
Iterative Methods

MANUSCRIPT

William F. Barnes
1

March 6, 2024

1Copyright © 2014-2024 by William F. Barnes. All rights reserved. Unauthorized retention, duplication, distri-
bution, or modification is not permitted.

2

Contents

1 Iterative Methods 3
1 Matrix Tools 3

1.1 Linear Systems Review 3
1.2 Pseudocode 4
1.3 Augmenting 4
1.4 Matrix Multiplication 4
1.5 Sub-Matrix 5

1.6 Determinant 5
1.7 Inverse Matrix 5
1.8 Augmented Upper Triangular . 6
1.9 Augmented Lower Triangular . 6
1.10 RREF Matrix 6

2 Approximating Integrals 6
2.1 Riemann Sums 6
2.2 Simpson’s Rule 7

3 Regression Analysis 8
3.1 Linear Fit 9
3.2 Exponential Fit 9
3.3 Polynomial Fit 9

4 Interpolation 10
4.1 Rectangle Approximation . . . 10
4.2 Connect the Dots 10
4.3 Quadratic Interpolation 10
4.4 Three Roads Problem 11
4.5 Spline 13

5 Newton’s Method 15

Chapter 1

Iterative Methods

1 Matrix Tools

1.1 Linear Systems Review

The linear system Ax⃗ = b⃗ is ubiquitous in multi-
variate systems, and rears its face in a majority of
numerical analysis applications.

We’ll restrict analysis to systems that are can ac-
tually be solved, which is to say the system is deter-
mined by n equations and n unknowns, corresponding
to a square matrix A with n rows and n columns.

Calculating the Inverse

Often, we’re interested in ‘solving’ for x⃗, which re-
quires having the inverse of A, namely A−1 such that(

A−1A
)
x⃗ = x⃗ = A−1⃗b .

Pursuing a popular technique, define the sub-
matrix Sjk that removes the jth row and the kth

column from the original matrix A. (The width and
height of S are each one less than those of A.) Define
the matrix minor Mjk as the determinant of Sjk.

Also, let there be another matrix B that relates
to A via

Bjk = (−1)
j+k

Mkj .

That is, the jkth component of the matrix B is equal
to a constant times the entire determinant of the Skj

sub-matrix.
The reason for defining B this way is that the

product AB equals the determinant of A multiplied
by the identity matrix:

AB = (detA) I

Multiply A−1 into each side to find a tight formula
for the inverse:

A−1 =
1

detA
B

Calculating the RREF

A second way for determining the components xj in-
volves the augmented matrix

A|b =

A11 A12 A13 · · · A1n b1
A21 A22 A23 · · · A2n b2
A31 A32 A33 · · · A3n b3
· · · · · · · · · · · · · · · · · ·
An1 An2 An3 · · · Ann bn

 ,

which ‘tacks on’ the vector b⃗ to the right side of A so
the final object has n rows and n+ 1 columns.

The augmented matrix permits three row opera-
tions: (i) exchange of two rows, (ii) multiply a row by

3

4 CHAPTER 1. ITERATIVE METHODS

a scalar, (iii) replace a row by the sum of itself and
another row.

Using row operations, it’s possible to bring the
augmented matrix A|b into upper triangular form:

A|b =

A11 A12 A13 · · · A1n b1
0 A22 A23 · · · A2n b2
0 0 A33 · · · A3n b3
0 0 0 · · · · · · · · ·
0 0 0 0 Ann bn

Keep in mind the components Ajk, bj are not the
same between t.he original and its transformed ver-
sion.

Starting with the upper triangular form, a the
matrix A is reduced again by similar steps to bring
about the lower triangular form. This reduces A to
having only diagonal entries:

A|b =

A11 0 0 0 0 b1
0 A22 0 0 0 b2
0 0 A33 0 0 b3
0 0 0 · · · 0 · · ·
0 0 0 0 Ann bn

Finally, attain the row-reduced echelon form by nor-
malizing the jth row by Ajj to arrive at the form I|x,
where I is the identity matrix.

To summarize, the process

A|b → I|x

exposes the components of x⃗ as the right-most col-
umn of the augmented matrix I|x. This, of course, is
Gaussian elimination.

Gauss-Jordan Elimination

Remarkably, row operations can also be used to cal-
culate the inverse of a matrix. For an n × n matrix
A, it turns out that the augmented matrix A|I, hav-
ing n rows and 2n columns, may undergo the same
treatment as A|b. That is, perform row operations to
attain the transformation:

A|I → I|A−1

This is Gauss-Jordan elimination.

1.2 Pseudocode

One type of notation we’ll employ here is pseudocode,
which attempts to bridge a computer algorithm to
human readability.

Pseudocode is read sequentially (top to bottom),
paying particular mind to variables, conditions, and

so on, in order to understand what a computer would
do if the code were implemented in a proper language.
Instructions that are indented are contained in a func-
tion, loop, or conditional. Instructions that end with
an underscore () are continued to the next line.

