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Chapter 1

Differential
Calculus

1 Slope at a Point

The notion of ‘rise over run’, which applies so natu-
rally to straight lines, also applies to curves. Recall
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that for a line y = mx+b, the rise over run calculation
∆y/∆x always yields the same number m, the slope
of the line, and the whole line has just one slope.

1.1 Derivative

On a curve, there is no single value m that charac-
terizes the slope, but we can talk about the ‘local’
slope near a point. To illustrate, choose any point x0

on a curve and begin ‘zooming in’ so the curve ap-
pears straighter and straighter until indistinguishable
from a line. The slope of that line is the slope of the
function in the place we’ve zoomed in.

This idea of slope at a point is also called the
derivative. If the function is f (x), the derivative
is written f ′ (x). A synonym for f ′ (x) is written
df/dx, called Leibniz notation. It’s slightly clearer
than the f ′ notation, as df/dx is the ratio ‘differen-
tial f over differential x’, which is the infinitesimal
limit of ∆f/∆x, or similarly ∆y/∆x.

Yet another way to denote the derivative is to
slip a parenthesized 1 next to f , i.e. f (1) (x). All
of these expressions for ‘slope at a point’ are inter-
changed freely in greater literature:

Slope at a point = f ′ (x) =
d

dx
f (x) = f (1) (x)

Definition

The formal definition of the derivative of f (x) at any
point x0 is given as a limit:

f ′ (x0) = lim
x→x0

f (x)− f (x0)

x− x0
(1.1)

Letting h = x− x0, the definition can be written

f ′ (x0) = lim
h→0

f (x0 + h)− f (x0)

h
,

which is in all ways the same as the above. This form
is more common to your standard Calc 101 textbook.

Differentiable Functions

The definition of the derivative inevitably involves
limits, thus all of of the baggage pertaining to conti-
nuity, smoothness, etc. must becomes relevant.

When a curve is ‘well-behaved’, which is to say
continuous and smooth, the function is differentiable,
which means the definition of the derivative can be
applied and returns useful information.

Things get woolly with the derivative at or across
a discontinuity.

1.2 Elementary Derivatives

The definition of the derivative can be directly used
on any differentiable function. While there are plenty
of extra rules and shortcuts to make calculations eas-
ier, we’ll settle down a while and calculate a volley of
derivatives the hard way.

Parabola

The easiest and most illustrative nontrivial derivative
is the parabola f (x) = x2. From the definition, we
have

f ′ (x) = lim
h→0

(x+ h)
2 − x2

h
,

simplifying down to

f ′ (x) = lim
h→0

2x− h = 2x .

That is, the slope on a parabola at point x is 2x.
The same result comes from the formula that uses

x0 instead of h:

f ′ (x0) = lim
x→x0

x2 − x2
0

x− x0

= lim
x→x0

(x+ x0)����(x− x0)

����x− x0
= 2x0

Whole Number Powers

Generalizing the parabolic case, consider the func-
tion with x raised to an arbitrary (whole) power n,
f (x) = xn. Using the definition, the derivative of
f (x) is

f ′ (x0) = lim
x→x0

xn − xn
0

x− x0
.

To gain on this, recall an important identity at-
tainable from polynomial division, namely

xn − an = (x− a)

(
n∑

k=1

ak−1xn−k

)
.

Letting a = x0 while letting x → x0 inside the sum,
this reads

xn − xn
0 = (x− x0)

(
n∑

k=1

xn−1
0

)
.

The final sum is n copies of the quantity xn−1
0 , and

the term x− x0 can be divided off to the left side:

xn − xn
0

x− x0
= nxn−1

0

This is exactly what the definition of f ′ (x0) is asking
for:

f ′ (x0) = nxn−1
0
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For the sake of stating the function and the deriva-
tive on the same line, the result can be written:

d

dx
(xn) = nxn−1 (1.2)

Reciprocal

For the reciprocal function f (x) = 1/x we have

f ′ (x0) = lim
x→x0

1/x− 1/x0

x− x0

= lim
x→x0

−����(x− x0)

xx0����(x− x0)
=

−1

x2
0

.

That is, the slope of the reciprocal function at a point
x0 is −1/x2

0. In summary:

d

dx

(
1

x

)
=

−1

x2
(1.3)

As an exercise, perhaps just a mental one, it’s
straightforward to show that a horizontally-shifted
reciprocal function obeys:

d

dx

(
1

x+ a

)
=

−1

(x+ a)
2 (1.4)

Inverse Square

The inverse square function f (x) can be dealt with
using Equation (1.2), but we’ll suffer the brute force
approach:

f ′ (x0) = lim
x→x0

1/x2 − 1/x2
0

x− x0

= lim
x→x0

− (x+ x0)����(x− x0)

x2x2
0����(x− x0)

=
−2

x3
0

Like the previous few cases, the denominator is
eliminated by algebra and the derivative of the func-
tion becomes clear:

d

dx

(
1

x2

)
=

−2

x3
(1.5)

To go with this is the shifted version

d

dx

(
1

(x+ a)
2

)
=

−2

(x+ a)
3 , (1.6)

where a is a constant.

Square Root

The derivative of the square root f (x) =
√
x is also

straightforward, as:

f ′ (x0) = lim
x→x0

√
x−√

x0

x− x0

= lim
x→x0

������(√
x−√

x0

)
������(√

x−√
x0

) (√
x+

√
x0

) =
1

2
√
x0

In one line, this is:

d

dx

(√
x
)
=

1

2
√
x

(1.7)

1.3 Exponential Derivatives

Standard Exponential

The exponential function f (x) = nx is a bit more
tricky. Following traditional setup, we have

f ′ (x0) = lim
x→x0

nx − nx0

x− x0
= nx0 lim

x→x0

nx−x0 − 1

x− x0
,

where the term nx0 can be factored outside of the
limit.

