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Chapter 1

Integral Calculus

1 Area Under a Curve

1.1 Review

The workhorse equation of differential calculus is un-
doubtedly the definition of the derivative of a function
f (x)

f ′ (x0) = lim
x→x0

f (x)− f (x0)

x− x0
,

which gives the instantaneous slope of the function
at x0.

An extension of the derivative comes in the form

of Taylor’s theorem, which attempts to approximate
the function f (x) near a given point x0:

f (x) ≈ f (x0) +

n∑
q=1

1

q!
f (q) (x0) (x− x0)

q

Of course, Taylor’s theorem embeds the first deriva-
tive as its first-order case.

As it turns out, all of this derivative-play, i.e. dif-
ferential calculus, is only half of the total picture.
There is, in fact, another important relationship be-
tween the function f (x) and its slope f ′ (x) that is
the inverse to the notion of the derivative.

1.2 Motivation

Working in the general case, consider a point x0 in
the domain of a ‘well-behaved’ function f (x), and
also consider a point x1 that is arbitrarily close to
x0. By the derivative formula, we can surely write

lim
x1→x0

f (x1)− f (x0) = f ′ (x0) lim
x1→x0

(x1 − x0) .

Also, consider another point x2 that is arbitrarily
close to x1, which means

lim
x2→x1

f (x2)− f (x1) = f ′ (x1) lim
x2→x1

(x2 − x1) ,

3
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and just to start a pattern, consider yet another point
x3 obeying

lim
x3→x2

f (x3)− f (x2) = f ′ (x2) lim
x3→x2

(x3 − x2) .

For definiteness, let’s have the x-variables relate
by

x0 < x1 < x2 < x3 < · · · < xn ,

assuming the pattern keeps going. It also helps to
label the interval between each:

∆xj = xj+1 − xj

Proceed boldly by taking the sum of the equa-
tions written above. Doing the right-hand side first,
we have

RHS = f ′ (x0)∆x0 + f ′ (x1)∆x1

+ f ′ (x2)∆x2 + · · · ,

which can be written concisely as a sum

RHS =

n−1∑
j=0

f ′ (xj)∆xj

that goes out to n total terms.
As for the left-hand side, we have

LHS = lim
x1→x0

f (x1)− f (x0)

+ lim
x2→x1

f (x2)− f (x1)

+ lim
x3→x2

f (x3)− f (x2)

+ · · ·+ lim
xn→xn−1

f (xn)− f (xn−1)

= f (xn)− f (x0)

Notice how any given f (xj) present in the above has
a negative counterpart, thus most terms in the above
cancel out in pairs. This obliterates any notion of
‘limit’ on the left, as only the difference f (xn)−f (x0)
remains.

Putting the left side and the right side together,
we seem to have discovered

f (xn)− f (x0) ≈
n−1∑
j=0

f ′ (xj)∆xj . (1.1)

On the left is simply the difference of a function at
two points in its domain. The right, however, seems
to be the total area of n rectangles, with the jth rect-
angle having height f ′ (xj) and width ∆xj .

As a whole, Equation (1.1) suggests a way to ap-
proximate the area under the curve f ′ (x) between
the endpoints x0, xn. The tricky part, in general,
is finding whatever function f (x) corresponds to the
slope f ′ (x), i.e. the notorious antiderivative.

1.3 Riemann Sums

At face value, Equation (1.1) can be implemented ‘as-
is’ to approximate the area under f ′ (x). To clean up
the notation, make the substitution f ′ (x) = g (x),
and write the above as

f (xn)− f (x0) ≈ S =

n−1∑
j=0

g
(
x∗
j

)
∆x ,

where the argument sent to g (x) is denoted x∗
j . Fur-

thermore, the subscript on ∆xj has been dropped
with the understanding that each ∆xj is one and the
same length given by

∆x =
xn − x0

n
,

implying

xj = x0 + j∆x .

Left, Right, Midpoint Sum

The reason x∗
j gets special attention is there are no

natural restrictions on where x∗
j occurs within the in-

terval ∆xj . Right off the bat, there are three obvious
options

x∗
j =


xj Left sum

xj+1 Right sum

(xj + xj+1) /2 Midpoint sum

,

which sample from g (x) differently. Explicitly, these
mean:

SLeft

∆x
= g (x0) + g (x0 +∆x)

+ g (x0 + 2∆x) + · · ·+ g (xn −∆x)

SRight

∆x
= g (x0 +∆x) + g (x0 + 2∆x)

+ g (x0 + 3∆x) + · · ·+ g (xn)

SMid

∆x
= g

(
x0 +

∆x

2

)
+ g

(
x0 +

3∆x

2

)
+ g

(
x0 +

5∆x

2

)
+ · · ·+ g

(
xn − ∆x

2

)
Example 1

Using the midpoint sum rule with n = 10 bins,
approximate the area under the function

g (x) = 5x+ 2

in the domain

−2 ≤ x ≤ 3 .
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Let x0 = −2, let xn = 3, and n = 10 so that

∆x =
xn − x0

n
=

3− (−2)

10
=

1

2
.

At step j in the sum we further have

xj = x0 + j∆x = −2 +
j

2
.

To prepare for the midpoint sum, note that

x∗
j =

xj + xj+1

2
=

−7

4
+

j

2
.

The midpoint sum SM is given by

SM =

n−1∑
j=0

g
(
x∗
j

)
∆x =

9∑
j=0

(
5

(
−7

4
+

j

2

)
+ 2

)
1

2
,

which simplifies nicely:

SM =
1

2

9∑
j=0

(
2− 35

4

)
+

5

4

9∑
j=0

j

=
1

2
(10)

(
2− 35

4

)
+

5

4
(45)

=
45

2
= 22.5

Using the midpoint rule, 22.5 happens to be the
exact solution to the stated problem, regardless of
how many bins we choose. This brings out a special
relationship between the midpoint rule and straight
lines: the approximation is perfect.

Example 2
Using the right sum rule with any number n bins,

approximate the area under the function

g (x) = 4x− x2

in the domain
0 ≤ x ≤ 4 .

Let x0 = 0, let xn = 4, and n = 10 so that

∆x =
xn − x0

n
=

4− 0

n
=

4

n
.

At step j in the sum we further have

xj = x0 + j∆x =
4j

n
.

To prepare for the right sum rule, note that

xj+1 =
4j

n
+

4

n
.

Then, the right sum rule is

SR =

n−1∑
j=0

f ′ (xj+1)∆x

=

n−1∑
j=0

(
4

(
4j

n
+

4

n

)
−
(
4j

n
+

4

n

)2
)

4

n

Let k = j + 1 and simplify the right side to get

SR =
43

n3

(
n

n∑
k=1

k −
n∑

k=1

k2

)
.

By analyzing the remaining sums, it’s straightforward
to show that

n∑
k=1

k =
n (n+ 1)

2

n∑
k=1

k2 =
n (n+ 1) (2n+ 1)

6
,

and the sum simplifies to

SR =
32

3

(
1− 1

n2

)
This result contains a factor of n, allowing the ex-

actness of SR to be tuned. Note that 1/n2 vanishes
for sufficiently large n, telling us the exact area under
the curve is 32/3.

Trapezoid Rule

An improvement over rectangle-based methods is the
average the left- and right rules, which effectively
turns rectangles into trapezoids, giving (you guessed
it) the trapezoid rule:

STrap =
1

2
(SLeft + SRight)

=
1

2

n−1∑
j=0

(g (xj) + g (xj+1))∆x

=
g (x0) + g (xn)

2
∆x+

n−1∑
j=1

g (xj)∆x

Without summation notation, the above reads

STrap

∆x
=

g (x0)

2
+ g (x0 +∆x)

+ g (x0 + 2∆x) + · · ·+ g (xn)

2
.
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2 The Integral

There is a regime where all versions of the Riemann
sum converge to the same answer, and that is when
we impose the limit ∆x → 0 and simultaneously
n → ∞. In this limit, the entire picture gets squeezed
together, and the area under a curve is approximated
by an infinite number of vertical lines. In other words,
the Riemann sum becomes an exact solution to the
area under the curve f ′ (x):

f (xn)− f (x0) = lim
n→∞

n−1∑
j=0

f ′ (xj)∆xj .

2.1 Integral Notation

To update the above with cleaner notation, the sum-
mation is replaced by the ‘integral’, literally a giant
‘S’, via

lim
∆x→0

∑
∆x →

∫
dx ,

which also replaces ∆x with dx. The limits on the
sum turn into integration limits, one ‘lower’ limit and
one ‘upper’ limit:

lim
∆x→0

n−1∑
j=0

∆x →
∫ xn

x0

dx

All j-subscripts have also been dropped, as x is now
understood to be a continuous variable inside the in-
tegral.

2.2 Fundamental Theorem

Using integral notation, the above is written

f (xn)− f (x0) =

∫ xn

x0

f ′ (x) dx .

While this is workable, it’s customary to drop the n-
subscript fdrom f (xn), and this term becomes f (x).
To prevent a naming conflict on the right, swap the
integration variable from x to t:

f (x)− f (x0) =

∫ x

x0

f ′ (t) dt . (1.2)

This result is called the fundamental theorem of cal-
culus, which is the full inversion of the definition of
the derivative.

2.3 Role of the Antiderivative

A less tautological way to write Equation (1.2) is

f (x)− f (x0) =

∫ x

x0

g (t) dt ,

where f ′ (t) is renamed to some given or otherwise
evident function g (t). The left-side function f (x) is
considered unknown.

In order to ‘solve’ the integral, g (t) must be ex-
pressed as the derivative of something else, which
means to find the antiderivative of g (t). The ‘some-
thing else’ in this case has already been named, par-
ticularly f (t):

f (x)− f (x0) =

∫ x

x0

d

dt
(f (t)) dt

The ability to evaluate an integral usually comes
down to the ability to find the antiderivative of the
function being integrated. This can be quite the
chore, if not impossible.