For example, the contents of a matrix A can be
replaced by the contents of another matrix B by the
following pseudocode:

Requires matrix B

Returns matrix A

function Equate(B)

for each j in rows of B

for each k in columns of B

A(j, k) = B(j, k)

return A

This process requires matrices A and B to be of
the same dimension. Note how the ‘inner’ loop goes
over the columns of B and the ‘outer’ loop goes by
row, which is analogous to reading text on a page.
Of course, there are many more ways to replace the
j, kth component of matrix B, such as running the
loops backwards.

1.3 Augmenting

For two matrices A and B having the same number of
rows but no restriction of the number of columns, the
augmented matrix A|B is attained by the following:

Requires A, B (same no. of rows)

Returns AB

function Augment(A, B)

r = rows in A or B

c1 = number of columns in A

c2 = number of columns in B

for j from 1 to r

for k from 1 to c1

AB(j, k) = A(j, k)

for k from 1 to c2

AB(j, k + c1) = B(j, k)

return AB

1.4 Matrix Multiplication

A matrix A having J rows and N columns multiplies
into another matrix B with N rows and K columns
to give a new matrix C with J rows and K columns.
The jkth component of the resulting matrix is given

1. MATRIX TOOLS 5

by:

Cjk =

N∑
n=1

AjnBnk

Of course, there are j × k calculations like this to
do, which is a dauntless endeavor for a computer. As
pseudocode, the whole matrix C is can calculated by:

Requires A size J*N

Requires B size N*K

Returns C size JK

function Multiply(A, B)

for each j in rows of A

for each k in columns of B

for each n in columns of A

C(j, k) = C(j, k) _

+ A(j, n) * B(n, k)

return C

1.5 Sub-Matrix

For a matrix A, the sub-matrix Sjk that removes the
jth row and kth column is established by the follow-
ing.

Requires matrix A size J*K

Requires Row j, Column k

Returns matrix S size (J-1)(K-1)

function SubMatrix(A, j, k)

x = 0

for each u in rows of A

if (u <> j)

y += 1

x = 0

for each v in columns of A

if (v <> k)

x += 1

S(x, y) = A(u, v)

return S

1.6 Determinant

For the square matrix

A =

[
A11 A12

A21 A22

]
,

the determinant of A is

detA = A11A22 −A12A21 .

The most trivial matrix has A = A11, in which case
detA = A11.

For an n×n matrix, the determinant can be writ-
ten from a recursive equation:

detA =

n∑
j≤n
k=1

(−1)
j+k

AjkMjk

Recall that Mjk is the determinant of the matrix mi-
nor Sjk, hence the recursive nature of the above.

The matrix determinant calculation is represented
in the pseudocode below. Importantly, note that cer-
tain environments have trouble making perfect sense
of (−1)

j+k
. For this, the instruction if (k MOD 2)

= 0 is used instead to achieve the same ends, where
MOD is the ‘modulus’ operator.

Requires matrix A size n^2

Returns Det(A)

function Determinant(A)

n = side(A)

if n = 1: det = A(1, 1)

if n = 2: det = A(1, 1) * A(2, 2) _

- A(1, 2) * A(2, 1)

if n > 2

define matrix S size (n-1)x(n-1)

for k from 1 to n

S = SubMatrix(A, 1, k)

m = Det(S)

if (k MOD 2) = 0

m = -m

det = det + A(1, k) * m

return det

1.7 Inverse Matrix

For an invertible matrix A, recall that the inverse
A−1 is calculated by

A−1 =
1

detA
B ,

where the components of B depend on the sub-matrix
minors Mkj as detailed above.

The pseudocode below steps through the inverse
calculation and stores the result as Inv. Take note of
the MOD operator performing a similar role as it does
in the determinant calculation.

6 CHAPTER 1. ITERATIVE METHODS

Requires matrix A size n^2

Returns inverse of A

function Inverse(A)

define matrix S size (n-1)x(n-1)

detA = Determinant(A) # nonzero

for each j in rows of A

for each k in columns of A

S = Submatrix(A, j, k)

m = Determinant(S)

if ((j + k) MOD 2) = 1

m = -1 * m

Inv(j, k) = m / detA

return Inv

1.8 Augmented Upper Triangular

The augmented matrix A|b with n rows and n + 1
columns can be reduced to the upper triangular form
(same dimensions) by the pseudocode below.

Requires Ab size n*m

Returns upper triangular

function UT(Ab)

n = number of rows in Ab

m = number of columns in Ab

for j from 1 to n

for k from (j+1) to n

f = Ab(k, j) / Ab(j, j)

for p from 1 to m

Ab(k, p) = Ab(k, p) _

- f * Ab(j, p)

return Ab

For a bonus, this method also works for the A|I →
I → A−1 system with n rows and 2n columns. The
structures b and I are interchangeable.