Substituting h = x − x0, the remaining limit be-
comes

f ′ (x0) = nx lim
h→0

nh − 1

h
,

is decidedly equivalent to the natural log of n. In
summary:

d

dx
(nx) = nx ln (n) (1.8)

Natural Exponential

A special case of Equation (1.8) has n = e, as
in Euler’s e, which gets rid of the ln-term because
ln (e) = 1. This tells us

d

dx
(ex) = ex , (1.9)

meaning f (x) = ex is its own derivative.
By making repeated use of Equation (1.2) for han-

dling powers, one can show easily that another way
to express ex is

ex = 1 + x+
x2

2!
+

x3

3!
+

x4

4!
+ · · · . (1.10)

It’s worth mentioning too that the definition for
e as an infinite limit, i.e. Equation

e = lim
h→0

(
1 +

1

h

)h
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can be derived from the definition of the derivative.
Supposing we nothing nothing of e for a moment,
consider a function f (x) = Ex that is named to fore-
shadow the answer. The derivative of f reads

f ′ (x0) = lim
x→x0

Ex − Ex0

x− x0
,

and Ex0 can be factored out:

f ′ (x0) = Ex0

(
lim

x→x0

Ex−x0 − 1

x− x0

)
If the function f (x) = Ex is to be equal to its

own derivative, then the parenthesized quantity in
the above must resolve to one. Isolating this, we have

lim
x→x0

Ex−x0 − 1

x− x0
= 1 ,

and then solve for E:

E = lim
x→x0

(1 + (x− x0))
1/(x−x0)

By substituting h = 1/ (x− x0), the right side be-
comes identical to e. Thus E = e and we’re done.

Natural Exp with Squared Argument

Now comes a fun one. Consider the function f (x) =

ex
2

. Starting off as usual, we have

f ′ (x0) = lim
x→x0

ex
2 − ex

2
0

x− x0

Using Equation (1.10), the numerator expands
out to

x2 − x2
0 +

(
x2
)2 − (x2

0

)2
2!

+

(
x2
)3 − (x2

0

)3
3!

+ · · · ,

which is an algebraic mess, because we need to factor
x− x0 out of the whole expression. Going in chunks,
we find:

x2 − x2
0 =(x− x0) (x+ x0)(

x2
)2 − (x2

0

)2
=(x− x0) (x+ x0)

(
x2 + x2

0

)(
x2
)3 − (x2

0

)3
=(x− x0)(

x2 + xx0 + x2
0

) (
x3 + x3

0

)(
x2
)4 − (x2

0

)4
=(x− x0)

(x+ x0)
(
x2 + x2

0

) (
x4 + x4

0

)(
x2
)5 − (x2

0

)5
=(x− x0)(

x4 + x3x0 + x2x2
0 + xx3

0 + x4
0

)(
x5 + x5

0

)

Assuming the pattern continues, we can say that
(x− x0) can be factored out of each term in the ex-
pansion, and this resolves having to further deal with
the denominator in the derivative.

What remains is to evaluate everything at x = x0.
Doing this carefully and spotting the pattern, we see

f ′ (x0) = 2x0 +
4x3

0

2!
+

6x5
0

3!
+

8x7
0

4!
· · ·

= 2x0

(
1 +

x2
0

1!
+

x4
0

2!
+

x6
0

3!
+ · · ·

)
.

The parenthesized series is nothing more than ex
2
0 ac-

cording to Equation (1.10). Finally, the answer:

d

dx

(
ex

2
)
= 2x ex

2

(1.11)

Exponential with Squared Argument

The previous example can be done a different way
by substituting h = x − x0 before jumping into the
algebra. To demonstrate on something more general,
consider the function f (x) = bx

2

, where b is a real
number. Setting up the derivative, we have

f ′ (x) = lim
x→x0

bx
2 − bx

2
0

x− x0
= lim

h→0

b(x0+h)2 − bx
2
0

h

Now we must spend a moment on the quantity
(x0 + h)

2
. Expanding this out, we have

(x0 + h)
2
= x2

0 + 2x0h+ h2 .

In the limit that h is going to zero, the h2-term pales
under the others and can be ignored. With this sim-
plification, the derivative becomes

f ′ (x) = bx
2
0 lim
h→0

b2x0h − 1

h
.

The remaining limit almost looks familiar as a
natural logarithm. Make the substitution h = 2x0k
to bring it into form:

f ′ (x) = 2x0 b
x2
0 lim
k→0

bk − 1

k
.

The remaining limit now is unambiguously equivalent
to the natural log of b. Finally, we find:

d

dx

(
bx

2
)
= 2x bx

2

ln (b) (1.12)

The special case b = e recovers Equation (1.11).



1. SLOPE AT A POINT 7

X to the X

A notorious derivative to figure out is that of f (x) =
xx. Setting up the calculation, we have

f ′ (x0) = lim
x→x0

xx − xx0
0

x− x0

= lim
x→x0

xx0

x− x0

(
xx−x0 −

(x0

x

)x0
)
,

and let h = x− x0:

f (x) = lim
h→0

xx0

(
xh − (1− h/x)

x0

h

)
Recalling the limit-based expression for the natu-

ral logarithm, namely

ln (x) = lim
h→0

xh − 1

h
,

and the above becomes:

f (x) = lim
h→0

xx0

(
ln (x) +

1− (1− h/x)
x0

h

)
The right-hand limit is best handled in isolation.

Letting

A = lim
h→0

1− (1− h/x)
x0

h
,

rearrange to write

lim
h→0

(1−Ah) = lim
h→0

(
1− h

x

)x0

,

and raise each side to the 1/h power:

lim
h→0

(1−Ah)
1/h

= lim
h→0

(
1− h

x

)x0/h

With one more substitution q = 1/h, this is

lim
q→∞

(
1− A

q

)q

= lim
q→∞

(
1− 1

qx

)qx0

Keep in mind that q → ∞ also means x → x0, and
the above simplifies to:

e−A =
(
e−1/x0

)x0

= e−1 ,

telling us finally that A = 1. Putting the answer
together:

d

dx
(xx) = xx (ln (x) + 1) (1.13)

1.4 Logarithmic Derivatives

Natural Logarithm

A keystone function is the natural logarithm, f (x) =
ln (x). Setting up the derivative calculation, we have

f ′ (x0) = lim
x→x0

ln (x)− ln (x0)

x− x0

=
1

x0
lim

x→x0

ln (x/x0)

x/x0 − 1
,

suggesting a substitution x/x0 = k, and the limit
becomes a matter of k approaching 1:

f ′ (x0) =
1

x0
lim
k→1

ln (k)

k − 1

With another substitution j = k − 1, this is

f ′ (x0) =
1

x0
lim
j→0

ln (1 + j)

j
,

equivalent to

f ′ (x0) =
1

x0
lim
j→0

ln
(
(1 + j)

1/j
)
.

If it doesn’t look familiar yet, let h = 1/j to get

f ′ (x0) =
1

x0
lim
h→∞

ln

((
1 +

1

h

)h
)

.