With the proper antiderivative in place, the
derivative and the integral on the right mutually an-
nihilate, leaving f (t) alone evaluated at the integra-
tion limits, i.e., the quantity f (x)− f (x0). One way
to think of this is to cancel the factors of dt in a way
inspired by the chain rule:

f (x)− f (x0) =

∫ x

x0

d

��dt
f (t)��dt =

∫ x

x0

df (t)

2.4 Definite Integral

When the integration limits x0, x are specified, either
numerically or symbolically, the integral is called def-
inite. In order to ‘fully’ solve a definite integral, the
antiderivative f (f) must be evaluated at each limit,
and the answer is the difference between f (x0) and
f (x). For this, the ‘vertical bar’ notation is used:∫ x

x0

df (t) = f (t)

∣∣∣∣x
x0

= f (x)− f (x0)

Swapping the Limits

One can readily see that swapping the integration
limits makes the integral ‘run backwards’, and gains
an overall negative sign:∫ x0

x

df (t) = f (x0)− f (x) = −
∫ x

x0

df (t)

Breaking the Interval

The integral remains intact if we split the interval
into two or more parts. Introducing a variable a in
the domain x0 ≤ a ≤ x, we may write:∫ x

x0

g (t) dt =

∫ a

x0

g (t) dt+

∫ x

a

g (t) dt
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2.5 Symmetric Domain

Consider the definite integral over a symmetric do-
main, meaning −x0 is the lower limit and x0 is the
upper limit:

f (x0)− f (−x0) =

∫ x0

−x0

g (t) dt

From studying functions, recall that even func-
tions obey

feven (x)− feven (−x) = 0 ,

and correspondingly for odd functions,

fodd (x) + fodd (−x) = 0 ,

meaning

fodd (x)− fodd (−x) = 2fodd (x) .

Since the integral of g (x) effectively bumps up its
order by one, it follows that the even-ness or oddness
of function f is exactly the opposite of function g.
We thus gain two cases:

feven (x0)− feven (−x0) =

∫ x0

−x0

godd (t) dt

fodd (x0)− fodd (−x0) =

∫ x0

−x0

geven (t) dt

The first of these results is immediately zero from
the properties of even functions. In fact, the integral
of any odd function over any symmetric interval, as
we’ve shown, is always zero:

0 =

∫ x0

−x0

godd (t) dt (1.3)

For the other case, we correspondingly find

2fodd (x0) =

∫ x0

−x0

geven (t) dt ,

which means the integral of an even function over
a symmetric interval effectively sums the same area
twice. The above is also captured by

fodd (x0) =

∫ x0

0

geven (t) dt . (1.4)

2.6 Integration Constant

When the lower integration limit x0 is unspecified,
the term −f (x0) is called the integration constant,
denoted C. Setting f (x0) = −C, this means:∫ x

f ′ (t) dt = f (x) + C

One way to justify the presence of the integration
constant is to realize that any function f (x) +C has
the same derivative f ′ (x), which is to say the abso-
lute vertical offset of the curve has no bearing on its
slope. To say this backwards, it follows that any an-
tiderivative calculation without specific limits is only
certain up to an arbitrary but non-ignorable constant
C.

2.7 Indefinite Integral

The integral still retains meaning if we ambiguate
both integration limits by writing∫

f ′ (t) dt = f (x) + C ,

where C is the integration constant.
In this abstraction, the upper integration limit is

always understood to be x, which kills the naming
conflict in the x-variable on the right. Thus we also
have ∫

f ′ (x) dx = f (x) + C , (1.5)

which is called the indefinite integral.

2.8 Integral Operator

In the same sense that one can apply d/dx as an op-
erator to both sides of an equation, we can do the
opposite move, which is to apply

∫
dx across both

sides of an equation as well. If

g (x) =
d

dx
f (x) ,

then ∫
g (x) dx =

∫
d

dx
(f (x)) dx = f (x) + C .

On the right, the integral and the derivative are
mutually-obliterating, leaving just the enclosed func-
tion up to a constant.

Interchangeability

As a sanity check, we should be able to apply d/dx
across the whole equation and recover the starting
point. Explicitly, this is

d

dx

(∫
g (x) dx

)
=

d

dx
f (x) +

�
��dC

dx
,

which readily reduces to g (x) = f ′ (x), provided that:

d

dx

(∫
g (x) dx

)
=

∫
d

dx
(g (x)) dx

That is, it’s not harmful to move the derivative op-
eration inside the enclosure of the integral.
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3 Techniques of Integration

Integral calculations are trickier than anything else
in introductory calculus. Here we go through the
standard bag of tricks for solving integrals by hand.
(Most integrals in the wild are not solvable by hand.)

3.1 Antiderivative Exploit

The most direct way to solve an integral is pick out
(by experience or by luck) the antiderivative of the
function being integrated. For instance, consider

I =

∫ √
π/2

0

x cos
(
x2
)
dx .

Right away, note that the function being inte-
grated can be written as a derivative

x cos
(
x2
)
=

d

dx

(
1

2
sin
(
x2
))

,

so then

I =

∫ √
π/2

0

d

dx

(
1

2
sin
(
x2
))

dx ,

and then the integral and derivative operators cancel,
leaving only the evaluation:

I =
1

2
sin
(
x2
) ∣∣∣∣
√

π/2

0

=
1

2
(1− 0) =

1

2

3.2 Exponents and Roots

Powers

Starting with the power rule for differentiation

d

dx
(xn) = nxn−1 ,

replace n → n+1 for convenience and write the same
rule:

(n+ 1)xn =
d

dx

(
xn+1

)
From this, we can apply the integral operator to de-
rive the rule for integrating powers and roots:∫

xn dx =
xn+1

n+ 1
+ C (1.6)

Going through a few exemplary cases, i.e. playing
with common values of n, we generate some useful in-
formation. You are encouraged to work through each
of these: ∫

dx = x+ C (1.7)

∫
x dx =

1

2
x2 + C (1.8)

∫
x2 dx =

1

3
x3 + C (1.9)

∫ √
x dx =

2

3
x3/2 + C (1.10)

∫
x3/2 dx =

2

5
x5/2 + C (1.11)

∫
x−2 dx =

−1

x
+ C (1.12)

∫
x−3 dx =

−1

2x2
+ C (1.13)

∫
dx√
x
= 2

√
x+ C (1.14)

∫
x−3/2 dx =

−2√
x
+ C (1.15)

Reciprocal

One special case to power rule formula is the integral
of 1/x. Recalling that the derivative of the natural
logarithm yields this result, i.e.

d

dx
(ln (x)) =

1

x
,

the following must hold:∫
1

x
dx = ln (x) + C (1.16)

Exponential

Starting with the derivative rule for exponents

d

dx
(nx) = nx ln (n) ,

it must follow that:∫
nx dx =

nx

ln (n)
+ C (1.17)
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Applied Chain Rule

Using the power rule and chain rule for derivatives,
it’s straightforward to derive

d

dx

√
f (x) =

f ′ (x)

2
√
f (x)

.

Applying the
∫
dx operator across both sides and sim-

plifying leads to a useful identity:∫
f ′ (x)

2
√
f (x)

dx =
√
f (x) + C (1.18)

It takes some effort to train the eye to make use
of identities such as the above. Exploring one case,
suppose we have

f (x) = 1± x2

with f ′ (x) = ±2x. Plugging all of this in and simpli-
fying gives a two-channel result:∫

±x√
1± x2

dx =
√
1± x2 + C (1.19)

Problem 1
Prove that the area under a parabolic segment of

base b and height h is

A =
2

3
bh .

Problem 2
Prove that the area of the ‘lens’ formed between

the curves

y1 = x2

y2 = ax+ b

is

A =
1

6

(
a2 + 4b

)3/2
.

3.3 U-Substitution

The standard integral∫ x

x0

f ′ (t) dt = f (x)− f (x0)

can sometimes be made simpler by a technique called
u-substitution, which entails choosing a function u (x)
and then recasting the integral in this variable.

The u-substitution can be established by multi-
plying du/du = 1 into the standard integral, i.e.∫ x

x0

df

dt
dt =

∫
df

dt

du

du
dt =

∫ u(x)

u(x0)

df

du
du ,

where the factor dt/dt cancels out. Importantly, note
that the limits on the integral are also modified to
respect u (x). Once the result is attained as f (u),
reverse-substitute to attain f (x).

A pragmatic way to choose the correct u-
substitution can be established. Consider an indef-
inite integral

I =

∫
f (x) g (x) dx

for two functions f (x), g (x). Under the substitution
u = u (x), the above still must come out to

I =

∫
f (u) du ,

which can only mean

g (x) =
du

dx
.

That is, the function g (x) must be (at least) propor-
tional to the derivative of the substitution u (x).

Exemplary Case

Consider again the definite integral

I =

∫ √
π/2

0

x cos
(
x2
)
dx .

To solve this with u-substitution, let

u (x) = x2

such that

du = 2x dx .

The limits of the integral must change to reflect the
u-substitution as well. With this, the integral be-
comes

I =

∫ π/2

0

1

2
cos (u) du ,

which has a straightforward solution:

I =
1

2
sin (u)

∣∣∣∣π/2
0

From here, one may stay in the u-domain to get the
final answer, or switch back to the x-variable to re-
cover

I =
1

2
sin
(
x2
) ∣∣∣∣
√

π/2

0

=
1

2
(1− 0) =

1

2
.
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Constant Shift

If the x-dependence in the integrand is shifted by a
constant λ, i.e.

u (x) = x+ λ ,

then
du = dx

always holds.
For instance, in

I =

∫
(x+ 3)

n
dx ,

we can let u = x+ 3 so the above becomes

I =

∫
un du ,

which is easy to solve using Equation (1.6) as

I =
un+1

n+ 1
+ C .

