (B)

Row Operations

The row operations E (row exchange), M (multiply
by scalar), R (combine rows) have the following effect
on the determinant:

det (EA) = − detA

det (MA) = α detA

det (RA) = detA

Transpose Rule

Interestingly but not surprisingly, the matrix and its
transpose have the same determinant:

det
(
AT

)
= detA

3 Inverse Matrix

3.1 Definition

Given a square matrix A of dimension N , there may
exist a special matrix A−1 that obeys the property

A−1A = AA−1 = I , (1.13)

where A−1 is called the inverse matrix to A, and I is
the identity matrix of dimension N . The product of
A and its inverse, or vise versa, results in the identity
matrix.

Existence

For the notion of the inverse to make sense, the ma-
trix Amust perform a one-to-one mapping of a vector
x⃗ to a vector b⃗ as in Ax⃗ = b⃗. By multiplying A−1 into
both sides of Ax⃗ = b⃗, we end up with

A−1Ax⃗ = A−1⃗b ,

effectively ‘solving’ for the vector x⃗:

x⃗ = A−1⃗b (1.14)

3.2 Formula

To come up with a formula for the inverse of A, con-
sider another matrix B defined from the components
Ajk such that

Bjk = (−1)
j+k

Mkj , (1.15)

where Mkj are the matrix minors of A. As innocent
as it looks, (1.15) is quite ‘computationally expen-
sive’, which means as N grows, it requires preposter-
ous efforts to calculate the B-matrix by hand.

To proceed, calculate the product AB by matrix
multiplication. Starting with the formula for matrix
multiplication, and replacing the components of B
using (1.15), we find

(AB)mn =

N∑
k=1

AmkBkn =

N∑
k=1

Amk (−1)
k+n

Mnk .

In the case m = n, the above reduces to the formula
for the determinant of A, namely (1.12). Any other
case m ̸= n causes the right side to resolve to zero:

(AB)mn =

{
detA m = n

0 m ̸= n

In symbolic terms, the above reads

AB = (detA) I ,

where by comparison to (1.13), suggests the combi-
nation B/ detA is equal to the inverse of A:

A−1 =
1

detA
B (1.16)

3.3 Products

The inverse of the product of two matrices is equal
to the product of the individual inverses in reversed
order:

(AB)
−1

= B−1A−1 (1.17)

3.4 Cramer’s Rule Derived

For a linear system of N dimensions, we start with
the dichotomy

Ax⃗ = b⃗

x⃗ = A−1⃗b ,

where accounting for (1.16), the ‘solution’ vector x⃗ is
written

x⃗ =
1

detA
Bb⃗ ,

or using index notation,

xj =
1

detA

N∑
k=1

Bjkbk =
1

detA

N∑
k=1

(−1)
j+k

Mkjbk .

The product Mkjbk has the k, j indices in ‘reverse’

order, in the sense that the calculation Mb⃗ does not
represent this situation. Instead, the sum constitutes
the determinant of a matrix modified from A such
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that the kth column is replaced by b⃗. If this situa-
tion sounds familiar, it precisely describes the matrix
introduced as equation (1.8)

Cj =


A11 A12 · · · b1j · · · A1N

A21 A22 · · · b2j · · · A2N

A31 A32 · · · b3j · · · A3N

· · · · · · · · · · · · · · · · · ·
AN1 AN2 · · · bNj · · · ANN

 ,

and the above reduces to Cramer’s rule (1.7) for the
soltuion of the system:

xj =
detCj

detA
j = 1, 2, 3, . . . , N

3.5 Two Dimensions

Consider the two-dimensional matrix

A =

[
A11 A12

A21 A22

]
whose determinant is given by (1.2). To calculate
the inverse, begin with the B matrix given by (1.15),
coming out to

B =

[
A22 −A12

−A21 A11

]
.