The remaining limit patently resolves to e, and being
enclosed as the argument to the ln function, resolves
to just one, after all that. In summary, we find

d

dx
(ln (x)) =

1

x
(1.14)

Shifted Natural Logarithm

The shifted natural logarithm f (x) = ln (1 + x) is
handled much like the vanilla natural logarithm. Set-
ting up the derivative calculation, we have

f ′ (x0) = lim
x→x0

ln (1 + x)− ln (1 + x0)

x− x0
,

suggesting a substitution z = 1 + x. The above be-
comes

f ′ (x0) = lim
z→z0

ln (z)− ln (z0)

z − z0
,

which now looks identical to the the vanilla case in
the variable z. Reversing the z-substitution gives the
final answer:

d

dx
(ln (1 + x)) =

1

1 + x
(1.15)
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Nonlinear Natural Logarithm

For the function f (x) = x ln (x), the derivative cal-
culation begins as

f ′ (x0) = lim
x→x0

x ln (x)− x0 ln (x0)

x− x0

This one is best attacked with polynomial divi-
sion, which leads to

f ′ (x0) = lim
x→x0

(
ln (x) + x0

(
ln (x)− ln (x0)

x− x0

))
,

and now the embedded limit should ring familiar as
the derivative of the vanilla natural log, or simply
1/x0. Simplifying the rest, we find

d

dx
(x ln (x)) = ln (x) + 1 (1.16)

The same technique, namely polynomial division
and then substitution from an easier derivative, is
what is needed to find the derivative of the harder
function, f (x) = x2 ln (x). Going through the ex-
ercise (which you are encouraged to do), the result
should be

d

dx

(
x2 ln (x)

)
= 2x ln (x) + x . (1.17)

Diminished Natural Logarithm

For another tough one, let us find the derivative of
f (x) = ln (x) /x. Going from the definition, we first
write

f ′ (x0) = lim
x→x0

ln (x) /x− ln (x0) /x0

x− x0
.

Using polynomial division and simplifying, we get
to the intermediate step:

f ′ (x0) =
ln (x0)

x2
0

+ lim
x→x0

1

x3
0

(
x2
0 ln (x)− x2 ln (x0)

x− x0

)
The remaining limit almost looks like Equation
(1.16), i.e. the derivative of x2 ln (x), but sadly isn’t
exact.

To proceed, write the derivative of the natural
logarithm in the form

lim
x→x0

ln (x)− ln (x0)

x− x0
=

1

x0
,

and then deduce the following:

lim
x→x0

x2
0 ln (x)

x− x0
= lim

x→x0

x2
0 ln (x0)

x− x0
+ x0

lim
x→x0

x2 ln (x0)

x− x0
= lim

x→x0

x2 ln (x)

x− x0
− x2

x0

Subtract the bottom equation from the top, and no-
tice the left side can replace the parenthesized quan-
tity in our f ′ (x) equation. Doing so, we get:

f ′ (x0) =
ln (x0)

x2
0

+ lim
x→x0

1

x3
0

(
x0 +

x2

x0

)
+ lim

x→x0

1

x3
0

(
x2
0 ln (x0)− x2 ln (x)

x− x0

)

The latter term in the above contains the (neg-
ative) derivative of x2 ln (x) and can be replaced by
Equation (1.16). This gets rid of all singularities, and
we can simplify to get the answer:

d

dx

(
ln (x)

x

)
=

1− ln (x)

x2
(1.18)

Modified Natural Logarithm

For the function f (x) = ln
(
1 + x2

)
, the derivative

calculation begins as

f ′ (x0) = lim
x→x0

ln
(
1 + x2

)
− ln

(
1 + x2

0

)
x− x0

Letting h = x−x0 and simplifying using the rules
for manipulating logarithms, the above reduces way
down to

f ′ (x0) = lim
h→0

ln

((
1 +

2x0h+ h2

1 + x2
0

)h
)

.

In the limit h → 0, the h2-term is negligible, and
the rest, after staring for long enough, contains the
definition of the natural exponential:

f ′ (x0) = ln
(
e(2x0h)/(1+x02)

)
Since the natural log and the natural exponential are
mutually-annihilating, we get the result:

d

dx

(
ln
(
1 + x2

))
=

2x

1 + x2
(1.19)

1.5 Trigonometric Derivatives

All of the elementary trigonometric functions are
curves, so we’re obligated now to find their deriva-
tives.
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Sine

For the sine function f (x) = sin (x), we first write

f ′ (x) = lim
x→x0

sin (x)− sin (x0)

x− x0
.

The difference of sines is handled by the trigono-
metric identity

sin (a)− sin (b) = 2 sin

(
a− b

2

)
cos

(
a+ b

2

)
,

and the derivative becomes

f ′ (x) = cos (x0) lim
x→x0

2

x− x0

(
sin

(
x− x0

2

))
Let h = (x− x0) /2 to uncover a sinc function

lurking about:

f ′ (x) = cos (x0) lim
h→0

(
sin (h)

h

)
Recall that we spent some effort deciding that the
parenthesized quantity is identically one, and we’re
left with the answer:

d

dx
(sin (x)) = cos (x) (1.20)

Cosine

The steps for calculating the derivative of f (x) =
cos (x) are about identical to that of the sine func-
tion, except the required trig identity is

cos (a)− cos (b) = −2 sin

(
a− b

2

)
sin

(
a+ b

2

)
.

This lands us at

f ′ (x) = − sin (x0) lim
h→0

(
sin (h)

h

)
,

and the same sinc is also present. From this we con-
clude

d

dx
(cos (x)) = − sin (x) . (1.21)

Tangent

For the tangent f (x) = tan (x), we start with

f ′ (x) = lim
x→x0

tan (x)− tan (x0)

x− x0
,

and then the trick is to divide out cos2 (x) from the
limit:

f ′ (x) =
1

(cos (x0))
2

lim
x→x0

sin (x) cos (x0)− sin (x0) cos (x)

x− x0

The remaining limit contains a trig identity for the
sum of two angles, namely x−x0. This again resolves
to sinc (0), as was the case with the previous two trig
functions. The result is

d

dx
(tan (x)) =

1

(cos (x))
2 . (1.22)

Cotangent

For the cotangent f (x) = cot (x), we start with

f ′ (x) = lim
x→x0

cot (x)− cot (x0)

x− x0
,

and then the trick is to divide out sin2 (x) from the
limit:

f ′ (x) =
1

(sin (x0))
2

lim
x→x0

cos (x) sin (x0)− cos (x0) sin (x)

x− x0

The remaining limit contains a trig identity for the
sum of two angles, namely x0 − x. This resolves to
−sinc (0), and the final result is

d

dx
(cot (x)) =

−1

(sin (x))
2 . (1.23)