Reverse-substitute to get the answer in terms of x:∫
(x+ 3)

n
dx =

(x+ 3)
n+1

n+ 1
+ C

Problem 3
Use u-substitution to prove Equation (1.19).

Problem 4
Use u-substitution to prove:∫

dx

1 + x
= ln (1 + x) + C (1.20)

Problem 5
For a constant a, prove:∫

(x− a)
n−1

dx =
1

n
(x− a)

n

The d(sin) Shortcut

Integrals of the form

I =

∫
f (sin (x)) cos (x) dx

are transformed by standard u-substitution. Letting

u (x) = sin (x)

such that
du

dx
= cos (x) ,

the above readily takes a more standard form:

I =

∫
f (sin (x)) cos (x) dx =

∫
f (u) du

The combination cos (x) dx is written d (sin (x))
as a shortcut, which embeds the notions u = sin (x),
du = cos (x) dx simultaneously:

cos (x) dx = d (sin (x))

For example, consider the indefinite integral

J =

∫
sin2 (x) cos (x) dx ,

which looks like a rather messy antiderivative to wres-
tle with. Applying the so-called d sin () shortcut, the
integral reads

J =

∫
sin2 (x) d (sin (x)) =

∫
u2 du ,

and the problem is now simpler in the u-variable. To
finish the job, we have

J =
1

3
u3 + C =

1

3
sin3 (x) + C .

3.4 Integrands with Roots

Not every integral involving a square root (or worse)
can be solved by simple u-substitution. In these
cases, it’s worth including the exponent of the em-
bedded root in the u-substitution.

To illustrate, consider the indefinite integral

I =

∫
x

(x− 4)
1/3

dx ,

which begs trying u = x − 4, but this makes an ab-
solute mess. Instead, let us take

u = (x− 4)
1/3

such that

x = u3 + 4

dx = 3u2 du .

Then, the integral looks much easier in the u-domain:

I = 3

∫ (
u4 + 4u

)
du

Problem 6
Use the above as a starting point to prove:∫

x

(x− 4)
1/3

=
3

5
(x− 4)

2/3
(x+ 6) + C
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3.5 Partial Fractions

...

3.6 Integration by Parts

Consider the product H (x) of two functions U (x),
V (x),

H (x) = U (x)V (x) ,

and take the derivative of H, minding the product
rule:

d

dx
H (x) = V (x)

d

dx
U (x) + U (x)

d

dx
V (x)

Next, apply the integral operator
∫
dx across the

whole equation:∫
d

dx
H (x) dx =

∫
V (x)

d

dx
U (x) dx

+

∫
U (x)

d

dx
V (x) dx

Since the integral and derivative operators are
mutually annihilating, the left side is simply H (x)
evaluated at the integration limits. It suffices to leave
the vertical bar empty while working in indefinite
form: ∫

d

dx
H (x) dx = H (x)

∣∣∣∣ = U (x)V (x)

∣∣∣∣
Introducing the shorthand notation

d

dx
U (x) = dU

and similar for dV , the above is written

UV

∣∣∣∣ = ∫ V dU +

∫
UdV ,

where all quantities are understood to be functions
of x.

The reason for doing this is, suppose you are
handed an integral of the form

∫
UdV that is diffi-

cult to solve. If we can somehow manage to identify
V (x), then perhaps the integral

∫
V dU is easier than

its counterpart. All of this inspires the integration by
parts formula:∫

UdV = UV

∣∣∣∣− ∫ V dU (1.21)

Exemplary Case

To demonstrate integration by parts, consider the
definite integral

I =

∫ π/2

0

x cos (x) dx ,

which we immediately rewrite as∫ π/2

0

x cos (x) dx =

∫ π/2

0

UdV .

Then identify

U = x

dV = cos (x) dx ,

and we now have two ‘mini problems’ of determining
dU (x) and V (x).

For this example, dU is simply equal to dx. (It’s
always easy to calculate dU .) As for V , we have
dV/dx = cos (x), which can only mean V (x) =
sin (x).

The integration by parts formula then tells us:∫ π/2

0

x cos (x) dx = x sin (x)

∣∣∣∣π/2
0

−
∫ π/2

0

sin (x) dx

Notice how the ‘hard’ integral on the left is replaced
by an ‘easy’ integral on the right. The answer is now
straightforward:

I =

∫ π/2

0

x cos (x) dx =
π

2
− 1

Natural Logarithm

The integration by parts recipe also works when there
is one function in the integrand, and this is how to
find the integral of the natural logarithm. Starting
with

I =

∫
ln (x) dx ,

let

U = ln (x)

dV = dx

such that

dU = dx/x

V = x .

Then, we have

I = x ln (x)

∣∣∣∣− ∫ dx ,
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simplifying to:∫
ln (x) dx = x ln (x)− x+ C (1.22)

Problem 7
Use u-substitution to find the integral of the

shifted natural logarithm:∫
ln (1 + x) dx = (1 + x) ln (1 + x) + x+ C (1.23)

3.7 Label Trick

Consider the definite integral that attempts to calcu-
late the area of one quarter of the unit circle:

A =

∫ π/2

0

sin2 (θ) dθ

This can be attacked with integration by parts by
letting

U = sin (θ)

dV = sin (θ) dθ

such that

dU = cos (θ) dθ

V = − cos (θ) ,

and then

A = −
��������
sin (θ) cos (θ)

∣∣∣∣π/2
0

+

∫ π/2

0

cos2 (θ) dθ .

All we’ve managed to show is that the function
sin2 (θ) can be replaced by cos2 (θ) and the integral
remains the same.

Now make use of the fundamental trigonometric
identity

sin2 (θ) + cos2 (θ) = 1

to write∫ π/2

0

cos2 (θ) dθ =

∫ π/2

0

dθ −
∫ π/2

0

sin2 (θ) dθ .

The left-most and right-most integrals are both equal
to A, and all of the hard work suddenly vanishes with
the so-called label trick :

A =

∫ π/2

0

dθ −A

Solving for A is a matter of algebra, and the remain-
ing integral is trivial:

A =
1

2

∫ π/2

0

dθ =
π

4

Tricky Logarithmic Integral

A tricky problem that you’re welcome to stop reading
and try on your own is the following definite integral:

I =

∫ ∞

0

ln (x)

1 + x+ x2
dx

The key to this problem is the substitution u =
1/x. From this, we have du/dx = −1/x2, and fur-
thermore ln (1/u) = − ln (u). The integration limits
also end up swapping, and the integral becomes

I =

∫ 0

∞

− ln (u)

1 + 1/u+ 1/u2

−du

u2
.

Simplifying further, we find

I =

∫ 0

∞

ln (u)

1 + u+ u2
du ,

and swap the integration limits by paying with a neg-
ative sign:

I = −
∫ ∞

0

ln (u)

1 + u+ u2
du

This result is exactly opposite to the problem we
started with, up to a trivial change of letters. In ef-
fect, we have found

I = −I ,

which can only mean I = 0:

0 =

∫ ∞

0

ln (x)

1 + x+ x2
dx

3.8 Trigonometric Integrals

Standard Functions

The integral of each trigonometric function is
straightforwardly calculated using antiderivatives or
other integration techniques. In indefinite form, these
are: ∫

sin (x) dx = − cos (x) + C (1.24)∫
cos (x) dx = sin (x) + C (1.25)

∫
tan (x) dx = −

∫
d (cos (x))

cos (x)

= − ln (cos (x)) + C (1.26)∫
cot (x) dx =

∫
d (sin (x))

sin (x)

= ln (sin (x)) + C (1.27)
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sec (x) dx = ln (sec (x) + tan (x)) + C (1.28)∫
csc (x) dx = − ln (csc (x) + cot (x)) + C (1.29)

We can also recall the derivative of each trigono-
metric function and make use of the

∫
dx operator to

come up with a few more:∫
sec2 (x) dx = tan (x) + C (1.30)∫
csc2 (x) dx = − cot (x) + C (1.31)∫

tan (x) sec (x) dx = sec (x) + C (1.32)∫
cot (x) csc (x) dx = − csc (x) + C (1.33)

Squared Integrand

The pair of indefinite integrals

I1 =

∫
sin2 (x) dx

I2 =

∫
cos2 (x) dx

can be solved simultaneously. Using the fundamental
trig identity, we see

I1 + I2 =

∫ (
sin2 (x) + cos2 (x)

)
dx =

∫
dx = x

∣∣∣∣ ,
or equivalently

I1 + I2 = x+ C .

Now integrate I1 by parts via

U = sin (x)

dV = sin (x) dx

such that

dU = cos (x) dx

V = − cos (x) ,

and I1 is written

I1 = − sin (x) cos (x)

∣∣∣∣+ ∫ cos2 (x) dx ,

simplifying to

I1 − I2 = − sin (x) cos (x) + C .

With two equations and two unknowns, I1 and I2
can be isolated independently, resulting in∫

sin2 (x) dx =
− sin (x) cos (x)

2
+

x

2
+ C (1.34)∫

cos2 (x) dx =
sin (x) cos (x)

2
+

x

2
+ C (1.35)

The pair of indefinite integrals

I3 =

∫
tan2 (x) dx

I4 =

∫
sec2 (x) dx

can also be solved together. Using another funda-
mental trig identity, find

I4 − I3 = x+ C ,

which means only I3 or I4 need be calculated and we
get the other for free.

Choosing I4, recall that the derivative of the tan-
gent is the square of the secant, so

I4 =

∫
d

dx
tan (x) dx = tan (x) + C ,

and conclude:∫
tan2 (x) dx = tan (x)− x+ C (1.36)∫
sec2 (x) dx = tan (x) + C

Finally, the pair of indefinite integrals

I5 =

∫
cot2 (x) dx

I6 =

∫
csc2 (x) dx

can also be solved together. Using another funda-
mental trig identity, find

I6 − I5 = x+ C .