Then, by the inverse formula (1.16), the inverse of
the 2× 2 matrix reads:

A−1 =
1

A11A22 −A12A21

[
A22 −A12

−A21 A11

]
(1.18)

3.6 Three Dimensions

The three-dimensional matrix with

A =

A11 A12 A13

A21 A22 A23

A31 A32 A33


has a total of nine minors Mjk, readily readable from
A. Constructing the matrix B using

Bjk = (−1)
j+k

Mkj ,

we find

B11 = (−1)
2
(A22A33 −A32A23)

B12 = (−1)
3
(A12A33 −A32A13)

B13 = (−1)
4
(A12A23 −A22A13)

B21 = (−1)
3
(A21A33 −A31A23)

B22 = (−1)
4
(A11A33 −A31A13)

B23 = (−1)
5
(A11A23 −A21A13)

B31 = (−1)
4
(A21A32 −A31A22)

B32 = (−1)
5
(A11A32 −A31A12)

B33 = (−1)
6
(A11A22 −A21A12) ,

In matrix form, the above reads:

B =

 (A22A33 −A32A23) − (A12A33 −A32A13) (A12A23 −A22A13)
− (A21A33 −A31A23) (A11A33 −A31A13) − (A11A23 −A21A13)
(A21A32 −A31A22) − (A11A32 −A31A12) (A11A22 −A21A12)


With the matrix B fully specified in terms of A, the inverse A−1 is given by (1.16), namely

A−1 =
1

detA
B .

Note that detA was already calculated as equation (1.10).

4 Special Matrices

4.1 Transpose and Symmetry

Transpose Matrix

Given a matrix A, there always exists the transpose
of A, which swaps all rows for columns and vice versa.
The transpose of a matrix A is denoted AT , particu-

larly

AT
jk = Akj . (1.19)
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Symmetric Matrix

A square matrix is said to be symmetric if the original
matrix A is equal to the transposed matrix AT :

A = AT (1.20)

Ajk = Akj

Anti-symmetric Matrix

A square matrix is said to be anti-symmetric if the
original matrix A is equal to the negative transposed
matrix AT :

A = −AT (1.21)

Ajk = −Akj

This is sometimes known as skew-symmetric.

Orthogonal Matrix

A square matrix A whose transpose AT is equal to
the inverse A−1 is called an orthogonal matrix :

AT = A−1 (1.22)

4.2 Role of Row Operations

A general M ×N matrix

A =


A11 A12 · · · A1N

A21 A22 · · · A2N

· · · · · · · · · · · ·
AM1 AM2 · · · AMN


can be reduced by any operations E, M , R to produce
a different matrix A′ that contains the same informa-
tion or similar information to A. This process can be
applied sequentially to achieve various matrix forms
cataloged below.

4.3 Triangular Forms

Square matrices with M = N admit two special re-
duced forms called triangular forms.

Upper Triangular Form

If (by row operations or otherwise) a square matrix
has Ajk = 0 when j > k, the form is called upper
triangular :

A =


A11 A12 · · · A1n

0 A22 · · · A2n

0 0 · · · · · ·
0 0 0 Ann

 (1.23)

Lower Triangular Form

If a square matrix has Ajk = 0 when j < k, the form
is called lower triangular :

A =


A11 0 0 0
A21 A22 0 0
· · · · · · · · · 0
An1 An2 · · · Ann

 (1.24)

4.4 Diagonal Form

If a square matrix has Ajk = 0 when j ̸= k, the form
is called diagonal :

A =


A11 0 0 0
0 A22 0 0
0 0 · · · 0
0 0 0 Ann

 (1.25)

For any triangular or diagonal matrix A, the de-
terminant is equal to the product of its diagonal en-
tries:

detA = A11A22 · · ·ANN =

N∏
j=1

Ajj

4.5 Augmented Matrix

For linear systems characterized by Ax⃗ = b⃗, where A
is an M ×N matrix, we can construct the augmented
matrix by appending the components of b⃗ as an extra
column:

A|b =


A11 A12 · · · A1N b1
A21 A22 · · · A2N b2
· · · · · · · · · · · · · · ·
AM1 AM2 · · · AMN bM

 (1.26)

In the general case, b⃗ can be replaced with any matrix
with M rows.

4.6 Row-Reduced Echelon Form

If (by any means) the a square matrix and a vector
x⃗ can be written as

I|x =


1 0 · · · 0 x1

0 1 · · · 0 x2

· · · · · · · · · · · · · · ·
0 0 · · · 1 xN

 , (1.27)

this is called the row-reduced echelon form.
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5 Elimination

5.1 Linear Systems

Consider an N -dimensional linear system Ax⃗ = b⃗,
represented by the M = N -case of (1.5):

A11x1 +A12x2 +A13x3 + · · ·+A1NxN = b1

A21x1 +A22x2 +A23x3 + · · ·+A2NxN = b2

A31x1 +A32x2 +A33x3 + · · ·+A3NxN = b3

. . .

