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Chapter 1

Geometric Series

1 Introduction

An important identity that arises from playing with
polynomial division is

xn − an = (x− a)

(
n∑

k=1

ak−1xn−k

)
,

which can generate many handy results by choosing
the proper a and proper n that fit a given situation.

1.1 Geometric Series

The derivation of an equally-important identity can
begin by considering the ratio

xn − 1

x− 1

for various values of n, which can be studied by tak-
ing the a = 1-case of the above. Expanding out the

cases n = 1, n = 2, n = 3, etc., we find

x2 − 1

x− 1
= 1 + x

x3 − 1

x− 1
= 1 + x+ x2

x4 − 1

x− 1
= 1 + x+ x2 + x3 ,

which suggests for arbitrary n:

xn − 1

x− 1
= 1 + x+ x2 + · · ·+ xn−1 =

n∑
k=1

xk−1

Reshuffling to put all n-dependence on the right, we
evidently find:

1

1− x
=

n∑
k=1

xk−1 +
xn

1− x
(1.1)

Convergence

Note that the right side contains x raised to steadily
increasing exponents up to xn. By letting n become
arbitrarily large, the sum blows up to infinity unless
we restrict the absolute value of x to be less than one.
In such a case, the above converges to the geometric
series,

1

1− x
= 1 + x+ x2 + x3 + · · · =

∞∑
k=0

xk (1.2)

provided |x| < .1

Example

A basketball is dropped from 10 feet and bounces up
6 feet. On each bounce, the ball recovers 3/5 of its
previous height. Bouncing forever, what is the total
distance traveled by the ball?
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Step 1: Add up the total distance accumulated
during each movement downward:

D1 = 10 ·

(
1 +

3

5
+

(
3

5

)2

+ · · ·

)
Step 2: Add up the total distance accumulated

during each movement upward:

D2 = 6 ·

(
1 +

3

5
+

(
3

5

)2

+ · · ·

)
Step 3: Compare each infinite sequence to the ge-

ometric series, and find:

1 +
3

5
+

(
3

5

)2

+ · · · = 1

1− 3/5
=

5

2

Step 4: Assemble the total distance moved in feet:

D1 +D2 = 10 · 5
2
+ 6 · 5

2
= 40

2 Alternate Derivations

2.1 Long Division Method

The most brutal way to derive the geometric series
is to perform polynomial division on the quantity
1/ (1− x):

1 x x2 x3

1− x

)
1

1 −x

x

x −x2

x2

x2 −x3

x3

x3 −x4

x4

After a few terms in, it’s clear that such an exer-
cise leads to Equation (1.1) again.

2.2 The G-Shortcut

If all you remember is the infinite version of the geo-
metric series but not the finite one, let

G = 1 + x+ x2 + x3 + · · ·+ xn ,

and multiply through by x:

xG = x+ x2 + x3 + · · ·+ xn+1

Next, take the difference G − xG and divide out
(1− x) from the left to get

G =
1����−x+ x�����−x2 + x2 + · · · − xn+1

1− x
,

and simplify to recover Equation (1.1):

1 + x+ x2 + x3 + · · ·+ xn =
1− xx+1

1− x

2.3 Number Line Method

Consider the real numbers within the domain [1 : 2],
and divide the interval between 1 and 2 into n
equally-sized bins. From the left, we can locate the
upper boundary of each bin:

first bin: 1 + 1/n

second bin: 1 + 2/n

n− 2th bin: 1 + (n− 2) /n

n− 1th bin: 1 + (n− 1) /n

Note that the same locations can be listed from the
right:

first bin: 2− (n− 1) /n

second bin: 2− (n− 2) /n

n− 2th bin: 2− 2/n

n− 1th bin: 2− 1/n

From these, you can check that the bin representa-
tions are equivalent.

To go further, consider the real numbers within
the domain [1 + 1/n : 1 + 2/n], which are the two
boundaries of the second bin. Divide this interval
into n equal ‘new’ bins. From the left, we can locate
the upper boundary of the first new bin as

first bin: 1 +
1 + 1/n

n
= 1 +

1

n
+

1

n2
.

From the right, locate the upper boundary of the sec-
ond new bin:

second bin: 2− n− 2

n
− n− 2

n2

Supposing some value z lies within the second new
bin, it follows that

1 +
1

n
+

1

n2
< z < 2− n− 2

n
− n− 2

n2
.

While the above is sufficient to continue, it’s worth-
while to simplify the right side to get

1 +
1

n
+

1

n2
< z < 1 +

1

n
+

2

n2
.
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There may be enough to spot a pattern. To be
sure, consider the real numbers within the domain[

1 +
1

n
+

1

n2
: 1 +

1

n
+

2

n2

]
.

Divide this into n bins and find the boundaries of the
second ‘new new’ bin, which results in

L < z < R ,

where:

L = 1 +
1

n
+

1

n2
+

1

n3

R = 2− n− 2

n
− n− 2

n2
− n− 2

n3

= 1 +
1

n
+

1

n2
+

2

n3

Looking at the L and R terms above, it’s clear
what will happen if we execute q iterations of this
game, namely, each sum accumulates a new term with
increasing powers of n in the denominator up to 1/nq.
The variable z gets squeezed into a smaller interval.