1.9 Augmented Lower Triangular

Modifying the previous example with surgical edits
to the loop limits and step direction give a way to
compute the lower triangular form of A|b or A|I:

Requires Ab size n*m

Returns lower triangular

function LT(Ab)

n = number of rows in Ab

m = number of columns in Ab

for j from n to 2 step -1

for k from (j-1) to 1 step -1

f = Ab(k, j) / Ab(j, j)

for p from 1 to m

Ab(k, p) = Ab(k, p) _

- f * Ab(j, p)

return Ab

Note that in the pursuit of A|I → I|A−1, the up-
per triangular and lower triangular calculations can
be done in any order.

1.10 RREF Matrix

The augmented system A|B can be wrestled into
RREF format by the pseudocode that follows:

Requires Ab size n*m

Returns R(REF)

function RREF(AB)

n = number of rows in AB

m = number of columns in AB

rref = LT(UT(AB))

Normalize:

for j from 1 to n

for k from n + 1 to m

R(j, k) = R(j, k) / R(j, j)

R(j, j) = R(j, j) / R(j, j) # = 1

return rref

2 Approximating Integrals

2.1 Riemann Sums

The predecessor to the notion of the integral and the
fundamental theorem of calculus is the Riemann sum,
which relates the endpoint values of a function f (x)
to a sum over the function’s slope by

f (xn)− f (x0) ≈ S =

n−1∑
j=0

f ′ (x∗
j

)
∆x ,

where

∆x =
xn − x0

n
,

2. APPROXIMATING INTEGRALS 7

and x∗
j is any x-value within [xj , xj+1], and

xj = x0 + j∆x .

The dimensionless integer j is the index, and n is the
total number of bins in the sum.

Since there is freedom in how x∗
j is chosen, there

are three standard methods called the left sum, right
sum, and midpoint sum:

x∗
j =

xj Left sum

xj+1 Right sum

(xj + xj+1) /2 Midpoint sum

Denoting SLeft, SRight as the left and right sums re-
spectively, the average of these yields the trapezoid
rule:

STrap =
1

2
(SLeft + SRight)

Of course, all Riemann sums are the same in the
continuous limit, which is why the integral need not
concern over left, right, mid, etc.

2.2 Simpson’s Rule

For approximating the area under a function f (x),
an improvement over straight-line methods uses a
quadratic function to estimate f (x) at each step,
known as Simpson’s rule. To get started, propose
a quadratic form

g (x) = Ax2 +Bx+ C ,

where the coefficients A, B, C depend on f (x) in the
neighborhood of x.

Now consider a point xj somewhere in the region
and write the definite integral∫ xj+h

xj−h

f (x) dx ≈
∫ xj+h

xj−h

g (x) dx = I (h) .

Without filling in the details yet, the result of such
an integral is written I (h), where 2h is the width of
the integration domain. Substituting g (x) into the
above and turning the crank gives the form

I (h) =
2h

3

(
A
(
3x2

j + h2
)
+ 3Bxj + 3C

)
.

Meanwhile, examine a new quantity

J (h) = g (xj − h) + 4g (xj) + g (xj + h) ,

which, after substituting g (x), becomes

J (h) =
3

h
I (h) .

Evidently, the integral I (h) is the same as the sum
J (h) up to a factor 3/h:

∫ xj+h

xj−h

f (x) dx ≈
∫ xj+h

xj−h

g (x) dx

=
h

3
(g (xj − h) + 4g (xj) + g (xj + h))

Of course, this result only works in the neighborhood
on a given xj .

To apply this over a macroscopic interval, sum
over all xj in steps 2h, and let f (x) replace the func-
tion being evaluated. The integration region is given
by

b− a

n
= 2h ,

where a, b are the lower and upper limits, and n is
the number of bins. The effective bin width is 2h. In
order to have x0 − h = a and xn−1 + h = b, the xj

are located via

xj = (a+ h) +
j

n
(b− a)

xj = (a+ h) + j (2h) .

Assimilating these changes, the approximation
becomes

∫ b

a

f (x) dx ≈ (1.1)

n−1∑
j=0

h

3
(f (xj − h) + 4f (xj) + f (xj + h)) ,

which we may take as a final answer.

Pseudocode

As pseudocode, the Equation (1.1) can be imple-
mented shown in the box that follows. The area being
approximated is under the function f (x) = 4x − x2

in the region 0 ≤ x ≤ 4 using 15 bins. Lines of code
that are indented by two spaces are ‘looped over’.