AN1x1 +AN2x2 +AN3x3 + · · ·+ANNxN = bN

Equivalently, the above is represented by an aug-
mented matrix A|b of the form (1.26). Next, imagine
having done all of the hard work to solve the system

x1 + 0 + 0 + · · ·+ 0 = x1

0 + x2 + 0 + · · ·+ 0 = x2

0 + 0 + x3 + · · ·+ 0 = x3

. . .

0 + 0 + 0 + · · ·+ xN = xN ,

which appears like a tautological thing to write, but
is in fact the row-reduced echelon form, I|x cataloged
as equation (1.27). Written this way, the solutions xj

to the system are readily exportable as the right side
of each equation.

The natural question is, how can we start with
A|b and somehow end up with with I|x using matrix
trickery? The answer is called elimination, which is
a sequence of row operations E, M , R that we carry
out on the augmented matrix A|b to bring it the form
I|x. Representing the exact sequence of row opera-
tions as one ‘operator’ Õ (E,M,R) or simply Õ, one
writes

Õ (A|b) = I|x . (1.28)

One may think of Õ as a sequential list of procedures
to carry out on A|b, much as a program receives input
and returns output.

Example

Consider a linear system represented by the augmented matrix

A|b =

1 1 1 5
2 3 5 8
4 0 5 2

 .

Denoting the rows of A|b as Rj , the first three operations may go as follows: (i) Subtract 2R1 from R2. (ii)
Subtract 4R1 from R3. (iii) Add 4R2 to R3.

A|b (i)−→

1 1 1 5
0 1 3 −2
4 0 5 2

 (ii)−−→

1 1 1 5
0 1 3 −2
0 −4 1 −18

 (iii)−−→

1 1 1 5
0 1 3 −2
0 0 13 −26


Note the new matrix has zeros down and left of the diagonal, i.e. upper triangular form. Don’t stop here
though: (iv) Divide R3 by 13 and subtract 3R3 from R2. (v) Subtract R3 from R1. (vi) Subtract R2 from
R1.

(iv)−−→

1 1 1 5
0 1 0 4
0 0 1 −2

 (v)−−→

1 1 0 7
0 1 0 4
0 0 1 −2

 (vi)−−→

1 0 0 3
0 1 0 4
0 0 1 −2

 = I|x

Elimination halts when the ‘matrix part’ of the
above reduces to the identity. Reading off the right-
hand column, we see the solution to the system of
equations is

x1 = 3

x2 = 4

x3 = −2 .

Reconciling what just happened with equation (1.28),
we see the operator Õ is comprised of steps (i)-(vi),
each being one particular E, M , R operation.

5.2 Matrix Inverse

Looking again at Equation (1.28), note that the se-

quence of row operations Õ applies to A and b⃗ sepa-
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rately:

ÕA = I

Õb⃗ = x⃗

While Õ is not established as a matrix, it does pre-
cisely same job as A−1, and must contain the same
information as A−1. As a point of comparison, note
the similarity between the above versus familiar rela-
tions

A−1A = I

A−1⃗b = x⃗ .

Going with the hunch that Õ can be treated as an
operator that obeys the associativity rule of matrix
multiplication, we would be able to do the following:

ÕA = I(
ÕA

)
A−1 = IA−1

Õ
(
AA−1

)
= A−1

ÕI = A−1

Once again, we see the sequence Õ is doing the same
job as A−1. Rounding up the circumstancial evi-
dence, we see the set of steps Õ that carries A → I
is the same set of steps that carries I → A−1. In the
language of augmented matrices, this is summarized
by

Õ (A|I) = I|A−1 . (1.29)

This conspiracy of mathematics is otherwise known
as Gauss-Jordan elimination.

Two Dimensions

Demonstrating on a 2× 2 matrix, begin with A|I as

A|I =

[
A11 A12 1 0
A21 A22 0 1

]
,

and perform row operations until form I|A−1 is at-
tained. In brief detail, the augmented matrix devel-
ops as:

A|I →
[
A12A21 −A22A11 0 −A22 A21

A21 A22 0 1

]
A|I → 1

detA

[
1 0 −A22 A21

0 1 −A21 A11

]
The final result is none other than (1.18), the formula
for the inverse of a 2× 2 square matrix:

A−1 =
1

A11A22 −A12A21

[
A22 −A12

−A21 A11

]

6 Eigenvectors and Eigenvalues

An important situation that arises in mathematics
and physics is the so-called eigenvalue problem

Au⃗ = λu⃗ . (1.30)

The matrix A is taken to be square and N -
dimensional. The vectors u⃗(j) that satisfy (1.30) are
called eigenvectors, and the corresponding scalar λ(j)

is called an eigenvalue.