The easiest way to proceed is to remember that
the derivative of the cotangent is the negative of the
square of the cosecant. Just kidding, that’s not ter-
ribly easy to remember, but nonetheless the integral
I6 becomes

I6 =

∫
d

dx
(− cot (x)) dx = − cot (x) + C .

From the above we get the pair of answers:∫
cot2 (x) dx = − cot (x)− x+ C (1.37)∫
csc2 (x) dx = − cot (x) + C
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Inverse Functions

Integrals of the inverse trigonometric functions can
be tricky to find. Integration by parts works well on
a few of them, such as the arctangent. For

I =

∫
arctan (x) dx ,

let

U = arctan (x)

dV = dx

such that:

dU =
dx

1 + x2

V = x

With this, the integral reads

I = x arctan (x)

∣∣∣∣− ∫ x

1 + x2
dx

The remaining integral is solved by standard u-
substitution, namely u = 1+x2 such that du = 2xdx.
After simplifying, we get the answer:∫

arctan (x) dx = x arctan (x)

− 1

2
ln
(
1 + x2

)
+ C (1.38)

The same recipe works for several other inverse
trigonometric functions, namely the arccosine, arc-
sine, and arccotangent:∫

arccos (x) dx = x cos (x)

− 1

2
ln
(
1− x2

)
+ C (1.39)

∫
arcsin (x) dx = x sin (x)

+
1

2
ln
(
1− x2

)
+ C (1.40)

∫
arccot (x) dx = x arccot (x)

+
1

2
ln
(
1 + x2

)
+ C (1.41)

Conspicuously absent from our stack of results are
the integrals of the arcsecant and arccosecant. These
require more than a simple u-substitution that we
haven’t hit yet, so stay tuned.

Reduction Formulas

For positive integerm, consider the indefinite integral

I =

∫
sinm (x) dx .

Integrating by parts, we first write

U = sinm−1 (x)

dV = sin (x) dx

and also

dU = (m− 1) sinm−2 (x) cos (x) dx

V = − cos (x) .

From this, we have

I = − sinm−1 (x) cos (x)

∣∣∣∣
+ (m− 1)

∫
sinm−2 (x) cos2 (x) dx .

Next, replace cos2 (x) with 1 − sin2 (x) and use
the label trick, giving

I = − sinm−1 (x) cos (x)

∣∣∣∣
+ (m− 1)

∫
sinm−2 (x) dx− (m− 1) I ,

and solving for I we arrive at a trigonometric reduc-
tion formula:∫

sinm (x) dx =
−1

m
sinm−1 (x) cos (x)

∣∣∣∣
+

m− 1

m

∫
sinm−2 (x) dx (1.42)

Similar reduction formulas exist for each of the
elementary trig functions. Each of the following is
attained by integration by parts and the label trick:∫

cosm (x) dx =
1

m
cosm−1 (x) sin (x)

∣∣∣∣
+

m− 1

m

∫
cosm−2 (x) dx (1.43)

∫
tanm (x) dx =

1

m− 1
tanm−1 (x)

∣∣∣∣
−
∫

tanm−2 (x) dx (1.44)

∫
cscm (x) dx =

−1

m− 1
cscm−2 (x) cot (x)

∣∣∣∣
+

m− 2

m− 1

∫
cscm−2 (x) dx (1.45)
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∫
secm (x) dx =

1

m− 1
secm−2 (x) tan (x)

∣∣∣∣
+

m− 2

m− 1

∫
secm−2 (x) dx (1.46)

∫
cotm (x) dx =

−1

m− 1
cotm−1 (x)

∣∣∣∣
−
∫

cotm−2 (x) dx (1.47)

Another reduction formula that mixes the sine
and cosine can be established. Consider the case

I =

∫
sinm (x) cosn (x) dx .

By letting u = sinm−1 (x) and following the conse-
quences, one finds∫

sinm (x) cosn (x) dx =

− 1

m+ n
sinm−1 (x) cosn+1 (x)

∣∣∣∣
+

m− 1

m+ n

∫
sinm−2 (x) cosn (x) dx .

(1.48)

Note that this result reproduces Equation (1.42) for
n = 0.

A different result is attained by letting u =
cosn−1 (x):∫

sinm (x) cosn (x) dx =

1

m+ n
sinm+1 (x) cosn−1 (x)

∣∣∣∣
+

n− 1

m+ n

∫
sinm (x) cosn−2 (x) dx .

(1.49)

Note that this result reproduces Equation (1.43) for
m = 0.

Mixed Wavelengths

Starting with the product formula

2 sin (α) cos (β) =

sin (α+ β) + sin (α− β) ,

suppose that α, β are multiples of an angle θ

α = mθ

β = nθ

for non-equal integers m, n.
Next apply the integral operator

∫
dθ across the

whole equation

2

∫
sin (mθ) cos (nθ) dθ =

∫
sin (mθ + nθ) dθ

+

∫
sin (mθ − nθ) dθ ,

and simplify:∫
sin (mθ) cos (nθ) dθ = (1.50)

− cos ((m+ n) θ)

2 (m+ n)
− cos ((m− n) θ)

2 (m− n)
+ C

More product formula exploits lead to additional
mixed-wavelength integral identities:∫

cos (mθ) cos (nθ) dθ = (1.51)

sin ((m+ n) θ)

2 (m+ n)
+

sin ((m− n) θ)

2 (m− n)
+ C

∫
sin (mθ) sin (nθ) dθ = (1.52)

− sin ((m+ n) θ)

2 (m+ n)
+

sin ((m− n) θ)

2 (m− n)
+ C

Orthogonality

Evaluating the mixed-wavelength integral identities
(1.50)-(1.52), in various domains of length 2π leads
to some additional information called orthogonality
relations. (Keep in mind that m, n are different in-
tegers.)

Choosing [−π : π] first, we find∫ π

−π

sin (mθ) cos (nθ) dθ = 0∫ π

−π

cos (mθ) cos (nθ) dθ = 0∫ π

−π

sin (mθ) sin (nθ) dθ = 0

The same results hold when the domain is
changed to [0 : 2π]:∫ 2π

0

sin (mθ) cos (nθ) dθ = 0∫ 2π

0

cos (mθ) cos (nθ) dθ = 0∫ 2π

0

sin (mθ) sin (nθ) dθ = 0
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When the wavelengths m, n are one and the same
integer m, two results switch to nonzero∫ π

−π

cos2 (mθ) dθ =

∫ 2π

0

cos2 (mθ) dθ = π∫ π

−π

sin2 (mθ) dθ =

∫ 2π

0

sin2 (mθ) dθ = π ,

and the case that mixes sine and cosine remains zero:∫ π

−π

sin (mθ) cos (mθ) dθ

=

∫ 2π

0

sin (mθ) cos (mθ) dθ = 0

3.9 Trigonometric Substitution

Each of the following integrals

I1 =

∫
dx

x2
√
x2 + a2

I2 =

∫ √
a2 − x2

x2
dx

I3 =

∫
dx

(x2 − a2)
3/2

for nonzero constant a are difficult to solve by stan-
dard u-substitution or integration by parts. In fact,
each requires a different trick called trigonometric
substitution.

Tangent Substitution

When the integrand contains x2 + a2, let

x = a tan (θ) ,

so then

dx = a sec2 (θ) dθ .

By standard trig identities, the quantity x2 + a2 be-
comes

x2 + a2 = a2 sec2 (θ) .

With this, the integral I1 transforms into some-
thing we can solve:

I1 =

∫
a sec2 (θ)

a3 tan2 (θ) sec (θ)
dθ =

1

a2

∫
d (sin (θ))

sin2 (θ)

Problem 8
Use the above as a starting point to prove:∫

dx

x2
√
x2 + a2

= −
√
x2 + a2

a2x
+ C

Sine Substitution

When the integrand contains a2 − x2, let

x = a sin (θ) ,

so then

dx = a cos (θ) dθ .

By standard trig identities, the quantity a2 − x2 be-
comes

a2 − x2 = a2 cos2 (θ) .

With the sine substitution, the integral I2 reduces
to a simpler problem:

I2 =

∫
a2 cos2 (θ)

a2 sin2 (θ)
dθ =

∫
cot2 (θ) dθ

Problem 9

Use the above as a starting point to prove:

∫ √
a2 − x2

x2
dx = − arcsin

(x
a

)
−

√
a2 − x2

x
+ C

Secant Substitution

When the integrand contains x2 − a2, let

x = a sec (θ) ,

so then

dx = a sec (θ) tan (θ) dθ .

By standard trig identities, the quantity x2 − a2 be-
comes

x2 − a2 = a2 tan2 (θ) .

With the sine substitution, the integral I3 reduces
to a simpler problem:

I3 =
1

a2

∫
d (sin (θ))

sin2 (θ)
dθ

Problem 10

Use the above as a starting point to prove:∫
dx

(x2 − a2)
3/2

=
−x

a2
√
x2 − a2

+ C
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Trigonometric Ratios

Rational functions of sine and cosine land to a par-
ticular u-substitution:

u = tan (θ/2) .

From the trigonometric half-angle formulas, we can
next write

cos (θ) =
1− u2

1 + u2

sin (θ) =
2u

1 + u2
,

and

u =
sin (θ)

1 + cos (θ)

du =
1

2

(
1 + u2

)
dθ .

With this substitution, integrals of the form

I =

∫
f (sin (θ) , cos (θ)) dθ

can be written:

I =

∫
f

(
2u

1 + u2
,
1− u2

1 + u2

)
du

1 + u2

In the general case, this substitution works when the
function being integrated is a polynomial of two vari-
ables or a ratio of two polynomials.

To illustrate, consider the indefinite integral

J =

∫
dθ

3 + cos (θ)
.

Using the above substitutions, the integral becomes

J =

∫
du

2 + u2
.