8 CHAPTER 1. ITERATIVE METHODS

f(x) = 4 * x - x * x

a = 0 # lower limit

b = 4 # upper limit

n = 15 # bins

h = (b - a) / (2 * n)

Initialize other variables to zero.

for j from 0 to n - 1

xj = (a + h) + j * (2 * h)

f1 = f(xj - h)

f2 = f(xj)

f3 = f(xj + h)

simp += (h / 3) * (f1 + 4 * f2 + f3)

The approximation to the integral is held in the
simp variable. If the above pseudocode were imple-
mented in a suitable computation environment, one
would find:

simp = 10.666666666666666

This result is indistinguishable from the exact an-
swer to standard computation precision:∫ 4

0

(
4x− x2

)
=

32

3
= 10.6666

Weighted Average Identity

Starting with Equation (1.1), for Simpson’s rule iden-
tify 2h = ∆x and keep simplifying:∫ b

a

f (x) dx ≈

1

6

n−1∑
j=0

(
f

(
xj −

∆x

2

)
+ f

(
xj +

∆x

2

))
∆x

1

6

n−1∑
j=0

4f (xj)∆x .

The sum has been broken in two parts. The first
consists of the left sum SL and right sum SR rules
added together, which is twice the trapezoid rule ST .
The final sum involving f (xj) alone is identical to the
midpoint sum SM . Evidently, Simpson’s rule is the
weighted average of more elementary methods after
all: ∫ b

a

f (x) dx ≈ 1

3
(ST + 2SM) (1.2)

Setting up another program to approximate the
left, right, and midpoint sums, we can also get the
trapezoid sum and verify that Simpson’s rule obeys

the above identity. For an example problem, let us
approximate the area under a curve we can verify by
hand: ∫ 3

−2

(
5x2 − x

)
dx =

335

6
= 55.83333

Then, making appropriate changes to the above
program, we have:

f(x) = 5 * x * x - x

a = -2 # lower limit

b = 3 # upper limit

n = 15 # bins

dx = (b - a) / n

Initialize other variables to zero.

for j from 0 to n - 1

xj = a + j * dx

x1 = xj + dx

xm = (xj + x1) / 2

left += dx * f(xj)

right += dx * f(x1)

mid += dx * f(xm)

Calculate trap and simp after loop

trap = (left + right) / 2

simp = (1 / 3) * (trap + 2 * mid)

With the number of bins set to n = 15, the results
of such a program turn out as:

left = 52.96296296296295

right = 59.62962962962900

mid = 55.60185185185184

trap = 56.29629629629628

simp = 55.83333333333332

Comparing each of these to the exact answer, we
see the left sum underestimating, the right sum over-
estimating, and so on. Of course, the trailing digits
in each may vary slightly, depending on the environ-
ment used. Most notably, Simpson’s rule seems to get
the answer (to this integral) to near-perfect precision.

3 Regression Analysis

Regression analysis is an attempt to derive meaning-
ful patterns from numerical data. To introduce the
subject, we’ll explore the scenario of fitting a curve
y = f (x) to a set of given data points {(xj , yj)} in
various ways.

3. REGRESSION ANALYSIS 9

3.1 Linear Fit

Suppose we’re provided with the following set of or-
dered pairs:

xj 0.6 1.8 2.8 3.6 4.2 5.6
yj 1.6 1.6 2.6 2.0 4.0 3.6

Take each pair (xj , yj) with j = 1, 2, . . . , n as a
point in the Cartesian plane. Further, suppose there
was reason to believe that the pattern in the provided
points is described by a straight line in the plane

y = mx+ b ,

where the slope m and y-intercept b are unknown,
and to be found using the data provided.

To advance on the problem, move all variables to
one side, and consider n instances of the equation

hj (m, b) = mxj + b− yj .

That is, hj measures the vertical distance between
the point mxj + b and yj . If the approximate line
passes directly through (xj , yj), then hj (m, b) = 0
for that point.

As defined, hj (m, b) could be a positive or a neg-
ative value, which would mean negative errors cancel
out positive ones. To avoid this, let us work with the
square of the vertical distance represented by hj and
call this a new function Fj (m, b):

Fj (m, b) = (mxj + b− yj)
2

The total vertical distance from each point (xj , yj) to
the line y = mx+ b is the sum of all Fj :

F (m, b) =

n∑
j=1

Fj (m, b) =

n∑
j=1

(mxj + b− yj)
2

Now comes the new idea. The ideal m and b for
the data provided should correspond to a minimum in
F (m, b). That is, set the partial derivatives of F with
respect to these variables to zero, and the correct m,
b are implicated. We then have

∂F

∂m
= 0 =

n∑
j=1

2xj (mxj + b− yj)

∂F

∂b
= 0 =

n∑
j=1

2 (mxj + b− yj) .

To keep the algebra contained, define the quantity

XαY β =

n∑
j=1

xα
j y

β
j ,

which isn’t treated as regular algebraic variable, for
instance (X) (X)�=X2, and (X) (Y)�=XY . Note for
this example we have α, β never exceeding one.