Secant

For the secant function f (x) = 1/ cos (x), we start
with

f ′ (x) = lim
x→x0

1/ cos (x)− 1/ cos (x0)

x− x0
,

and then divide out − cos2 (x) from the limit:

f ′ (x) =
−1

(cos (x0))
2 lim

x→x0

cos (x)− cos (x0)

x− x0

The limit now looks like the derivative of the co-
sine function and can be replaced by Equation (1.21),
namely − sin (x0). Reporting the result in standard
form, we find

d

dx
(sec (x)) = tan (x) sec (x) . (1.24)
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Cosecant

For the cosecant function f (x) = 1/ sin (x), we start
with

f ′ (x) = lim
x→x0

1/ sin (x)− 1/ sin (x0)

x− x0
,

and then divide out − sin2 (x) from the limit:

f ′ (x) =
−1

(sin (x0))
2 lim

x→x0

sin (x)− sin (x0)

x− x0

The limit now looks like the derivative of the sine
function and can be replaced by Equation (1.20),
namely cos (x0). Reporting the result in standard
form, we find

d

dx
(csc (x)) = − cot (x) csc (x) . (1.25)

Squared Argument

For the sine function with a squared argument
f (x) = sin

(
x2
)
, we first write

f ′ (x) = lim
x→x0

sin
(
x2
)
− sin

(
x2
0

)
x− x0

.

Using the same trig identity that helped with the reg-
ular sine case, the above becomes

f ′ (x) = lim
x→x0

(
2

x− x0

)
sin

(
(x− x0) (x+ x0)

2

)
cos

(
x2 + x2

0

2

)
.

Lett h = (x− x0) /2 and simplify a little to get

f ′ (x) = cos
(
x2
0

)
lim
h→0

sin (2x0h)

h
.

There seems to be an extra term in the remaining
sinc function that cannot be ignored. To deal with
this, make a new substitution k = 2x0h, which also
limits to zero as h does so. With this, we now have

f ′ (x) = cos
(
x2
0

)
2x0 lim

k→0

(
sin (k)

k

)
.

The final limit is identically one, and in conclusion,

d

dx

(
sin
(
x2
))

= cos
(
x2
)
2x . (1.26)

The intermediate steps would be nearly the same
had we started with cosine instead of sine, which
would result in:

d

dx

(
cos
(
x2
))

= − sin
(
x2
)
2x . (1.27)

X Times Sin(X)

One more before moving on. Consider the product of
x and the sine of x, i.e. f (x) = x sin (x). Setting up
this derivative, we write

f ′ (x) = lim
x→x0

x sin (x)− x0 sin (x0)

x− x0

To crack this one, add and subtract the quantity
x0 sin (x) from the numerator, and then repack ev-
erything to get

f ′ (x) = lim
x→x0

sin (x0) (x− x0)

x− x0

+ lim
x→x0

x0 (sin (x)− sin (x0))

x− x0
.

Now, one hard limit is replaced by two easy limits.
The former case has x − x0 canceling, leaving just
sin (x0). The latter case has x0 multiplied by the
derivative of the sine function, which we know to be
cos (x0). In conclusion, we have

d

dx
(x sin (x)) = sin (x) + x cos (x) . (1.28)

The same recipe works for the x cos (x) case.
Leaving the details as an exercise, the result is

d

dx
(x cos (x)) = cos (x)− x sin (x) . (1.29)

1.6 Small-Angle Approximation

In the limit of small angles, it’s easy to show that the
sine and cosine obey the aptly-named small-angle ap-
proximation:

lim
x→0

sin (x) = x−
�

���x3

3!
+ · · · (1.30)

lim
x→0

cos (x) = 1−
�
���x2

2!
+ · · · (1.31)

Sine and Cosine Revisited

The derivatives for the sine and cosine can be derived
in a nifty way using small angles with the angle-sum
formulas from trigonometry. For the sum of two an-
gles θ and ϕ, recall that:

sin (θ + ϕ) = sin (θ) cos (ϕ) + cos (θ) sin (ϕ)

cos (θ + ϕ) = cos (θ) cos (ϕ)− sin (θ) sin (ϕ)

Next, suppose that ϕ is a vanishingly small angle,
i.e. a differential angle. (This makes the quantity
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θ + ϕ analogous to x + dx but we won’t change let-
ters.) In such a limit, the above identities become

lim
ϕ→0

sin (θ + ϕ) = lim
ϕ→0

(sin (θ) + ϕ cos (θ))

lim
ϕ→0

cos (θ + ϕ) = lim
ϕ→0

(cos (θ)− ϕ sin (θ)) .

Solve the first equation for cos (θ) and the second
equation for − sin (θ):

cos (θ) = lim
ϕ→0

sin (θ + ϕ)− sin (θ)

ϕ

− sin (θ) = lim
ϕ→0

cos (θ + ϕ)− cos (θ)

ϕ

This pair of results is none other than the derivative
formulas for sine and cosine. By a change of variables
these exactly reproduce Equations (1.20), (1.21).

2 Techniques of Differentiation

Fortunately, not every derivative needs to be calcu-
lated directly from the definition. To motivate a few
tricks and shortcuts, suppose we have two functions
of x, namely f (x) and g (x). We require that f and
g be ‘well-behaved’ which is to say ‘differentiable’. If
this is the case, each has a well-defined derivative,
f ′ (x) and g′ (x), respectively.

2.1 Product Rule

Suppose we define p (x) as the product of f (x) and
g (x), i.e.

p (x) = f (x) g (x) .

The derivative of p (x) is

p′ (x) = lim
x→x0

f (x) g (x)− f (x0) g (x0)

x− x0
,

and the job is to cook this down to something more
useful.

Proceed by subtracting and adding the quantity
f (x0) g (x) into the limit’s numerator

p′ (x0) = lim
x→x0

(
f (x) g (x)− f (x0) g (x)

x− x0

)
− lim

x→x0

(
f (x0) g (x0)− f (x0) g (x)

x− x0

)
,

and simplify:

p′ (x0) = g (x0) lim
x→x0

(
f (x)− f (x0)

x− x0

)
+ f (x0) lim

x→x0

(
g (x)− g (x0)

x− x0

)

Notice the two remaining limits are the individual
derivatives of f (x) and g (x), so the above can be
written might tighter

p′ (x0) = f ′ (x0) g (x0) + f (x0) g
′ (x0) ,

known as the product rule for derivatives.
Using abbreviated Leibniz notation, the product

rule reads for f (x) and g (x):

d

dx
(fg) =

df

dx
g + f

dg

dx
(1.32)

Or, a more economical way to write the same thing:

(fg)
′
= f ′g + fg′

All of these notations are mixed ant matched in the
greater literature, and the same liberties will be taken
as we proceed.

Examples

The product rule makes quick work of a few cases
explored previously.