Furthermore, note that R can be rewritten in
terms of L via

R = 2− (n− 2) (L− 1) ,

which also means

L < z < 2− (n− 2) (L− 1) .

Since L is less than the entire right side, we can skip
over z and go with

L < 2− (n− 2) (L− 1) ,

readily simplifying to

L <
1

1− 1/n
.

Letting 1/n = x, we finally get something very
much like the geometric series:

1 + x+ x2 + x3 + · · ·+ xq <
1

1− x

In the limit q → ∞, this result is indistinguishable
from Equation (1.2).

3 Manipulations

3.1 Squaring the Geometric Series

It’s possible to multiply converging infinite sums to-
gether and get a new infinite sum. The simplest of

these simply multiplies the geometric series into itself.
Doing this carefully, we find(

1

1− x

)2

= 1 + x+ x2 + x3 + · · ·

+ x+ x2 + x3 + x4 + · · ·
+ x2 + x3 + x4 + x5 + · · · ,

simplifying to:

1

(1− x)
2 = 1 + 2x+ 3x2 + 4x3 + 5x4 + · · · (1.3)

As an exercise in brute force algebra, higher pow-
ers can be handled as well:

1

(1− x)
3 = 1 + 3x+ 6x2 + 10x3 + 15x4 + · · · (1.4)

1

(1− x)
4 = 1 + 4x+ 10x2 + 20x3 + 35x4 + · · · (1.5)

Relation to Pascal’s Triangle

Pausing a moment on the sequence of coefficients go-
ing with the above results, namely

{1, 2, 3, 4, 5, . . . }
{1, 3, 6, 10, 15, . . . }
{1, 4, 10, 20, 35, . . . } ,

notice these sequences are already present in the
(standard left-aligned) Pascal’s triangle:

1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
1 5 10 10 5 1
1 6 15 20 15 6 1

Choosing the nth column and reading down the tri-
angle predicts the expansion of 1/ (1− x)

n
.

3.2 Negative Argument

In the geometric series, setting x → −x has the effect
of reversing the sign on all odd-powered terms while
leaving even-powered terms the same. With this, we
get a slew of results for free:

1

1 + x
= 1− x+ x2 − x3 + x4 − · · · (1.6)

1

(1 + x)
2 = 1− 2x+ 3x2 − 4x3 + 5x4 − · · · (1.7)
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1

(1 + x)
3 = 1− 3x+ 6x2 − 10x3 + 15x4 − · · · (1.8)

1

(1 + x)
4 = 1− 4x+ 10x2 − 20x3 + 35x4 − · · · (1.9)

These can be predicted by the compliment Pascal
triangle based on subtraction rather than addition:

1
1 −1
1 −2 1
1 −3 3 −1
1 −4 6 −4 1
1 −5 10 −10 5 −1
1 −6 15 −20 15 −6 1

Choosing the nth column and reading downward pre-
dicts the expansion of 1/ (1 + x)

n
.

3.3 Squared Argument

Consider the sum

1

1− x2
=

1

2

(
1

1− x
+

1

1 + x

)
for |x| < 1. Using Equations (1.3), (1.6) to expand
the right side, we find, after simplifying:

1

1− x2
= 1 + x2 + x4 + x6 + · · · (1.10)

Evidently, replacing x → x2 is as straightforward as
it looks. All powers are doubled. In a similar way,
we can try x → −x2 to establish

1

1 + x2
= 1− x2 + x4 − x6 + · · · . (1.11)

Note also that the sum of the above results essen-
tially repeats the problem with all powers doubled
again:

1

1− x4
= 1 + x4 + x8 + x12 + · · · (1.12)

1

1 + x4
= 1− x4 + x8 − x12 + · · · (1.13)

3.4 Pascal Transform

Introducing the shift z = 1 − x, the geometric series
becomes

1

z
= 1 + (1− z) + (1− z)

2
+ (1− z)

3
+ · · · ,

which converges for 0 < z < 2.
For a seemingly roundabout exercise, note that

each term on the right is a polynomial (1− z)
n
with

all integer powers of n present. If each of these is
expanded out, the right side of the equation ends up
containing the entirety of the Pascal triangle based
on the quantity (1− z).

However, Equations (1.6) - (1.9) already claim the
columns of the complement Pascal triangle. Using
this information to replace the right side entirely gives
a curious representation of 1/z:

1

z
=

1

1 + z
+

1

(1 + z)
2 +

1

(1 + z)
3 + · · · (1.14)

In light of this shifty move, the above no longer
converges for 0 < z < 2 as before the so-called Pascal
transform. Proceed by letting y = 1/ (1 + z), and the
above becomes

1

1/y − 1
= y + y2 + y3 + · · · ,

and add 1 to both sides:

1/y

1/y − 1
=

1

1− y
= 1 + y + y2 + y3 + · · ·

Evidently, Equation (1.9) still embeds the geo-
metric series in the y-variable, which converges for
all |y| < 1. Since z is dependent on y, the restriction
on z is therefore: ∣∣∣∣ 1

1 + z

∣∣∣∣ < 1

In other words, all z > 0 lead to convergence, and so
do all z < −2.