In terms of the sums X, Y , etc., the minimization
of F (m, b) gives a system of two equations with two
unknowns:

0 = mX2 + bX −XY

0 = mX + bn− Y

The solution is straightforward using matrix methods
or traditional:

m =
(n) (XY)− (X) (Y)

(n) (X2)− (X) (X)

b =
(Y)

(
X2
)
− (X) (XY)

(n) (X2)− (X) (X)

To finish the example on hand, use a calculator
to find X = 18.6, Y = 15.4, XY = 55.28, X2 = 73.4.
The final answer is:

m ≈ 0.479

b ≈ 1.082

3.2 Exponential Fit

Consider another set of points {(xj , yj)} in the Carte-
sian plane that would be best approximated by an
exponential fit

y = A emx ,

where the scaling constant A and exponential param-
eter m are to be determined form the data given.

For this problem, let A = ln (b), where b is another
constant, and the equation becomes y = emx+b. Take
the natural log of both sides to find

ln (y) = mx+ b .

From here, the problem is completely analogous
to the straight-line fit, except all yj are substituted
for ln (yj). One b is known, reverse the logarithm to
solve for A.

3.3 Polynomial Fit

For any set of of n total points (xj , yj) in the Carte-
sian plane, we can try a polynomial of order m < n
to fit the data:

y = A0 +A1x+A2x
2 + · · ·+Amxm

Similar to the straight-line fit, define a vertical
distance hj ({Am}) such that

hj = A0 +A1xj +A2x
2
j + · · ·+Amxm

j − yj .

10 CHAPTER 1. ITERATIVE METHODS

Square this distance and sum over all n data points:

F ({Am}) =
n∑

j=1

h2
j

=

n∑
j=1

(
A0 +A1xj + · · ·+Amxm

j − yj
)2

The best-fitting polynomial is the one that that
minimizes F with respect to all Aj simultaneously.
Writing these out, one finds

∂F

∂A0
= 2

n∑
j=1

(
A0 +A1xj + · · ·+Amxm

j − yj
)

∂F

∂A1
= 2

n∑
j=1

xj

(
A0 +A1xj + · · ·+Amxm

j − yj
)

∂F

∂A2
= 2

n∑
j=1

x2
j

(
A0 +A1xj + · · ·+Amxm

j − yj
)
,

availing the pattern

∂F

∂Ak
= 2

n∑
j=1

xk
j

(
A0 +A1xj + · · ·+Amxm

j − yj
)
,

for any k ≤ m.
Each derivative is zero on the left, and the univer-

sal factor of 2 drops out. Not forgetting to distribute
the xk

j term into each sum, all of the above informa-
tion is best written in matrix notation. In particular,
we have

M =

n X X2 · · · Xm

X X2 X3 · · · Xm+1

X2 X3 X4 · · · Xm+2

· · · · · · · · · · · · · · ·
Xm Xm+1 Xm+2 · · · X2m

 ,

such that

M

A0

A1

A2

· · ·
Am

 =

Y
Y X
Y X2

· · ·
Y Xm

 .

There is a lot of information to juggle with if
you’re insane enough to do this by hand. Regard-
less, system can be solved by finding the row-reduced
echelon form of:

n X X2 · · · Xm Y
X X2 X3 · · · Xm+1 Y X
X2 X3 X4 · · · Xm+2 Y X2

· · · · · · · · · · · · · · · · · ·
Xm Xm+1 Xm+2 · · · X2m Y Xm

4 Interpolation

In regression analysis, a set of n total data points
{(xj , yj)}, leads to a best-fit polynomial (or other
curve) that passes near, but not necessarily through
each data point. By a more powerful process called
interpolation, it’s possible to find a curve that passes
through each data point. With some effort, such a
curve can be made continuous and smooth in its do-
main.

4.1 Rectangle Approximation

The crudest interpolation of the provided data points
is the rectangular approximation, which draws a hor-
izontal line for all n − 1 points spanning from xj to
xj+1 such that

f0 (xj ≤ x < xj+1) = yj

Of course, we can also draw lines to the left instead
of the right by a shift of index:

f0 (xj ≤ x < xj+1) = yj+1

4.2 Connect the Dots

A slightly more informative approximation to the
provided data points is the linear interpolation, which
is a fancy name for connect the dots. By standard
straight line methods, successive data points are con-
nect by lines given by

f1 (x) = yj + (x− xj)

(
yj+1 − yj
xj+1 − xj

)
.

This has the appearance of a first terms of a Taylor
approximation and also the form y = mx+ b. All of
these are equivalent to linear order.

There is another way to express the line f1 (x)
that appears mighty peculiar at first:

f1 (x) = yj

(
xj+1 − x

xj+1 − xj

)
+ yj+1

(
x− xj

xj+1 − xj

)
Make sure the two expressions for f1 (x) are equiva-
lent.