Example 1

Let p (x) = x2 ln (x). Identifying f (x) = x2 and
g (x) = ln (x), we have

p′ (x) = f ′g + fg′

= ln (x)
d

dx
ln
(
x2
)
+ x2 d

dx
(ln (x))

= 2x ln (x) + x ,

in agreement with Equation (1.16).

Example 2
Let p (x) = ln (x) /x. Identifying f (x) = ln (x)

and g (x) = 1/x, we have

p′ (x) = f ′g + fg′

=

(
1

x

)
d

dx
ln (x) + ln (x)

d

dx

(
1

x

)
=

1− ln (x)

x2
,

in agreement with Equation (1.18).

Example 3
Let p (x) = x sin (x). Identifying f (x) = x and

g (x) = sin (x), we have

p′ (x) = f ′g + fg′

= (sin (x))
dx

dx
+ x

d

dx
(sin (x))

= sin (x) + x cos (x) ,
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in agreement with Equation (1.28).

Example 4
Let p (x) = x cos (x). Identifying f (x) = x and

g (x) = cos (x), we have

p′ (x) = f ′g + fg′

= (cos (x))
dx

dx
+ x

d

dx
(cos (x))

= cos (x)− x sin (x)

in agreement with Equation (1.29).

2.2 Quotient Rule

Suppose we define r (x) as the ratio of f (x) and g (x),
i.e.

r (x) =
f (x)

g (x)
.

The derivative of r (x) is

r′ (x) = lim
x→x0

f (x) /g (x)− f (x0) /g (x0)

x− x0
,

and like before, we need to simplify.
Proceed by multiplying the numerator and de-

nominator by g (x) g (x0), and then add and subtract
the quantity f (x0) g (x0) from the numerator. Care-
fully treating each limit, the result is

r′ (x0) =
f ′ (x0) g (x0)− f (x0) g

′ (x0)

(g (x0))
2 ,

known as the quotient rule for derivatives.
In Leibniz notation, the quotient rule reads for

f (x) and g (x):

d

dx

(
f

g

)
=

1

g2

(
df

dx
g − f

dg

dx

)
(1.33)

Or, a more economical way to write the same thing:(
f

g

)′

=
f ′g − fg′

g2

Examples

Like the product rule, the quotient makes quick work
the right kind of problem.

Example 5
Let r (x) = ln (x) /x. Identifying f (x) = ln (x)

and g (x) = x, we have

r′ (x) =
f ′g − fg′

g2

=
(1/x)x− ln (x) (1)

x2

=
1− ln (x)

x2
,

in agreement with Equation (1.18).

Example 6

Let r (x) = tan (x). Identifying f (x) = sin (x)
and g (x) = cos (x), we have

r′ (x) =
f ′g − fg′

g2

=
(cos (x))

2
+ (sin (x))

2

(cos (x))
2

=
1

(cos (x))
2 ,

in agreement with Equation (1.22).

2.3 Chain Rule

Composite Functions

Consider the composite function

c (x) = f (g (x)) .

To unpack this, we have a function g (x) that is a
typical function of x. The function f depends on g,
so abbreviating the above by c = f (g) is valid in the
same way we would write y = f (x).

Composite functions really aren’t news to us.
Things like cos

(
x2
)
and e4x or any nontrivial func-

tion can all be written as composite functions.

Derivation of Chain Rule

The issue of composite functions raises a subtle point,
for if we have the generic scenario y = f (x), it could
have been all along that x itself is a function of some
other variable, say t, as in y (t) = f (x (t)). This has
curious implications for derivatives of the functions
involved.

Recall the definition of the derivative of a function
f (x) in the generic case:

f ′ (x0) = lim
x→x0

f (x)− f (x0)

x− x0

Now, suppose we just found out that x is a function
of a deeper variable t such that

x = x (t)

x0 = x (t0) .

In other words, f (x) just became a composite func-
tion f (x (t)).
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Naturally, x (t) has a derivative of its own with
respect to t:

x′ (t0) = lim
t→t0

x (t)− x (t0)

t− t0

The derivative of f , though, now looks like this:

f ′ (x (t0)) = lim
x(t)→x(t0)

f (x (t))− f (x (t0))

x (t)− x (t0)

To simplify the above, we first acknowledge that
all functions are ultimately dependent on t, so the
comment under the lim symbol can be replaced sim-
ply by t → t0. Next comes the key move, which is to
multiply both sides by x′ (t0) to get:

f ′ (x (t0)) · x′ (t0) =

lim
t→t0

f (x (t))− f (x (t0))

((((((x (t)− x (t0)
·((((((x (t)− x (t0)

t− t0

The quantity x−x0 conveniently cancels, and we can
tidy things up to write:

f ′ (x0) · x′ (t0) = lim
t→t0

f (x (t))− f (x (t0))

t− t0

The right side of the above is the derivative of
f (x (t)) with respect to t. It would be a misnomer
to shorthand the right side with an f ′-like symbol, as
the ‘prime’ notation is reserved (typically) for deriva-
tives with respect to x. It’s much wiser at this instant
to switch to Leibniz notation and rewrite the above
as

df

dt
=

df

dx
· dx
dt

, (1.34)

known as the chain rule for derivatives.

The chain rule can be stacked indefinitely, i.e. if
we found out that t itself depends on a deeper vari-
able u such that t = t (u), the above swiftly becomes:

df

du
=

df

dx
· dx
dt

· dt
du

Notice on the right that all terms ‘cancel’, at least
visually, except for df in the numerator and du in the
denominator to match the left side. This is what’s
nice about the chain rule - if it looks right, it is right.

Elementary Examples

Example 7

Consider the function f (x) = ex
2

. Letting u =
x2, f becomes a composite function f (x) = eu(x).

The derivative of f with respect to x proceeds as

df

dx
=

df

du
· du
dx

=

(
d

du
eu
)(

d

dx
x2

)
= eu(x) 2x

= 2x ex
2

,

in agreement with Equation (1.11).

Example 8

Consider the function f (x) = bx
2

. Letting u =
x2, f becomes a composite function f (x) = bu(x).
The derivative of f with respect to x proceeds as

df

dx
=

df

du
· du
dx

=

(
d

du
bu
)(

d

dx
x2

)
= bu(x) ln (b) 2x

= 2x bx
2

ln (b) ,

in agreement with Equation (1.12).