6.1 Calculating Eigenvalues

The eivenvalue problem (1.30) can be equivalently
framed as

(A− λI) u⃗ = 0 , (1.31)

where I is the identity matrix to match the dimension
of A.

Two Dimensions

Taking a two-dimensional case as an example, we
have

A− λI =

[
A11 − λ A12

A21 A22 − λ

]
,

which, as a set of equations, looks like

(A11 − λ)x1 = −A12x2

(A22 − λ)x2 = −A12x1

Multiply the pair of equations and cancel the product
x1x2 to get

(A11 − λ) (A22 − λ)−A12A21 = 0 . (1.32)

The only unknown in the equation is λ, which can be
isolated using the quadratic formula:

λ± =
A11 +A22

2
± 1

2

√
(A11 −A22)

2
+ 4A12A21

(1.33)
Note there are two solutions for λ, which we label λ+,
and λ−, respectively.

6.2 Characteristic Equation

When confronted with the eigenvalue problem (1.31),
the first order of business, usually, is to calculate the
eigenvalues λ. As we’ve seen for the two-dimensional
case, this process boiled down to equation (1.32).
Pausing on this result for a moment, note that a
quicker way to get there is to write

det (A− λI) = 0 , (1.34)

which is in fact true in any number of dimensions.
Equation (1.34) is called the characteristic equation
of the system.
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Characteristic Polynomial

The characteristic equation always ‘simplifies’ to the
characteristic polynomial, a single equation embed-
ding λ:

PN (λ) = C0+C1λ+C2λ
2+ · · ·+CNλN = 0 (1.35)

The characteristic polynomial is suggestive of the fun-
damental theorem of algebra, stating that there are
exactly N (complex) roots of a polynomial of degree
N .

6.3 Calculating Eigenvectors

Once the eigenvalues λ are known, the components
of each eigenvector u⃗ are readily calculated directly
from

Au⃗(j) = λj u⃗
(j)

j = 1, 2, 3, . . . , N .

Two Dimensions

Developing the eigenvalue problem in two dimen-
sions, there are two eigenvalues λ± given by (1.33),
and let us label the two corresponding eigenvectors
u⃗, v⃗ such that

Au⃗ = λ+u⃗

Av⃗ = λ−v⃗ .

Working with the left equation first, it expands into
two equations

A11u1 +A12u2 = λ+u1

A12u1 +A22u2 = λ+u2 ,

which gives us two ways to solve for the ratio u1/u2:

u1

u2
=

−A12

A11 − λ+
(1.36)

u1

u2
=

− (A22 − λ+)

A21

As a sanity check, we may eliminate the ratio u1/u2

and recover the characteristic equation (1.32). A sim-
ilar set of steps isolates the ratio v1/v2 for the second
eigenvalue/eigenvector

v1
v2

=
−A12

A11 − λ−
(1.37)

v1
v2

=
− (A22 − λ−)

A21
, (1.38)

which also combine to reproduce the characteristic
equation, so we’re on the right track.

Symmetric Matrix

Suppose the matrix A is given as

A =

[
a b
b a

]
.

The eigenvalues of A are given by (1.33), and simplify
very nicely:

λ± = a± b

Denoting the respective eigenvectors u⃗, v⃗, we apply
(1.36) directly to find

u1

u2
=

−b

−b
= 1 .

Meanwhile, (1.37) similarly tells us

v1
v2

=
−b

b
= −1 ,

and we’re done. Evidently, the two eigenvectors are

u⃗ = ⟨1, 1⟩
v⃗ = ⟨1,−1⟩ ,

or in normalized form,

û =
1√
2
⟨1, 1⟩

v̂ =
1√
2
⟨1,−1⟩ .

Hermitian Matrix

For the Hermitian matrix

A =

[
a −ib
ib a

]
,

the characteristic equation is

(a− λ) + i2b2 = 0 ,

or
λ± = a∓ b .

Despite having complex components, the eigenvalues
are real-valued.

Complex Eigenvalues

Modifying the above example, consider

A =

[
a b
−b a

]
.