4.3 Quadratic Interpolation

The linear interpolation can be improved by including
an x2-like term in f (x), giving a quadratic interpo-
lation in terms of undermined coefficients:

f2 (x) = A0 +A1x+A2x
2

One way to find the unknown coefficients is to
pick three consecutive points, such as (xj , yj) with

4. INTERPOLATION 11

j = 0, 1, 2. This generates three equations and three
unknowns, which can be solved by standard means.

For a different approach to the problem, let us re-
cite a trick named after Lagrange, which extends the
‘peculiar’ straight line method written above. The
quadratic approximation is called the Lagrange inte-
grating polynomial, and is given by

f2 (x) = y0L0 (x) + y1L1 (x) + y2L2 (x) ,

where the Lj (x) are called the Lagrange interpolating
basis functions:

L0 =
(x− x1) (x− x2)

(x0 − x1) (x0 − x2)

L1 =
(x− x0) (x− x2)

(x1 − x0) (x1 − x2)

L2 =
(x− x0) (x− x1)

(x2 − x0) (x2 − x1)

This can be straightforwardly reconciled with a
traditional attack on the problem. In the original
function f2 (x), observe that A2 is exactly one half of
the second derivative of the function.

From ordinary calculus, we know the second
derivative can be expressed via

f ′′ (x) = lim
h→0

f (x− h)− 2f (x) + f (x+ h)

h2
.

This formula is a bit oversimplifying in the sense that
h doesn’t necessarily equal any given pair xj − xk,
never mind the limit.

Proceed by differentiating f2 (x) twice (only the
x2 term survives). To keep the algebra sane, define

∆xjk = xj − xk ,

and we have

1

2
f ′′
2 (x) =

y0
∆x01∆x02

+
y1

∆x10∆x12
+

y2
∆x20∆x21

.

Establish a common denominator and rewrite:

1

2
f ′′
2 (x) =

y0∆x12 − y1∆x02 + y2∆x01

∆x01∆x02∆x12

This is technically as far as the comparison can
go. To an approximation though, we can have

h = x1 − x0 = x2 − x1 =
x2 − x0

2

and the two second derivative formulas agree.

Higher Orders

The Lagrange interpolating basis functions readily
generalize to higher orders. With the products

Qn (x) =
∏
j ̸=n

(x− xj)

Rn (x) =
∏
ȷ̸=n

(xn − xj) ,

the nth function is

Ln (x) =
Qn (x)

Rn (x)
.

In therms of he Lagrange interpolating basis func-
tions, the corresponding yn (x) is

yn (x) =

n∑
j=0

yjLj (x) .

4.4 Three Roads Problem

In the Cartesian plane, consider two parabola-shaped
‘roads’ described by

y1 (x) = −x2

4
− 1

y2 (x) =
x2

4
+ 1 .

Also, suppose it’s our job to propose a new road f (x)
connecting the point (−2,−2) on y1 (x) to another
point (1, 5/4) on y2 (x).

Straight Line Approximation

The easiest solution to write down, which happens to
also be the shortest road connecting the given points,
is a straight line

f1 (x) = mx+ b .

Using the information provided, it follows that the
line connecting the points is specified via

f (−2) = y1 (−2)

f (1) = y2 (1) ,

and solved by:

m =
5/4− (−2)

1− (−2)
=

13

12

b =
1

6

12 CHAPTER 1. ITERATIVE METHODS

However, the instantaneous derivative of each
y1,2 (x) tells us (

d

dx
y1 (x)

) ∣∣∣∣
−2

= 1(
d

dx
y2 (x)

) ∣∣∣∣
1

=
1

2
,

and neither is equal to m. This means that the
straight line approximation induces a break in the
smoothness of the ride at each transition.

Cubic Approximation

Trying a slightly more versatile candidate, consider
the order-three approximation

f2 (x) = A0 +A1x+A2x
2 ,

where each Aj is an unknown coefficient, three in to-
tal. However, we’ve already discerned that (at least)
four equations govern the system. There are one too
few unknowns on hand.

The next best thing to do is guess a cubic equa-
tion:

f3 (x) = A0 +A1x+A2x
2 +A3x

3

With the cubic approximation, we can find all un-
known coefficients by requiring f (p) = y1,2 (x) and
f ′ (x) = y′1,2 (x) where the roads intersect.

Note that whatever f (x) is doing for x < −2 or
x > 1 doesn’t quite matter. This is why adding a
cubic term, which undoubtedly changes the global
shape of f (x), happens to provide extra tuning in
the domain −2 ≤ x ≤ 1.

Quintic Approximation

Two more equations can be extracted from the in-
formation provided, namely the second derivative of
each road y1,2 (x) at the points of transition:(

d2

dx2
y1 (x)

) ∣∣∣∣
−2

=
−1

2(
d2

dx2
y2 (x)

) ∣∣∣∣
1

=
1

2
,

Including two more equations justifies introduc-
ing two more unknowns, so we may as well use an
order-five polynomial

f5 (x) =

5∑
j=0

Ajx
j

having six unknowns Aj . The first two derivatives of
f5 (x) are easy to jot down:

d

dx
f5 (x) =

5∑
j=1

jAjx
j−1

d2

dx2
f5 (x) =

5∑
j=2

j (j − 1)Ajx
j−2

Of course, the second derivative of f5 (x) at the re-
spective endpoints is −1/2, 1/2.