Example 9

Consider the function f (x) = ln (xx). Letting
u = xx, f becomes a composite function f (x) =
ln (u). The derivative of f with respect to x proceeds
as:

df

dx
=

df

du
· du
dx

=

(
d

du
ln (u)

)(
d

dx
xx

)
=

1

u (x)
xx (ln (x) + 1)

= ln (x) + 1

Note that Equation (1.13) was quietly used in the
above, making this example rather lengthy in its to-
tality. However, this result is attained more easily by
realizing ln (xx) is equivalent to x ln (x) which is a job
for the product rule. Either way, we conclude

d

dx
(ln (xx)) = ln (x) + 1 . (1.35)

Example 10

Consider the function f (x) = ln (1 + x). Let-
ting u = 1 + x, f becomes a composite function
f (x) = ln (u). The derivative of f with respect to
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x proceeds as:

df

dx
=

df

du
· du
dx

=

(
d

du
ln (u)

)(
d

dx
(1 + x)

)
=

1

u (x)

=
1

1 + x
,

in agreement with Equation (1.15).

Example 11

Consider the function f (x) = ln
(
1 + x2

)
. Let-

ting u = 1 + x2, f becomes a composite function
f (x) = ln (u). The derivative of f with respect to x
proceeds as:

df

dx
=

df

du
· du
dx

=

(
d

du
ln (u)

)(
d

dx

(
1 + x2

))
=

1

u (x)
2x

=
2x

1 + x2
,

in agreement with Equation (1.19).

Example 12

Consider the function f (x) = sin
(
x2
)
. Letting

u = x2, f becomes a composite function f (x) =
sin (u). The derivative of f with respect to x pro-
ceeds as

df

dx
=

df

du
· du
dx

=

(
d

du
sin (u)

)(
d

dx
x2

)
= cos (u (x)) 2x

= cos
(
x2
)
2x ,

in agreement with Equation (1.26).

Logarithm Trick

The chain rule allows for some interesting cheats
when calculating derivatives. Suppose we have a
function f (x) that seems to tricky to differentiate,
which is to say f ′ (x) is not straightforwardly cal-
culated. It may help to send f (x) to the natural
logarithm before calculating the derivative, and then
exploit the chain rule to weasel out an answer for
f ′ (x).

Applying the chain rule in, this scenario looks like

d

dx
(ln (f (x))) =

1

f (x)
f ′ (x) ,

or
df

dx
= f (x)

d

dx
(ln (f (x))) , (1.36)

which we’ll call the logarithm trick.

Example 13

Consider the function f (x) = bx
2

. Using the log-
arithm trick, we find

df

dx
= bx

2 d

dx

(
ln
(
bx

2
))

= bx
2

ln (b)
d

dx
x2

= 2x bx
2

ln (b) ,

in agreement with Equation (1.12).

Example 14
Consider the function f (x) = xx. Using the log-

arithm trick, we find

df

dx
= xx d

dx
(ln (xx))

= xx d

dx
(x ln (x))

= xx (ln (x) + 1) ,

in agreement with Equation (1.13).

Power Rule Revisited

Recall that the derivative of a function f (x) = xn is
established by Equation (1.2), namely

d

dx
(xn) = nxn−1 .

The derivation of this is guaranteed for integer n, but
we did not explicitly cover what happens for non-
integer n.

Luckily, the result is the same, i.e. Equation (1.2)
holds for any n. To prove this, start with

f (x) = xn = eln(x
n) = en ln(x) .

By the chain rule, we then find

d

dx
(xn) = en ln(x)n

x
= nxn−1

and we’re done.

Problem 1
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Consider the function

f (x) = 4x
2

.

Find the derivative of f (x) using (i) the definition
of the derivative, (ii) the product rule, (iii) the chain
rule, and (iv) the logarithm trick.

Hints: (i) Use Equation (1.12). (ii) Let f (x) =

g (x) = 2x
2

and use Equation (1.32). (iii) Let f (g) =
4g and g (x) = x2 and calculate df/dx. (iv) Use Equa-
tion (1.36).

2.4 Implicit Differentiation

Derivative Operator

A subtlety that has been present all along, but not
explicitly mentioned, is that we may talk about the
derivative d/dx as an operation on some completely
unspecified object, in the same way that we can talk
about the ‘add’ ( + ) or ‘multiply’ ( × ) operations
without mentioning what is being added or multi-
plied.

Just like we’d multiply by two or divide by π, we
can take the derivative across an entire equation. For
instance, starting with

a (x) = b (x) + c (x) ,

it’s reasonable to write

d

dx
a =

d

dx
(a+ b) .

We can go a little further by understanding the
derivative to be a linear operator. This means the
right side of the above can be broken into two sepa-
rate derivatives on b (x) and c (x):

d

dx
a =

d

dx
b+

d

dx
c

The act of applying the derivative operator across
a whole equation has a name called implicit differen-
tiation, a tool that works beautifully alongside the
chain rule.

Tangent Line to the Ellipse

An ellipse characterized by semi-major axis a and
semi-minor axis b centered in the Cartesian plane is
described by

x2

a2
+

y2

b2
= 1 .

Solving for y gives a pair of proper functions to de-
scribe the ellipse:

y± (x) = ±b

√
1− x2

a2

If we want the slope of a tangent line to the circle,
simply calculate y′ (x) = dy/dx (looking only at the
top half of the circle for a moment):

y′ (x) = ±b

(
1

2
√

1− x2/a2

)(
−2x/a2

)
y′ (x) = − b2

a2
x

y

Implicit differentiation is a quicker way to calcu-
late y′ (x), and it works directly on the equation of
the ellipse by throwing d/dx around both sides:

d

dx

(
x2

a2

)
+

d

dx

(
y2

b2

)
=

d

dx
(1)

Using the standard rules for differentiation, including
the chain rule on the y-term, this gives

2x

a2
+

2y

b2
dy

dx
= 0 ,

and solving for dy/dx gives the same result as above,
and there was no square root to fiddle with:

dy

dx
=

−b2

a2
x

y

Regardless of how we know the slope of the tan-
gent line at a given point (x0, y0) on the ellipse, the
tangent line itself is

y =

(
−b2

a2
x0

y0

)
x+ b ,

which is equivalent to

xx0

a2
+

yy0
b2

= 1 .

The proof is an exercise for the reader.

3 Mixed Techniques

Certain derivatives can require a mixture of tricks
to figure out. In the following we pick and choose
from the definition of the derivative, the product and
quotient rules, along with the chain rule to produce
results.