Problem 11
Use the above as a starting point to prove:∫

dθ

3 + cos (θ)
=

1√
2
arctan

(
1√
2
tan

(
θ

2

))
+ C

Arcsecant and Arccosecant

The integrals of the arcsecant and the arccosecant
have to be cracked with trigonometric substitution.
For

I =

∫
arcsec (x) dx ,

proceed with integration by parts to write

U = arcsec (x)

dV = dx

such that

dU =
dx

x
√
x2 − 1

V = x .

The integral becomes∫
arcsec (x) dx = x arcsec (x)

∣∣∣∣− ∫ dx√
x2 − 1

.

The new integral on the right is handled by a se-
cant substitution. Let

x = sec (θ)

such that

dx = sec (θ) tan (θ) dθ ,

and √
x2 − 1 = tan (θ) ,

so we have ∫
dx√
x2 − 1

=

∫
sec (θ) dθ .

The integral of the secant has a known solution,
namely∫

sec (θ) dθ = ln (sec (θ) + tan (θ)) + C ,

or, in terms of the x-variable,∫
sec (θ) dθ = ln

(
x+

√
x2 − 1

)
+ C .

Finally, we have the answer:∫
arcsec (x) dx = x arcsec (x)

∣∣∣∣
− ln

(
x+

√
x2 − 1

)
+ C (1.53)

Problem 12

Do a similar exercise for the arccosecant:∫
arccsc (x) dx = x arccsc (x)

∣∣∣∣
+ ln

(
x+

√
x2 − 1

)
+ C (1.54)
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Area of the Ellipse

For the ellipse defined by

x2

a2
+

y2

b2
= 1 ,

the area contained in the first quadrant (a quarter of
the ellipse) is given by

A =

∫ a

0

y (x) dx .

It also happens that the same ellipse can be de-
scribed using a pair of parametric equations, partic-
ularly

x = a cos (θ)

y = b sin (θ) ,

easily shown to reproduce the Cartesian formula.
Substituting the above equations for x, y into the
area integral changes the integration variable to θ:

A = −ab

∫ 0

π/2

sin2 (θ) dθ

The integral of the square of the sine is well known
by known, particularly by equation (1.34). Evaluat-
ing the definite integral gives the final answer:

A = −ab

(
−π

4

)
=

1

4
πab

The area of the complete ellipse is πab.

Problem 13
Show that the area of the ellipse

ax2 + bxy + cy2 = 1

is equal to

A =
2π√

4ac− b2
.

Hint: Rotate the coordinates and write the area of
the same ellipse in the rotated system.

3.10 Mirror Trick

A lesser-known technique we’ll call the mirror trick
can help with integrals such as

J =

∫ π/2

0

√
sin (θ)√

sin (θ) +
√
cos (θ)

dθ .

For practice, consider the definite integral of a
well-behaved function g (x):

I =

∫ b

a

g (x) dx

By making the substitution

u = b+ a− x

du = −dx ,

we find

I =

∫ a

b

g (b+ a− u) (−du) .

Of course, the integration variable itself can be
swapped with any other letter, so we come up with
a second equation for J involving the integral in the
x-domain:

I =

∫ b

a

g (b+ a− x) dx

The same idea can be applied to a different inte-
gral

K =

∫ b

a

g (x)

g (b+ a− x) + g (x)
dx ,

which, using the same u-substitution u = b + a − x,
becomes

K =

∫ a

b

g (b+ a− u)

g (u) + g (b+ a− u)
(−du) ,

or equivalently

K =

∫ b

a

g (b+ a− x)

g (x) + g (b+ a− x)
dx .

Take the two expressions for K and take their
sum,

2K =

∫ b

a

g (x) + g (b+ a− x)

g (x) + g (b+ a− x)
dx ,

and notice the entire integrand cancels, leaving

K =
b− a

2
.

Evidently, the result of integral K has nothing to do
with the function being integrated, only the limits
matter:∫ b

a

g (x)

g (b+ a− x) + g (x)
dx =

b− a

2
(1.55)

Returning to the problem on hand, the integral J
can be written

J =

∫ π/2

0

√
sin (θ)√

sin (θ) +
√
sin (π/2− θ)

dθ .

Comparing this to Equation (1.55), let a = 0 and
b = π/2 and the result is half their difference:

J =
π

4
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3.11 Series Expansion

Integration and series expansion play nicely together
and are used often to approximate the solution to
otherwise insoluble integrals.

Physical Pendulum

It’s possible to show using energy conservation that
a frictionless pendulum of length L and mass m in
uniform gravity is governed by

dθ

dt
=

√
2g

L

√
cos (θ)− cos (θ0) ,

where θ is the deflection of the pendulum from verti-
cal and θ0 represents the highest position attainable
where motion momentarily stops. This is a ‘separa-
ble’ equation, and can be reshuffled as an indefinite
integral: ∫

dθ√
cos (θ)− cos (θ0)

=

√
2g

L

∫
dt

The left side needs some preparation before pro-
ceeding. The cosine terms are replaced using the half-
angle formula

1− cos (θ) = 2 sin2
(
θ

2

)
.

Also define

sin (ϕ) =
1

a
sin

(
θ

2

)
,

where

a = sin

(
θ0
2

)
,

implying

dθ = 2a

√
1− sin2 (ϕ)√

1− a2 sin2 (ϕ)
dϕ .

With these substitutions, the integral on hand be-
comes ∫

dϕ√
1− a2 sin2 (ϕ)

=

√
g

L

∫
dt .

The left side is called an elliptic integral, and has no
simple closed-form solution in general.

Despite the above elliptic integral, we can still use
it to crank out an answer. Let t = 0 correspond to
θ = 0 and ϕ = 0, which is the lowest position avail-
able to the pendulum. After one period of motion
at t = T , i.e. once the angle θ has returned to zero

again, and the value 2π has accumulated in ϕ. We
then have a formula for the period of the motion:√

g

L

∫ T

0

dt =

∫ 2π

0

dϕ√
1− a2 sin2 (ϕ)

.

On the right, use the Taylor expansion of the rad-
ical to write

1√
1− a2 sin2 (ϕ)

≈ 1 +
1

2
a2 sin2 (ϕ)

+
3

8
a4 sin4 (ϕ) + · · · ,

which only works when a sin (ϕ) is a relatively ‘small’
number.

While we have paid with some accuracy and gen-
erality, the thing we gain is that the right side can be
integrated. Going term by term it helps to know∫ 2π

0

sin2 (ϕ) dϕ = π∫ 2π

0

sin4 (ϕ) dϕ =
3π

4
,

attainable by elementary means or using a trigono-
metric reduction formula.

The integral for the period reduces to

T ≈ 2π

√
L

g

(
1 +

a2

4
+

9a4

64
+ · · ·

)
.

If the initial angle θ0 is much less than one, we further
have

a2 ≈ θ20
4

,

or

T ≈ 2π

√
L

g

(
1 +

θ20
16

)
.

From this we get the familiar period of the simple
pendulum, along with a correction that accounts for
more extreme initial conditions.

Shifted Natural Logarithm

Starting with Equation (1.20), namely

ln (1 + x) + C =

∫
dx

1 + x
,

consider the scenario |x| < 1.
In this case, the fraction 1/ (1 + x) can be re-

placed via the geometric series:

ln (1 + x) + C =

∫ (
1− x+ x2 − x3 + · · ·

)
dx
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The whole right side can be integrated quite easily:

ln (1 + x) + C = x− x2

2
+

x3

3
− · · ·

The integration constant is zero by construction, and
we end up with an infinite series for the shifted nat-
ural logarithm:

ln (1 + x) = x− x2

2
+

x3

3
− · · ·

This result is in fact the same thing we’d get by
Taylor expanding ln (1 + x) near x = 0. Unlike the
Taylor expansion however, we can now say for certain
that the series approximation of ln (1 + x) converges
for |x| < 1. We can be a little naughty and try x = 1
exactly to come up with an infinite approximation for
ln (2):

ln (2) = 1− 1

2
+

1

3
− 1

4
+ · · · (1.56)

Arctangent

Recall that the derivative of the arctangent function

d

dx
arctan (x) =

1

1 + x2
,

and consider the case |x| < 1. The right side expands
as a geometric series:

d

dx
arctan (x) = 1− x2 + x4 − x6 + · · ·

Apply the
∫
dx operator to both sides and sim-

plify, to get, for |x| < 1,

arctan (x) = x− x3

3
+

x5

5
− x7

7
+ · · · .

The integration constant is easily ruled to be zero
and is omitted. Nor surprisingly, this is what emerges
when Taylor expanding arctan (x) near x = 0.

The infinite expression for the arctangent can be
used to come up with an expression for π/4 by setting
x = 1,

π

4
≈ 1− 1

3
+

1

5
− 1

7
+ · · · , (1.57)

called the Leibniz formula.

It’s important to note that Equations (1.56),
(1.57) each send x = 1 to the geometric series, which
may seem illegal, as this is where the geometric se-
ries is supposed to lose jurisdiction. Technically, each
result is attained by letting x → 1 in a formal limit,
and making sure divergence does not occur.

Sine of X Squared

Innocent as it appears, the indefinite integral

I =

∫
sin
(
x2
)
dx

has no elementary solution. To make headway, re-
place the sine function with its exact polynomial rep-
resentation, namely

sin
(
x2
)
= x2 − x6

3!
+

x10

5!
− · · · .

Suddenly, we see a path forward. By trading any
possibility of a closed solution, we can at least deal
with the right side. Integrate each term and a strange
answer emerges:∫

sin
(
x2
)
dx =

x3

3
− x7

42
+

x11

1320
− · · · (1.58)

3.12 Stirling’s Approximation

There is an important relationship governing very
large whole numbers called Stirling’s approximation,
given by

n! ≈
(n
e

)n √
2πn .