N Equations and Unknowns

To keep things general, let the given endpoints be
represented by (x1,2, y1,2). Let the first and second
derivatives of y1,2 (x) at the endpoints be denoted
y′1,2 (x), y

′′
1,2 (x), respectively.

Note too that most of the curves y1,2 (x) don’t
play into the solution. The relevant information is
the location of each endpoints and the derivative(s).
Working all of this out, the foll information of the
problem is specified in the augmented matrix

1 x1 x2
1 x3

1 x4
1 x5

1 y1
1 x2 x2

2 x3
2 x4

2 x5
2 y2

0 1 2x1 3x2
1 4x3

1 5x4
1 y′1

0 1 2x2 3x2
2 4x3

2 5x4
2 y′2

0 0 2 3 · 2x2
1 4 · 3x3

1 5 · 4x3
1 y′′1

0 0 2 3 · 2x2
2 4 · 3x3

2 5 · 4x3
2 y′′2

 .

Solution

To finish the example on hand with the data pro-
vided, the above becomes

1 −2 4 −8 16 −32 −2
1 1 1 1 1 1 5/4
0 1 −4 12 −32 80 1
0 1 2 3 4 5 1/2
0 0 2 −12 48 −160 −1/2
0 0 2 6 12 20 1/2

 ,

with corresponding RREF:
1 0 0 0 0 0 43/81
0 1 0 0 0 0 94/81
0 0 1 0 0 0 −149/324
0 0 0 1 0 0 −23/162
0 0 0 0 1 0 19/162
0 0 0 0 0 1 7/162

 ,

exposing the coefficients {Aj}. All three roads are
plotted together in Figure 1.1.

4. INTERPOLATION 13

−4 −2 0 2 4
−6

−4

−2

0

2

4

6

Figure 1.1: Three roads.

4.5 Spline

There is a handy method that combines polyno-
mial interpolation with derivative matching. That
is, if we have a set of n points {(xj , yj)}, where
j = 1, 2, 3, . . . , n, it’s possible to come up with a
curve that connects all of the points continuously and
smoothly.

Cubic Approximation

In the domain xj < x < xj+1, a cubic interpolation
going through the points xj , xj+1 is assumed, taking
generic form

fj (x) =

3∑
j=0

Ajx
j .

Continuity Conditions

For continuity across the entire function f , we must
have

fj−1 (xj) = fj (xj)

fj (xj+1) = fj+1 (xj+1) ,

which says the same thing twice. (Substitute j →
j + 1 in the first equation to recover the second.)

For continuity in derivative of f , differentiate each
of the above once with respect to x

f ′
j−1 (xj) = f ′

j (xj)

f ′
j (xj+1) = f ′

j+1 (xj+1) ,

and then once more:

f ′′
j−1 (xj) = f ′′

j (xj)

f ′′
j (xj+1) = f ′′

j+1 (xj+1) ,

If there are n total points provided, there must be
n − 1 polynomials in the total interpolation, with a
total of 4 (n− 1) unknowns. However, only 4 (n− 2)
equations come from continuity arguments, and we
need four more.

At the first point j = 1 and the last point j = n,
we set

f1 (x1) = y1

fn−1 (xn) = yn .

With the leftover freedom to impose two more equa-
tions, choose the second derivative to be zero at each
endpoint:

f ′′
1 (x1) = 0

f ′′
n−1 (xn) = 0

This setup is called the natural spline.

Second Derivative Continuity

This is enough to assemble the whole curve. Begin
with the abbreviation

kj = f ′′
j−1 (xj) = f ′′

j (xj) .

Between neighboring kj , kj+1, the second deriva-
tive of f ′′

j (x) is a straight line connecting the two.
Express this line as a two-point Lagrange system:

f ′′
j (x) = kj

(
x− xj+1

xj − xj+1

)
+ kj+1

(
x− xj

xj+1 − xj

)
Integrate the above in the x-variable once to get

an equation for f ′
j (x)

f ′
j (x) =

∫
f ′′
j (x) dx+ C ,

where C is an integration constant. Substituting the
above and carrying out the integral, one finds

f ′
j (x) =

kj
(xj − xj+1)

(x− xj+1)
2

2

+
kj+1

(xj+1 − xj)

(x− xj)
2

2
+ C .

Integrate again to get an equation for fj (x)

fj (x) =
kj

(xj − xj+1)

(x− xj+1)
3

3 · 2

+
kj+1

(xj+1 − xj)

(x− xj)
3

3 · 2
+ Cx+D ,

where D is another integration constant.