3.1 Inverse Trig Derivatives

Consider the set of inverse trigonometric functions,
namely:

arccos (x) = cos−1 (x)

arcsin (x) = sin−1 (x)

arctan (x) = tan−1 (x)
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arcsec (x) = sec−1 (x)

arccsc (x) = csc−1 (x)

arccot (x) = cot−1 (x)

Arccosine

Begin with the statement

cos (arccos (x)) = x ,

and apply the d/dx operator to both sides while using
the chain rule

sin (arccos (x))
d

dx
arccos (x) = −1 ,

and then solve for the quantity we are after:

d

dx
arccos (x) =

−1

sin (arccos (x))

There’s still a little more work to do. Imagine a
right triangle of hypotenuse 1 such that the adjacent
side is x = cos (θ). Comparing this to what’s already
written, identify θ = arccos (x), and from geometry
we also have sin (θ) =

√
1− x2. This is enough to get

the final answer:

d

dx
arccos (x) =

−1√
1− x2

(1.37)

Arcsine

Begin with the statement

sin (arcsin (x)) = x ,

and apply the d/dx operator to both sides while using
the chain rule

cos (arcsin (x))
d

dx
arcsin (x) = 1 ,

and then solve for the quantity we are after:

d

dx
arcsin (x) =

1

cos (arcsin (x))

As with the previous case, there’s still a little more
work to do with a right triangle of hypotenuse 1 such
that the opposite side is x = sin (θ). Comparing this
to what’s already written, identify θ = arcsin (x), and
from geometry we also have cos (θ) =

√
1− x2. This

is enough to get the final answer:

d

dx
arcsin (x) =

1√
1− x2

(1.38)

Arctangent

Begin with the statement

tan (arctan (x)) = x ,

and apply the d/dx operator to both sides while using
the chain rule

1

(cos (arctan (x)))
2

d

dx
arctan (x) = 1 ,

and then solve for the quantity we are after:

d

dx
arctan (x) = cos2 (arctan (x))

Eliminate the cos2-term using the trig identity
cos2 (θ) = 1/

(
1 + tan2 (θ)

)
and the answer emerges:

d

dx
arctan (x) =

1

1 + x2
(1.39)

Arcsecant, Arccosecant, Arccotangent

The remaining three inverse functions are handled by
a similar process to the first three. Without belabor-
ing the details, which is left for an exercise, the results
should be:

d

dx
arcsec (x) =

1

x
√
x2 − 1

(1.40)

d

dx
arccsc (x) =

−1

x
√
x2 − 1

(1.41)

d

dx
arccot (x) =

−1

1 + x2
(1.42)

3.2 Hyperbolic Derivatives

Sinh, Cosh, Tanh

The hyperbolic trigonometric functions

cosh (x) =
ex + e−x

2

sinh (x) =
ex − e−x

2

are in many ways analogous to the ordinary trigono-
metric functions. For instance one may take f (x) =
sinh (x) and use the definition of the derivative to
write

f ′ (x) = lim
x→x0

sinh (x)− sinh (x0)

x− x0
,

which, by a similar process the led to Equation (1.20),
gives:

d

dx
(sinh (x)) = cosh (x) (1.43)
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It’s a bit easier to use implicit differentiation to
chug through the derivative calculation. Demonstrat-
ing on cosh (x), we have

d

dx
(cosh (x)) =

d

dx

(
ex + e−x

2

)
,

readily simplifying to

d

dx
(cosh (x)) = sinh (x) (1.44)

Note that this result differs from its trigonometric
cousin by lacking a negative sign.

The derivative of tanh (x) follows easily from the
quotient rule:

d

dx
(tanh (x)) =

d

dx

(
sinh (x)

cosh (x)

)
=

(cosh (x))
2 − (sinh (x))

2

(cosh (x))
2 ,

and the numerator simplifies via the identity

(cosh (x))
2 − (sinh (x))

2
= 1 .

In conclusion:

d

dx
(tanh (x)) = (sech (x))

2
(1.45)

Coth, Sech, Csch

The hyperbolic cotangent, hyperbolic secant, and hy-
perbolic cosecant are also straightforwardly handled:

d

dx
(coth (x)) = − (csch (x))

2
(1.46)

d

dx
(sech (x)) = −sech (x) tanh (x) (1.47)

d

dx
(csch (x)) = −csch (x) coth (x) (1.48)

Arccosh, Arcsinh, Arctanh

The inverse hyperbolic functions are also straightfor-
ward to handle using the ordinary trig case as an
analogy:

d

dx
(arccosh (x)) =

1√
x2 − 1

(1.49)

d

dx
(arcsinh (x)) =

1√
x2 + 1

(1.50)

d

dx
(arctanh (x)) =

1

1− x2
(1.51)

Arcsech, Arcscsch, Arccoth

d

dx
(arcsech (x)) =

−1

x
√
1− x2

(1.52)

d

dx
(arccsch (x)) =

−1

x
√
x2 + 1

(1.53)

d

dx
(arccoth (x)) =

1

1− x2
(1.54)

4 Applied Differentiation

4.1 Tangent Line

Given a differentiable function y = f (x), the deriva-
tive f ′ (x0) gives the slope of the tangent line that, by
definition, just touches the curve at the point (x0, y0).
The equation of the tangent line is simply:

y − y0 = f ′ (x0) (x− x0) (1.55)

4.2 Mean Value Theorem

The mean value theorem is a piece of mathematics
that concretizes something that my be obvious by in-
specting any function. The theorem states that, for a
given arc between two points in the Cartesian plane,
there is at least one point on the arc where the in-
stantaneous slope is parallel to the secant line formed
by the two points.

In detail, suppose we have two points xa, xb that
we feed to a function f (x). The mean value theorem
dictates that somewhere between xa, xb is a third
point xm satisfying

f ′ (xm) =
f (b)− f (a)

b− a
. (1.56)

Notice this looks a bit like the definition of the deriva-
tive, but starkly absent from the right side is any
notion of limit.

The mean value theorem is easily proved. Con-
sider the secant line

y (x) =
f (b)− f (a)

b− a
(x− a) + f (a)

that connects two points on a curve. Next, write the
vertical distance between f (x) and y (x) as a new
function h (x)

h (x) = f (x)− f (b)− f (a)

b− a
(x− a)− f (a) ,

and notice that h = 0 at the endpoints a, b.
Proceed by applying the d/dx operator (i.e. take

a derivative) across the whole equation:

h′ (x) = f ′ (x)− f (b)− f (a)

b− a
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Now, if h (x) is zero at the endpoints and is nonzero
in between, it must be that the derivative of h (x) tog-
gles between positive and negative at one (or more)
points point xm in the interval a < xm < b. This can
only mean h′ (xm) = 0 at the transition(s), and the
proof is done.

4.3 L’Hopital’s Rule

When deploying tools of mathematics, there are all-
too-often situations where indeterminate forms, in-
finities, division by zero, etc., can occur. This is sup-
posed to be a show-stopper, however the notions of
‘limit’ and ‘derivative’ grant a new cutting edge.