While a full derivation is beyond the scope of this
section, we can establish a slightly weaker version,
namely

n! ≈
(n
e

)n
. (1.59)

Derivation

To begin, write n! in open form, namely

n! = n (n− 1) (n− 2) (n− 3) · · · (2) (1) ,

then take the natural log of both sides to write

ln (n!) = ln (n) + ln (n− 1) + ln (n− 2) + · · · ,

and condense the right using summation notation:

ln (n!) =

n∑
j=1

ln (j)

Now, this almost looks like a Riemann sum if
it weren’t for the conspicuous absence of a ∆x-like
term. However, since the sum runs over whole num-
bers only, there is an effective ∆xj = 1 at play:

ln (n!) =

n∑
j=1

ln (j)∆xj
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Even though ∆xj cannot be pushed to zero, the
above sum can be approximated as continuous any-
way, but only for very large n. Working in this
regime, we can replace the above with

ln (n!) ≈
∫ n

1

ln (x) dx ,

solved by

ln (n!) ≈ (ln (x)− x)

∣∣∣∣n
1

,

having approximate solution

ln (n!) ≈ ln (n)− n .

Apply the exp () operator to isolate the factorial
term, and Equation (1.59) emerges.

Strange Product

Let us simplify the quantity

A = lim
n→∞

(
(n+ 1) (n+ 2) · · · (3n)

n2n

)1/n

as far as possible.
One way to proceed is to take the natural log of

both sides and simplify:

ln (A) = lim
n→∞

ln (n+ 1) + · · ·+ ln (3n)− 2n ln (n)

n

There are 2n total positive terms in the sum
above, so we can break apart the negative term into
2n parts and subtract ln (n) from each positive term
to get:

ln (A) = lim
n→∞

1

n
·(

ln

(
1 +

1

n

)
+ ln

(
1 +

2

n

)
+ · · ·+ ln

(
1 +

2n

n

))
Simplifying, this is

ln (A) = lim
n→∞

2n∑
j=1

ln

(
1 +

j

n

)
1

n
.

Using the same trick that led to Stirling’s approx-
imation, argue that because the largeness of j will
dominate anything to do with small j, the sum can
be considered continuous with

xj = j/n

∆x = 1/n .

In this regime, we have, approximately:

ln (A) ≈
∫ 2

0

ln (1 + x) dx ,

equivalent to

ln (A) ≈
∫ 3

1

ln (u) du ,

having solution

ln (A) ≈ (u ln (u)− u)

∣∣∣∣3
1

,

or
ln (A) ≈ 3 ln (3)− 2 ,

and, finally,

A ≈ 33

e2
.

Let us now do the same calculation using Stirling’s
approximation. First notice A can be written

A = lim
n→∞

(
1

n2n

(3n)!

n!

)1/n

,

and then Equation (1.59) tells us

A ≈ lim
n→∞

(
1

n2n

(3n)
3n

e3n
en

nn

)1/n

,

reducing to A ≈ 33/e2, as expected. All n-
dependence cancels out.

Strange Function

Consider the function

A (x) = lim
n→∞

(
1

nxn

((x+ 1)n)!

n!

)1/n

,

where x = 2 reproduces the previous product.
Following similar steps, it’s straightforward to

show that

ln (A (x)) = lim
n→∞

xn∑
j=1

ln

(
1 +

j

n

)
1

n
,

or

ln (A (x)) ≈
∫ x

0

ln (1 + t) dt ,

but let’s resist solving the integral.
Attack the problem a second way using Stirling’s

approximation to get

A (x) ≈ (x+ 1)
x+1

ex
,

or
ln (A (x)) = (x+ 1) ln (x+ 1)− x .

With two ways to express ln (A), eliminate it to con-
clude∫

ln (1 + x) dx = (x+ 1) ln (x+ 1)− x+ C ,

which happens to be correct.
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4 Integrals and Geometry

4.1 Arc Length

Integration is the tool for calculating the arc length
of a differentiable curve y = f (x). At a given point
(x, y) on such a curve, there is a neighboring point
(x+ dx, y + dy) connected by a straight line of length

dS =
√

dx2 + dy2 .

The term dx can be pulled out of the radical to
get

dS = dx

√
1 +

(
dy

dx

)2

,

and notice the ratio dy/dx is none other than the
slope f ′ (x) of the curve being measured.

The integral over dS is the total length of the
curve between a set of endpoints x0, x1:

S =

∫
dS =

∫ x1

x0

√
1 + (f ′ (x))

2
dx (1.60)

Note that a similar formula can be derived by remov-
ing dy from the radical and ending up with an integral
in the y-domain.

Problem 1

Show that the arc length of a symmetric parabolic
segment of base 2a and height h is:

L =
a2

h

∫ 2h/a

0

√
1 + x2 dx

=
√

a2 + 4h2 +
a2

2h
ln

(
2h+

√
a2 + 4h2

a

)

Hint: You may need the secant reduction formula.

Problem 2

Show that the arc length of an ellipse with eccen-
tricity e is given by the complete elliptic integral of
the second kind :

L = 4a

∫ π/2

0

√
1− e2 sin2 (θ) dθ

Problem 3

Show that the arc length of a hyperbola with ec-
centricity e is given by another elliptic integral:

L = 4a

∫ √
e2 cosh2 (θ)− 1 dθ

4.2 Volume of Revolution

A sneaky way to calculate certain three-dimensional
volumes using one-dimensional integrals can be es-
tablished. For this we require differentiable functions
y = f (x) that are greater than zero in the domain
x0 ≤ x ≤ x1.

Circular Disk Method

A three-dimensional volume with axial symmetry can
be produced by rotating the curve y (x) about the x-
axis. Each height y on the curve is swung around
one full revolution to trace out a disk of area πy2,
and the total volume enclosed is the sum across the
grain of many infinitely-thin disks. As an integral,
such a volume of revolution is given by:

V =

∫ x1

x0

π (f (x))
2
dx (1.61)

Problem 4
Show that a cone of height H and base radius R

has volume

V =
1

3
πR2H .

Problem 5
Use elementary methods to show that a cone frus-

tum of height H with end radii R1, R2 has volume

V =
1

3
π
(
R2

1 +R1R2 +R2
2

)
H .

Use the disk method with the line

y =

(
R2 −R1

H

)
x+R1

to get the same answer.

Problem 6
A paraboloid is the volume formed by a parabola

rotated about its axis of symmetry. Show that the
volume of a paraboloid of height H and base radius
R is given by

V =
1

2
πR2H .

Hint: Rotate the parabola y = Hx2/R2 about the
y-axis and x becomes the disk radius.

Square Disk Method

Modifying the circular disk method, one can imag-
ine summing across square disks instead. To illus-
trate, suppose a pyramid with square cross section
has height h, length l, and width w.
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We’ll take the square cross section as parallel to
the xy-plane, and we will integrate vertically along z.
For a given height z ≤ h, the dimensions of a ‘square
disk’ are

x (z) = z l/h

y (z) = y w/h .

The total volume the pyramid is

V =
lw

h2

∫ h

0

z2dz =
lwh

3
.

Washer Method

Introducing a second function g (x) that is less than
f (x) but greater than zero in the domain, we can
calculate the volume of revolution trapped between
the two curves. In this case, simply subtract the area
of one disk from the other to form a ‘washer’. The
corresponding volume integral becomes:

V =

∫ x1

x0

π
(
(f (x))

2 − (g (x))
2
)
dx (1.62)

Problem 7
In the domain 0 ≤ x ≤ 1, consider the two curves

y1 = 1 + sin (πx)

y2 = x2

as shown. Write an expression for the volume of rev-
olution about the x-axis and also the y-axis.

0.5 1

0.5

1

1.5

2

x

y

Hint: For the x-axis rotation, you should find:

Vx = π

∫ 1

0

(
(1 + sin (πx))

2 − x4
)
dx

Then, with

x1 =
√
y

x2 =
1

π
arcsin (y − 1) ,

find

Vy = π

∫ 1

0

y dy + π

∫ 2

1

(
(1− x2)

2 − x2
2

)
dy .

Cylindrical Shell Method

A different volume of revolution is attained by rotat-
ing the function y = f (x) about the y-axis. In this
case, a three-dimensional volume is made of many
concentric cylindrical shells.

For a point x in the domain, along with a neigh-
boring point x+ dx, rotating about the y-axis traces
a pair of circles whose radii differ by dx. The height
of each circle is f (x), f (x+ dx) respectively. This
defines a cylindrical ‘shell’ having volume

dVshell = π (x+ dx)
2
f (x+ dx)

− π (x)
2
f (x) ,

or, in the first-order limit,

dVshell = 2πxf (x) dx .

In essence, we see that the volume of a thin cylin-
drical shell is the same as that of a rectangle of thick-
ness dx, height f (x), and width 2πx. The total vol-
ume is the integral of thin shells:

V =

∫
dVshell =

∫ x1

x0

2πxf (x) dx (1.63)

Problem 8

Show that the volume of the upper half of a sphere
of radius R is given by

V =

∫ R

0

2πx
√

R2 − x2 dx =
2

3
πR3 .

Problem 9

Use the offset circle

(x−R)
2
+ y2 = a2

to find the volume of a torus:

V = 2

∫ R+a

R−a

2πx

√
a2 − (x−R)

2
dx = 2π2Ra2
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4.3 Surface of Revolution

A technique similar to the volume of revolution can
tell us the surface area of revolution of a solid gener-
ated by a function y = f (x).

For a point x in the domain, along with a neigh-
boring point x+ dx, rotating about the x-axis traces
a pair of circles parallel to the yz plane. The cir-
cumference of each circle is 2πy, 2π (y + dy), respec-
tively. We can take each circumference as the edges
of a skinny trapezoid whose width is the arc length

dw =
√
dx2 + dy2 ,

and the area of such a trapezoid is

dA = π (2y + dy) dw .