Following the same steps, we find the eigenvalues to
be complex:

λ± = a± ib
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This is no hindrance, however. The complexity passes
to the eigenvectors, which turn out to be:

û =
1√
2
⟨1, i⟩

v̂ =
1√
2
⟨1,−i⟩

7 Diagonalization

For the eigenvalue problem (1.30)

Au⃗ = λu⃗

of dimension N , suppose we already have the list of
N eigenvalues λ and N eigenvectors u⃗.

7.1 Modal Matrix

It’s instructive to condense all of the eigenvector in-
formation into a new object called the modal matrix,
denoted C, whose jth column is comprised of the
components of the jth eigenvector:

C =


u
(1)
1 u

(2)
1 · · · u

(N)
1

u
(1)
2 u

(2)
2 · · · u

(N)
2

· · · · · · · · · · · ·
u
(1)
N u

(2)
N · · · u

(N)
N

 (1.39)

=
[
u⃗(1) u⃗(2) · · · u⃗(N)

]
Then, the matrix product AC can be written

AC =
[
λ1u⃗

(1) λ2u⃗
(2) · · · λN u⃗(N)

]
=


λ1u

(1)
1 λ2u

(2)
1 · · · λNu

(N)
1

λ1u
(1)
2 λ2u

(2)
2 · · · λNu

(N)
2

· · · · · · · · · · · ·
λ1u

(1)
N λ2u

(2)
N · · · λNu

(N)
N

 .

7.2 Diagonal Matrix

The product AC, especially in matrix form, looks like
the product of C with another, much simpler ma-
trix. Consider a diagonal matrix Λ (Greek uppercase
lambda) whose off-diagonal entries are all zero, and
the eigenvalues occupy the diagonal:

Λ =


λ1 0 · · · 0
0 λ2 · · · 0
· · · · · · · · · · · ·
0 0 · · · λN

 (1.40)

Indeed, the right result of AC is reproduced by the
product CΛ, meaning the matrix products are equal:

AC = CΛ

Supposing the inverse of C can be attained, the di-
agonal matrix Λ can be isolated:

Λ = C−1AC (1.41)

The process of attaining Λ is called the diagonaliza-
tion of the matrix A. If the columns of C happen to
form an orthonormal basis, the inverse matrix C−1

may be replaced with its transpose CT .

7.3 Eigenvectors as a Basis

It is no coincidence that a system of N dimensions
has N eigenvectors. It makes sense to wonder if an
arbitrary linear combination can be expressed via the
change-of-basis formula for vectors.

V⃗ =
N∑
j=1

Vj êj
?−→ (V⃗ )′ =

N∑
j=1

V ′
j û(j)

In the above, the eigenvectors are assumed to be nor-
malized (unit magnitude), which is always possible
for nonzero vectors. However, we are not to assume
that the eigenvectors

{
û(j)

}
form an orthogonal ba-

sis. That is, it’s not always the case that any two
eigenvectors are orthogonal.

Hermitian Matrix

Consider two solutions to the eigenvalue problem
(1.30),

Au⃗(j) = λj u⃗
(j)

Au⃗(k) = λku⃗
(k) ,

and multiply u⃗(k), u⃗(j), onto the left and right sides
respectively into each:

u⃗(k) ·Au⃗(j) = λj u⃗
(k) · u⃗(j)

Au⃗(k) · u⃗(j) = λku⃗
(k) · u⃗(j)

Looking at the left side of each equation, it appears
as if

u⃗(k) ·Au⃗(j) = Au⃗(k) · u⃗(j) (1.42)

wants to be true, but simply isn’t in the general case.
The special that satisfies (1.42) is called a Hermitian
matrix.

Non-equal Eigenvalues

Pursuing the case where A is Hermitian, the above
condenses to:

λj u⃗
(k) · u⃗(j) = λku⃗

(k) · u⃗(j)
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Now, if we assume that λj ̸= λk, the only way to
reconcile this result is that non-equal eigenvectors of
a Hermitian matrix are orthogonal :

u⃗(k) · u⃗(j) = 0

Just as importantly, this reinforces that the eigenvec-
tors of a non-Hermitian matrix may not be orthogo-
nal.

Equal Eigenvalues

If m of the N eigenvalues are equal, one speaks of
m-fold degeneracy. In this case, the corresponding
eigenvectors form a vector subspace of the original
vector space that might admit its own orthonormal
basis.

8 Degenerate Systems

Concerning the eigenvalue problem (1.30)

Au⃗ = λu⃗ ,

it could turn out that two eigenvalues λj , λk are
equal, in which case we may be able to construct
N unique eigenvectors u⃗(j), but not always. Specifi-
cally, for each repeated eigenvalue λj of multiplicity
mj , there must be mj linearly independent eigenvec-
tors. The ability to successfully do this depends on
the system on hand.