This allows for some interesting relationships be-
tween the real numbers, particularly neighboring
fractions, for instance:

1

3
=

1

4
+

1

42
+

1

43
+

1

44
+ · · ·

4 Repeating Decimals

The geometric series helps make sense of decimal
numbers whose digits eventually repeat. Consider a
number of the format

N = 0.abcd . . . qabcd . . . q ,

where the sequence abcd . . . q is Q digits in length. As
a sum, N can be written

N =

(
a

10
+

b

100
+

c

1000
+ · · ·+ q

10Q

)
×
(
1 +

1

10Q
+

1

102Q
+

1

103Q
+ · · ·

)
,

which has been factored into a product of two terms.
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For the first term we can define the shorthand

N ′ =
a

10
+

b

100
+

c

1000
+ · · ·+ q

10Q

as the truncation of N before the sequence repeats.
The second term is precisely a geometric series:

1 +
1

10Q
+

1

102Q
+

1

103Q
+ · · · = 1

1− 10−Q

Reconstituting N from these items, we have some-
thing that allows repeating decimals to be written in
closed form:

N =
N ′

1− 10−Q

To have an example, the decimal 0.12312323 . . .
has N ′ = 0.123 with Q = 3:

0.123123123 · · · = 0.123

1− 10−3
=

123

1000− 1
=

123

999

For another example, the special case N ′ = 0.9
with Q = 1 tells us

0.999 · · · = 0.9

1− 10−1
=

9

10− 1
=

9

9
= 1 ,

which means 0.999 . . . repeating forever is indistin-
guishable from 1:

0.999 · · · = 1

5 Zeno’s Paradox

5.1 The Paradox

An ancient ‘paradox’ originating in Greece began
with Zeno of Elia, as recalled by Aristotle:

That which is in locomotion must arrive at the
half-way stage before it arrives at the goal.

This sounds fine, but then the ancient Greeks take
the argument off the rails:

In a race, the quickest runner can never overtake
the slowest, since the pursuer must first reach the
point whence the pursued started, so that the slower
must always hold a lead.

According to Zeno, to reach a destination, an ob-
ject must go half-way first, but to reach the half-way
point, it has to reach the quarter-way point, and so
on. The object in turn may never reach its destina-
tion, and even worse, it’s not clear where the object
gets stuck, or if the motion ever starts at all.

5.2 Linear Motion

Had the Greeks known about the geometric series,
particularly the notion of convergence, then maybe
there would have been no paradox, as we can make
easy work of the situation.

Consider the one-dimensional motion of any ob-
ject with constant velocity V that takes time T to
move distance X, or

X = V T .

Spatial Sum

To pose the problem as the Greeks may have, sup-
pose that the interval X were divided into sections
of decreasing size starting with X/2, and then X/4,
X/8, X/16, etc. Zeno claims that their sum can’t
tally to X, but let us check:

Spatial sum =
X

2
+

X

4
+

X

8
+

X

16
+ · · ·

=
X

2

(
1 +

1

2
+

1

4
+

1

8
+ · · ·

)
The parenthesized sum is a geometric series equiva-
lent to 1/ (1− 1/2) = 2, leaving

Spatial sum = X ,

simple as that.

Temporal Sum

The paradox can be resolved in the time variable as
well. For this, relate the distances X/2, X/4, X/8,
etc. to the time required to traverse each:

X/2 = V t1

X/4 = V t2

X/8 = V t3

X/2j = V tj

Then, the total time is

Temporal sum =

∞∑
j=1

tj =
X

V

∞∑
j=1

(
1

2j

)
,

and the remaining sum is the same as above and re-
solves to one. In conclusion we find

Temporal sum =
X

V
= T

and no evidence of a paradox.
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6 Infinite Sum Analysis

The geometric series can help make sense of infinite
sums that, at face value, don’t appear to be penetra-
ble. To demonstrate, consider the infinite sum

A =

∞∑
k=0

k

2k

The first term in the sum is identically zero, to
it’s harmless to start the index at one instead of zero:

A =

∞∑
k=1

k

2k

Next let n = k − 1 and the sum becomes

A =
∞∑

n=0

n+ 1

2n+1
=

1

2

∞∑
n=0

n

2n
+

1

2

∞∑
n=0

1

2n
.

On the right, the first sum is simply A again. The
second sum is a geometric series that resolves to one.

Thus

A =
1

2
A+ 1 ,

which can only mean

A = 2 .

The same trick works on harder sums. For in-
stance, suppose

B =

∞∑
k=0

k2

2k
.

Observing that the first term in the sum is zero, and
using the same substitution n = k − 1 leads to

B =
1

2

∞∑
n=0

n2 + 2n+ 1

2n
=

B

2
+A+ 1 ,

which is only solved by

B = 6 .
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