In the first-order limit, we can write the differen-
tial area:

dA = 2πy

√
1 +

(
dy

dx

)2

dx

Summing across the grain of many thin strips will
cover the surface and reveal the total area of revolu-
tion for y = f (x):

A =

∫ x1

x0

2πy

√
1 +

(
dy

dx

)2

dx (1.64)

Gabriel’s Horn

Consider the hyperbola

y =
1

x

in the domain
1 ≤ x < ∞ .

The volume of revolution of this particular shape
is called Gabriel’s horn, and contains an interesting
‘paradox’. Computing the volume of Gabriel’s horn
is straightforward:

V =

∫ ∞

1

π

(
1

x

)2

dx = 1

Watch what happens if we try to compute the
surface area:

A =

∫ ∞

1

2π

(
1

x

)√
1 +

1

x4
dx

The square root term makes the integral rather ugly,
but notice how its presence always scales the inte-
grand higher. This means we can also write

A >

∫ ∞

1

2π

(
1

x

)
, dx

which means

A > 2π (ln (∞)− ln (1)) .

What? The area is somehow infinite - the math
was done correctly. But this shouldn’t be, because
the volume is a finite number. Some argued that fill-
ing the horn with a finite volume of paint is equivalent
to painting the inside, which ought to make the area
finite. Others pointed out that an infinite horn can-
not be physically constructed, and that paint flows
at a finite speed and would take forever to flow into
the horn.

This ‘paradox’ was known to seventeenth-century
mathematicians, not excluding Hobbes, Wallis, and
Galileo, originally brought to public attention by Tor-
ricelli.

There really is no paradox on hand, and paint is
a bad analogy. Keep in mind that paint is a three-
dimensional fluid. Filling Gabriel’s horn with fluid
returns to the original problem - what’s the surface
area of the paint (excluding the end disc)?

Another way to illustrate the point is to compare
the rates of change of the volume and surface with
respect to x. Using

dV

dx
= π

(
1

x

)2

dA

dx
= 2π

(
1

x

)√
1 +

1

x4
,

define the rate

R =
dV/dx

dA/dx
,

simplifying to

R =
1

2x
√

1 + 1/x4
.

This rate vanishes in the limit x → ∞, which means
the area outpaces the volume in the long run.

4.4 Centroid

...

Problem 10

Show that the centroid of a parabolic segment of
height h is ȳ = 2h/5.

Problem 11

Show that the centroid of a half-ellipse of base 2a
and vertex height b is ȳ = 4b/3π.
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4.5 The Cycloid

Definition

Let a ‘generating’ circle of radius R roll on the x axis.
As the circle moves, the point on the rim originally at
(0, 0) traces the shape of a cycloid as shown in Figure
1.1.

π
2R πR 3π

2 R 2πR

−2R

2R

4R

x

y

Figure 1.1: The cycloid with generating circle.

Parameterization

There is no simple expression y (x) for the cycloid.
Instead we introduce a parameter θ that tracks the
evolution of the generating circle. In terms of θ, the
shape of the cycloid is given by

x (θ) = Rθ −R sin (θ) (1.65)

y (θ) = R−R cos (θ) . (1.66)

The cycloid is clearly periodic in the variable θ.
While θ can take on any real value and still represent
a cycloid, we’ll stay interested in the domain [0 : 2π].

Velocity Envelope

Supposing θ evolves in a smooth and differentiable
manner, we can take derivatives with respect to θ.
For brevity, define

ω (t) =
d

dθ
θ (t) ,

and calculate the time derivative of x (θ), y (θ) to get:

dx

dt
= Rω −Rω cos (θ)

dy

dt
= Rω sin (θ)

If we isolate the trig terms and square each equa-
tion, the fundamental trig identity can be used to
derive (

dx

dt
−Rω

)2

+

(
dy

dt

)2

= (Rω)
2
,

which is called the envelope of velocities of the cy-
cloid. Plotted in velocity space, the above depicts a
circle of radius Rω centered at (Rω, 0).

Tangent Line

At a point (x0, y0) on the cycloid, the slope is still
given by dy/dx at that point, despite using a param-
eterized representation of the curve. Calculating the
slope is a matter of the chain rule:

dy

dx
=

dy

dθ

dθ

dx
=

dy

dθ

(
dx

dθ

)−1

Carrying this out, we find

dy

dx
=

sin (θ)

1− cos (θ)
= cot

(
θ

2

)
.

This is enough to write down a equation for the
tangent line to the cycloid:

ytan = y0 + cot

(
θ

2

)
(x− x0)

Replacing x0, y0 with their representations in θ gives
a neater formula, after some simplifying:

ytan = 2R+ cot

(
θ

2

)
(x−Rθ)

Interestingly, we see that the tangent line always
passes through the point (Rθ, 2R), which is the top
of the generating circle as it goes along.

Problem 12
A stone lodged on the rim of a bicycle tire of ra-

dius R dislodges at the height of its cycloidic path.
Determine its trajectory after leaving the tire. An-
swer:

x (t) = Rπ + 2Rωt

y (t) = 2R− gt2/2

Normal Line

Knowing the slope at any point (x0, y0) on the cy-
cloid, we can write an expression for the normal line
at the same point:

ynorm = y0 − tan

(
θ

2

)
(x− x0)
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Like the case for the tangent line, replacing x0, y0
with their representations in θ gives a neater formula,
after some simplifying:

ynorm = − tan

(
θ

2

)
(x−Rθ)

From this, wee see that the normal line always hits
the point of contact between the generating the circle
and the line on which it rolls.

Arc Length

The arc length of the cycloid is straightforwardly cal-
culated from Equation (1.60). For this, we start with

S =

∫ 2πR

0

√
1 +

(
dy

dx

)2

dx ,

which, after substituting x (θ), y (θ) becomes

S =
√
2R

∫ 2π

0

√
1− cos (θ) dθ ,

readily simplifying to

S = 2R

∫ 2π

0

sin

(
θ

2

)
dθ = 8R .

Area Enclosed

The area enclosed by the cycloid and the x-axis is
given by the standard setup:

A =

∫ 2πR

0

y dx = R2

∫ 2π

0

(1− cos (θ))
2
dθ

The remaining integral is straightforwardly solved,
and we find the enclosed area to be three times that
of the generating circle:

A = 3πR2

Volume Enclosed

A cycloid revolved about the x-axis encloses a volume
that we can calculate with the circular disk method,
i.e. Equation (1.61). For this case, we have, after
simplifying

V =

∫ 2π

0

πR2 (1− cos (θ))
3
dθ .

The remaining integral is a bit tedious but isn’t dif-
ficult, ending with

V = 5π2R3 .

Surface Area

The surface of revolution made by revolving a cycloid
about the x-axis is straightforwardly given by Equa-
tion (1.64). Here, we have

A = 2
√
2πR2

∫ 2π

0

(1− cos (θ))
3/2

dθ .

The remaining integral is tricky to evaluate but not
impossible. Leaving the details for an exercise, we
ultimately find

A =
(
2
√
2πR2

)(16
√
2

3

)
=

64

3
πR2 .

Tautochrone

Consider a cycloid flipped upside-down, described by

x (θ) = Rθ −R sin (θ)

y (θ) = −R+R cos (θ) .

Pretending we have constructed a ramp in such a
shape, let us analyze the sliding (not rolling) motion
of a body of mass m placed at rest on the ramp.

In uniform gravity, the system respects an energy
constant

E =
1

2
mv2 +mgy ,

where v is the velocity of the body in motion, g is the
local gravitational acceleration, and y is the height
above y = 0. Assuming the object begins at rest, we
also have

E = mgy0 ,

where y0 is the initial height of the body.
With this setup, it’s useful to know the total time

T required for the body to slide to the bottom of the
inverted cycloid. As an integral, we have, at least
provisionally,

T =

∫ −2R

y0

dt ,

and the job is recast the integral in variables we know.
Proceed by replacing dt with something akin to

arc length, namely

dS = v (t) dt .

Meanwhile, we know from geometry that

dS2 = dx2 + dy2 .

This is enough to wrestle the time integral into some-
thing manageable:

T =

∫ Rπ

x0

√
1 +

(
dy

dx

)2
dx√

2g (y0 − y)
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We haven’t used the equations of the cycloid yet,
so proceed by using

y0 − y = R (cos (θ0)− cos (θ))

dx = R (1− cos (θ)) dθ

dy = −R sin (θ) dθ ,

and the above simplifies to

T =

√
R

g

∫ π

θ0

√
1− cos (θ) dθ√

cos (θ0)− cos (θ)
.

Note that θ0 corresponds to the initial position
(x0, y0), and θ = π occurs when the sliding body
reaches the bottom of the curve.

Ugly as it is, the time integral can be solved after
making a few substitutions that are left for an exer-
cise to the reader to find. As a hint, you should first
have

T =

√
R

g

∫ π

θ0

sin (θ/2) dθ√
cos2 (θ0/2)− cos2 (θ/2)

,

and then

T =

√
R

g

∫ 0

1

−2du√
1− u2

.

Keep on solving with yet another u-substitution, and
the final answer comes out to

T = π

√
R

g
.

Remarkably, the final answer T = π
√
R/g makes

no mention of the initial position (x0, y0) of the slid-
ing body. This is to say that the time to slide to
the bottom of a cycloid is always the same. No other
known curve has this feature. The Ancient Greeks
called this the tautochrone.

5 Series Analysis

Integration is a powerful addition to the toolkit for
analyzing infinite sums, particularly on the issues of
convergence and divergence.

5.1 Taylor Series

The most versatile series is surely the Taylor series,
which tells that a function f (x) at a point x0 is ap-
proximated by a polynomial p (x) involving deriva-
tives f (q) (x0):

p (x) = f (x0) +

n∑
q=1

1

q!
f (q) (x0) (x− x0)

j
+Rn (x)

For large n approaching infinity, the remainder term
Rn (x) vanishes if the series is to converge.