8.1 Dead-end Case

Consider the matrix

A =

−2 0 1
1 1 0
0 0 −2

 ,

having a characteristic polynomial

(−2− λ) (1− λ) (−2− λ) = 0 .

Evidently we find three eigenvalues, with two identi-
cal:

λ1 = 1

λ2 = −2

λ3 = −2

Handling the easy case first, the eigenvector corre-
sponding to λ1 is calculated from Au⃗ = 1u⃗, resulting
in

u⃗(1) =

01
0

 .

Proceeding to the repeated eigenvalue case, we
solve Au⃗ = −2u⃗ to get a single eigenvector

u⃗(2,3) =
1√
10

−3
1
0

 .

Note that u⃗(1) is linearly independent from u⃗(2,3), but
not orthogonal. Since there is no obvious way to ‘peel
apart’ the eigenvectors u⃗(2,3), the show stops here.
The matrix A cannot be diagonalized.

8.2 Salvageable Case

Consider the matrix

A =

 5 −4 4
12 −11 12
4 −4 5

 ,

having a characteristic polynomial

0 = λ3 + λ2 − 5λ+ 3 ,

which factors into

0 = (λ− 1) (λ− 1) (λ+ 3) .

We have three eigenvalues, with two identical:

λ1 = 1

λ2 = 1

λ3 = −3

Handling the easy case first, the eigenvector corre-
sponding to λ3 is calculated from Au⃗ = −3u⃗, leading
to the relations

2u1 − u2 + u3 = 0

u1 − u2 + 2u3 = 0

3u1 − 2u2 + 3u3 = 0 ,

telling us the corresponding eigenvector is

u⃗(3) =
1√
11

13
1

 ,

or any multiple.
Proceeding to the repeated eigenvalue case, we

solve Au⃗ = u⃗ to generate three copies of

u1 − u2 + u3 = 0 .

With one equation and three unknowns, we may
choose any two values to be arbitrary. For instance,
we may choose u1 = 1 with u2 = 0, causing u3 = −1.
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We then construct an eigenvector from these num-
bers:

u⃗(1) =
1√
2

 1
0
−1


On the other hand, we may choose u1 = 0, u2 = 1,
causing u3 = 1, to create another eigenvector, lin-
early independent from the others:

u⃗(2) =
1√
2

01
1


With three eigenvectors in hand, a modal matrix

can be defined such that

C =

 1 0 1
0 1 3
−1 1 1

 ,

allowing the matrix A to be diagonalized using Λ =
C−1AC.

8.3 Normalizable Case

Consider the matrix

A =

 1 0
√
2

0 2 0√
2 0 0

 ,

having a characteristic polynomial

0 = (2− λ)
(
−λ2 + λ+ 2

)
,

indicating three eigenvalues, with two identical:

λ1 = 2

λ2 = 2

λ3 = −1

Handling the easy case first, the eigenvector corre-
sponding to λ3 is calculated from Ax⃗ = −x⃗, leading
to

u⃗(3) =
1√
3

 1
0

−
√
2

 .

Proceeding to the repeated eigenvalue case, we
solve Au⃗ = 2u⃗ to get a single eigenvector

u⃗(1,2) =
1√

3α2/2 + β2

 α
β

α/
√
2

 ,

for two arbitrary constants α, β. The aim here is to
tease two mutually orthogonal eigenvectors from the
above, which means to require

u⃗(1) · u⃗(2) = 0 .

This amounts to finding pairs of αj , βj that satisfy

3

2
α1α2 + β1β2 = 0 .

Choosing α1 = 0 begins a fast avalanche that requires
β1 = 1, and also β2 = 0, with α2 remaining arbitrary.
The remaining eigenvectors therefore read

u⃗(1) =

01
0


u⃗(2) =

1√
3/2

 1
0

1/
√
2

 =

√2/3
0

1/
√
3

 .

With three eigenvectors in hand, a modal matrix
can be defined such that

C =

 1 0
√

2/3
0 1 0

−
√
2 0 1/

√
3

 ,

allowing the matrix A to be diagonalized via Λ =
C−1AC. However, since the set of eigenvectors{
u⃗(j)

}
form an orthonormal basis, we may further

simplify the above using C−1 = CT .
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