14 CHAPTER 1. ITERATIVE METHODS

The substitutions

C = A−B

D = −Axj+1 +Bxj

makes the above be slightly easier to work with:

fj (x) =
kj

(xj − xj+1)

(x− xj+1)
3

3 · 2

− kj+1

(xj − xj+1)

(x− xj)
3

3 · 2
+A (x− xj+1)−B (x− xj)

Integration Constants

The integration constants need to be determined be-
fore moving on. Evaluate fj (xj) to find

yj =
kj

(xj − xj+1)

(xj − xj+1)
3

3 · 2
+A (xj − xj+1) ,

or

A =
yj

(xj − xj+1)
− kj

(xj − xj+1)

3 · 2
.

Evaluate fj (xj+1) to find

yj+1 =
kj+1

(xj − xj+1)

(xj − xj+1)
3

3 · 2
+B (xj − xj+1) ,

or

B =
yj+1

(xj − xj+1)
− kj+1

(xj − xj+1)

3 · 2
.

Putting the whole solution together:

fj (x) =

kj
6

(
(x− xj+1)

3

(xj − xj+1)
− (x− xj+1) (xj − xj+1)

)

− kj+1

6

(
(x− xj)

3

(xj − xj+1)
− (x− xj+1) (xj − xj+1)

)

+
yj (x− xj+1)− yj+1 (x− xj)

xj − xj+1

First Derivative Continuity

What remains is to determine the terms kj in terms
of {(xj , yj)}. Write out the derivatives f ′

j (xj) and
f ′
j−1 (xj) and set them equal (as agreed earlier). For

an updated f ′
j (x), we have

f ′
j (x) =

kj
6

(
3 (x− xj+1)

2

(xj − xj+1)
− (xj − xj+1)

)

− kj+1

6

(
3 (x− xj)

2

(xj − xj+1)
− (xj − xj+1)

)
+

yj − yj+1

xj − xj+1

and also, shifting index,

f ′
j−1 (x) =

kj−1

6

(
3 (x− xj)

2

(xj−1 − xj)
− (xj−1 − xj)

)

− kj
6

(
3 (x− xj−1)

2

(xj−1 − xj)
− (xj−1 − xj)

)
+

yj−1 − yj
xj−1 − xj

.

For shorthand, define

∆xj+ = xj − xj+1

∆xj− = xj − xj−1

and similar for the y-variables. Then evaluate each
derivative equation at xj and equate the results to
get the continuity equation

kj+1∆xj+ + 2kj (∆xj+ −∆xj−)

− kj−1∆xj− = 6

(
∆yj−
∆xj−

− ∆yj+
∆xj+

)
.

Creating a System

For yet another shorthand, define the coefficients

αj = −∆xj−

βj = 2 (∆xj+ −∆xj−)

γj = ∆xj+

δj = 6

(
∆yj−
∆xj−

− ∆yj+
∆xj+

)
which are all known in terms of the provided points.
Then, the above can be written

αjkj−1 + βjkj + γjkj+1 = δj ,

which has three unknowns in general, and we al-
ready decided k1 = kn = 0. Thus only the cases
j = 2, 3, 4, . . . , n− 1 need be written out.

5. NEWTON’S METHOD 15

Example n=5

Choosing a modest example with n = 5 points pro-
vided, the above becomes:

α20 + β2k2 + γ2k3 = δ2

α3k2 + β3k3 + γ3k4 = δ3

α4k3 + β4k4 + γ40 = δ4

This is a system of three equations and three un-
knowns k2, k3, k4, and the problem has been reduced
to a regular Ax⃗ = b⃗-like system.

In general, the spline calculation leads to a hefty
augmented matrix with n−2 rows and n−1 columns.

5 Newton’s Method

In one dimension, Newton’s method is a reliable
means for estimating the roots of an equation g (x),
which is to say finding the x-value(s) that solve
g (x) = 0.

The formula for Newton’s method comes from a
first-order approximation of g (x), namely

g1 (x) = g (x0) + g′ (x0) (x− x0) .

Providing an initial guess x0, Setting g1 (x1) = 0 im-
plicates a new x1 that should be an an improvement
over x0. This can be continued recursively via the
formula

xn+1 = xn − g (xn)

g′ (xn)
.

	Iterative Methods
	Matrix Tools
	Linear Systems Review
	Pseudocode
	Augmenting
	Matrix Multiplication
	Sub-Matrix
	Determinant
	Inverse Matrix
	Augmented Upper Triangular
	Augmented Lower Triangular
	RREF Matrix

	Approximating Integrals
	Riemann Sums
	Simpson's Rule

	Regression Analysis
	Linear Fit
	Exponential Fit
	Polynomial Fit

	Interpolation
	Rectangle Approximation
	Connect the Dots
	Quadratic Interpolation
	Three Roads Problem
	Spline

	Newton's Method