Derivation

To derive Taylor’s theorem, begin with the funda-
mental theorem of calculus, i.e. Equation (1.2), and
isolate f (x):

f (x) = f (x0) +

∫ x

x0

f (1) (t) dt

Of course, the function f (1) (t) could itself be approx-
imated to first order using the fundamental theorem

f (1) (t) = f (1) (x0) +

∫ t

x0

f (2) (u) du ,

which begs substitution into the above, giving:

f (x) = f (x0) +

∫ x

x0

(
f (1) (x0) +

∫ t

x0

f (2) (u) du

)
dt

After simplifying, we see the familiar first-order Tay-
lor series term trailed by a messy integral:

f (x) = f (x0) + f (1) (x0) (x− x0)

+

∫ x

x0

(∫ t

x0

f (2) (u) du

)
dt

Trudging forward, take f (2) (u) to first order

f (2) (u) = f (2) (x0) +

∫ w

x0

f (3) (w) dw ,

and substitute into the preceding integral. This first
means having to solve

I =

∫ x

x0

(∫ t

x0

f (2) (x0) du

)
dt .

Knowing f (2) (x0) is constant, proceed using brute
force to find

I = f (2) (x0)

∫ x

x0

(∫ t

x0

du

)
dt

= f (2) (x0)

∫ x

x0

(t− x0) dt

= f (2) (x0)

(
t2

2
− x0t

) ∣∣∣∣x
x0

=
1

2
f (2) (x0) (x− x0)

2
.
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Interestingly, this is the second-order term in the Tay-
lor series of f (x). To summarize:

f (x) = f (x0) + f (1) (x0) (x− x0)

+
1

2
f (2) (x0) (x− x0)

2

+

∫ x

x0

(∫ t

x0

(∫ u

x0

f (3) (w) dw

)
du

)
dt

Repeating the steps that got us this far, use the
first-order approximation of f (3) (w). The obligatory
integral to solve is

J = f (3) (x0)

∫ x

x0

(∫ t

x0

(∫ u

x0

dw

)
du

)
dt ,

which after a bit of grinding, comes out to

J =
1

3!
f (3) (x0) (x− x0)

3
.

By now we’re seeing a pattern, particularly:

f (x) = f (x0) + f (1) (x0) (x− x0)

+
1

2
f (2) (x0) (x− x0)

2

+
1

3!
f (3) (x0) (x− x0)

3

+R3 (x) ,

where R3 (x) is given by∫ x

x0

(∫ t

x0

(∫ u

x0

(∫ v

x0

f (4) (v) dv

)
dw

)
du

)
dt .

Remainder

In the general case, the remainder term Rn (x) always
contains a polynomial term plus an integral. Since
the integral part ends up being higher order than n,
we can always push the hard work to the next step,
so to speak, and take as the remainder term:

Rn (x) =
1

(n+ 1)!
f (n+1) (x0) (x− x0)

n+1

6 Mass Between Springs

Consider a point mass m in the center of two springs
pulled tight and mounted distance L apart, ignor-
ing gravity. The left spring has constant ka, and the
right has spring constant kb, and both springs have
rest length L0 < L/2.

6.1 Rest Condition

When the system is not in motion, the mass will rest
somewhere between the endpoints toward the stiffer
spring, not necessarily at x = L/2. To work this out,
balance all relevant forces in the x- and y-directions:

m
d2y

dt2
= F y

net = 0

m
d2x

dt2
= F x

net = Fa + Fb ,

and each left size is zero for the rest condition. Each
force Fa, Fb obeys Hooke’s law:

Fspring = −kx

Letting a constant q denote the position of the
mass away from x = L/2, the above tells us:

0 = −ka

(
−L0 +

L

2
− q

)
+ kb

(
−L0 +

L

2
+ q

)
Solving for q tells us where the system rests:

q =

(
ka − kb
ka + kb

)(
L

2
− L0

)
Looking at a few special cases, note first that q

vanishes if ka = kb, giving the symmetric result. Note
also that if L/2 = L0, the system is under no tension
at all, and q vanishes again. More curiously, if it hap-
pens that L/2 < L0, this corresponds to the system
being compressed rather than stretched, and the sign
on q flips. That is, the offset would be away from the
stiffer spring. (This situation is unstable.)

6.2 Longitudinal Vibrations

If the mass-between-springs system is perturbed in a
direction that is purely longitudinal, i.e. parallel to
the springs, then resulting motion is confined to one
dimension. To prepare for this, define two constants

xa = −L0 + L/2− q

xb = −L0 + L/2 + q ,

so the rest condition is written

0 = −kaxa + kbxb .

For the non-rest case, use Newton’s second law
and Hooke’s law combine to write

m
d2

dt2
x (t) = −ka (xa + x (t)) + kb (xb − x (t)) ,

readily simplifying to

m
d2

dt2
x (t) = −x (t) (kA + kb)



6. MASS BETWEEN SPRINGS 29

This is a simple harmonic oscillator with effective an-
gular frequency:

ω =

√
ka + kb

m

6.3 Transverse Vibrations

Things get more interesting when we examine vibra-
tions in the direction perpendicular to the springs.
Taking the two spring constants as the same, i.e.
ka = kb = k, an initial displacement of the mass
in the y-direction results in one-dimensional motion.

In this case, we have F x
net = 0 for the x-direction,

and for the y-direction,

F y
net = 2Fspring sin (θ) ,

where θ is the angle formed between a spring and the
horizontal, and from geometry we pick out

sin (θ) =
y√

(L/2)
2
+ y2

.

The magnitude of the spring force is given by

Fspring = −k

√(L

2

)2

+ y2 − L0

 ,

which, as long as L/2 ̸= L0, has a nonzero value for
y = 0, affirming the springs are always under tension.
All together, transverse vibrations are summarized by

F y
net = m

d2

dt2
y (t) = −2ky

1− L0√
(L/2)

2
+ y2

 .

Small Vibrations

In the special case that the displacement |y| is always
much less than L/2, the above becomes

F y
net ≈ −2ky

(
1− 2L0

L

(
1−

�
�
�1

2

4y2

L2

))

≈ −2ky

(
1− 2L0

L

)
,

where the square root has been eliminated by Taylor
expansion.

Defining a new quantity

p =
L

2
− L0 ,

the above simplifies to, of course, the equation of a
harmonic oscillator

m
d2

dt2
y (t) ≈ −

(
2k

1 + L0/p

)
y (t) .

The angular frequency is given by

ω =

√
2k

m

(
1

1 + L0/p

)
,

which is scaled by the tension in the springs. This
is in fact a crude model for a plucked guitar string -
the greater the tension, the greater the frequency of
vibration.

6.4 Critical Vibrations

The problem becomes a different beast when we con-
sider L0 = L/2, meaning there is no resting tension
in the system. Staying in the regime of transverse
small oscillations, i.e. |y| ≪ L/2, let us jot down a
previous result without canceling the y2-term:

F y
net ≈ −2ky

(
1− 2l0

L

(
1− 1

2

4y2

L2

))
Setting 2L0 = L, the above simplifies to

m
d2

dt2
y (t) ≈ −k

(
2

L

)2

(y (t))
3
,

which is classified as a nonlinear second-order differ-
ential equation.

Energy Constraint

Despite the scary name, we can wrestle with the
above equation anyway. Letting

λ =
4k

mL2

and using the ‘dot’ operator as a shorthand for the
time derivative, we must solve

ÿ = −λ y3 .

Proceed by multiplying both sides by ẏ, and con-
dense the left using the product rule:

1

2

d

dt

(
ẏ2
)
= ÿẏ = −λ

dy

dt
y3

Multiply dt onto each side to attain a so-called ‘dif-
ferential form’

1

2

d

dt

(
ẏ2
)
dt = −λ y3 dy ,

which can be cleanly integrated with respect to t on
the left, y on the right:

1

2
ẏ2 = −λ

4
y4 + C
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This result looks very much like a conservation of
energy statement. If we multiply through by a mass
constant m, the left side is the kinetic energy then
Cm is the total energy E. The potential energy term
is proportional to y4, not y2, which is not a simple
harmonic oscillator potential.

Initial Condition

One typical scenario for this system would have the
mass released from rest at some initial value A above
y = 0. In this case, the above equation reads

0 = −λ

4
A4 + C

at t = 0, and the integration constant C can be elim-
inated. Doing so, we get

1

2
ẏ2 =

λ

4

(
A4 − y4

)
=

λA4

4

(
1−

( y

A

)4)
,

or
dy

dt
=
√

ẏ2 = ±
√
λ
A2

2

√
1−

( y

A

)4
,

which can be separated with all y’s on one side, t’s
on the other:

dy√
1− (y/A)

4
= ±

(√
λ
A2

2

)
dt

Proceed with the substitution

y = A cos (ϕ)

dy = −A sin (ϕ) dϕ ,

and the above becomes

−A���sin (ϕ) dϕ√
�������(
1− cos2 (ϕ)

)
(1 + cos2 (ϕ))

= ±
(√

λ
A2

2

)
dt ,

allowing each side to be integrated:

∫
dϕ√

1 + cos2 (ϕ)
= ∓

(√
λ
A

2

)∫
dt

There are many choices for integration limits.
One simple correspondence emerges by letting ϕ run
from 0 to π/2, in which case the t-variable elapses a
quarter-period:

∫ π/4

0

dϕ√
1 + cos2 (ϕ)

= ∓
(√

λ
A

2

)∫ T/4

0

dt

= ∓
(√

λ
A

2

)
1

4
T

The integral on the left is strictly numerical, and
the general form of the above doesn’t change when
different limits are chosen. Condensing constants
and separating out period’s relation to the amplitude
gives a nifty result:

AT = constant
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