Motivation

Consider the ratio L of two functions f (x) and g (x)
evaluated at a particular point x0 such that

L (x0) = lim
x→x0

f (x)

g (x)
,

where L is known to ‘blow up’ at x0, which is to say
the ratio resolves to 0/0, ∞/∞, 0 × ∞, or similar
indeterminate form.

With the notion of derivatives there is somewhere
new to go, so let’s try looking at the ratio of the slope
of each function at x0,

R (x0) =
f ′ (x0)

g′ (x0)
,

and expand the right side using the definition of the
derivative:

R = lim
x→x0

f (x)− f (x0)

g (x)− g (x0)

(
����x− x0

����x− x0

)
The 0/0 Case

Now impose the condition f (x0) = 0 and g (x0) = 0,
and the ratio becomes

R (x0) = lim
x→x0

f (x)

g (x)
,

which is in fact identical to L (x0). This can only
mean, for points x0 that cause L to blow up,

L (x0) = lim
x→x0

f (x)

g (x)
=

f ′ (x0)

g′ (x0)
, (1.57)

known as L’Hopital’s rule.
In words, L’Hopital’s rule says an indeterminate

ratio of functions can be calculated anyway by cal-
culating the ratio of their slopes. If that result is in-
determinate, apply L’Hopital’s rule until an answer
comes out. While L’Hopital’s rule was established
using the 0/0 case, the result is in fact quite general.

The ∞/∞ Case

To explore another extreme, suppose we have instead
that f (x0) → ∞ and g (x0) → ∞.

Flipping the problem on its head slightly, one may
write

L (x0) = lim
x→x0

1/g (x)

1/f (x)
,

and then attack this using the chain rule. Doing so,
we get

L (x0) =
g′ (x0)

f ′ (x0)
lim

x→x0

(
f (x)

g (x)

)2

L (x0) =
g′ (x0)

f ′ (x0)
(L (x0))

2
,

and ultimately,

L (x0) =
f ′ (x0)

g′ (x0)
,

familiar already as Equation (1.57).

The Infinite-x Case

Equation (1.57) is reinforced again by investigating
the case there L blows up for x → ∞. To proceed,
define a variable t = 1/x such that

L (x0) = lim
x→∞

f (x)

g (x)
= lim

t→0

f (1/t)

g (1/t)
,

which transforms the problem into a 0/0-like prob-
lem.

Running the chain rule on the right side, we fur-
ther find:

L (x0) = lim
t→0

f ′ (1/t)

g′ (1/t)�
�
��

(
−t2

−t2

)
L (x0) = lim

x→∞

f ′ (x)

g′ (x)

Examples

You are encouraged to work through each of the fol-
lowing. For a bonus, pick out the example that helps
establish that 00 = 1.

Example 1

lim
x→0

tan (x)

x
= 1

Example 2

lim
x→0

1− cos (x)

x2
= lim

x→0

sin (x)

2x
=

1

2
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Example 3

lim
x→0

ex − 1− x

sin2 (x)
=

1

2

Example 4

lim
x→0+

x ln (x) = lim
x→0+

ln (x)

1/x
= 0

Example 5

lim
x→0

ln (x)

xp
= 0

4.4 Critical Points

Many mathematical functions y = f (x), apart from
lines and constants, exhibit features akin to ‘hills’
and ‘valleys’ in the Cartesian plane. The peak of any
given hill is called a local maximum, unless it’s the
tallest hill, earning the title global maximum. Simi-
lar notions of ‘local’ and ‘global’ apply to valleys, i.e.
minima.

Definition

The very peak of a hill or very bottom of a valley is
called an extreme point, also known as critical point.
A function f (x) having critical point xc implies that
the left-sided and right-sided limits near f (xc) are
equal:

lim
w→0

f
(
xc −

w

2

)
= lim

w→0
f
(
xc +

w

2

)
(1.58)

Critical points are locations where the derivative
of the function is zero, i.e.

f ′ (xc) = 0 .

While intuitive, this notion can be established using
the definition

f ′ (x0) = lim
x→x0

f (x)− f (x0)

x− x0
,

and then using the shift of variables

x → xc + w/2

x0 → xc − w/2

such that x− x0 = w, we write the symmetric form

f ′ (xc) = lim
w→0

f (xc + w/2)− f (xc − w/2)

w
.

This is perhaps a more ‘natural’ representation of
the derivative compared to what we’ve been work-
ing with. Enforcing Equation (1.58) nukes the right
side, leaving the result f ′ (xc) = 0 as expected.

4.5 Optimization Problems

A very handy application of the derivative applies to
problems of optimization. This is the broad set of
‘real-world’ problems that can be modeled as func-
tions f (x), where finding critical points f ′ (xc) = 0
could mean maximizing profits, minimizing fuel con-
sumption, etc.

The recipe for optimization problems is almost
the same every time. From the situation on hand:

1. Identify the working variable x and construct a
well-behaved function f (x). that characterizes
the problem.

2. Calculate f ′ (xc) = 0 to identify critical
point(s).

3. Feed any xc back into f (x) to produce the op-
timized solution(s).

Examples

Example 6
A cylindrical can of variable radius r and variable

height h has fixed volume V . Find the dimensions of
the can that minimize the surface area.

From the information given we can write the vol-
ume and surface area of the can:

V = πr2h

A = 2πrh+ 2πr2

While there are two variables in play, r and h, we can
write the area entirely in terms of r:

A (r) =
2V

r
+ 2πr2

The idea now is to find the critical point in A (r).
Do so by calculating dA/dr = 0, i.e.

dA

dr
= 0 = −2V

r2c
+ 4πrc ,

implying hc = 2rc. Evidently, the most efficient can
has the height equal to the diameter.

Example 7
Prove that

eπ > πe .

First use the logarithm operator to get like sym-
bols on their own sides:

π ln (e) = e ln (π)

ln (e)

e
>

ln (π)

π
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This is suggestive of the function f (x) = ln (x) /x,
and the question translates to whether f (e) is larger
or smaller than f (π).

Proceed by calculating df/dx = 0:

0 =
d

dx

(
ln (x)

x

)
=

1− ln (xc)

x2
c

From this, we have that 1 = ln (xc), satisfied by
xc = e, and the proof is done.

Example 8
Find the largest rectangle that fits inside a 3-4-5

right triangle where one of the rectangle’s edges lies
on the hypotenuse.

Place the ninety-degree corner at the origin so the
hypotenuse connects (0, 3) to (4, 0). Parallel to the
hypotenuse is the base of the inscribed rectangle with
two corners at (0, y∗), (x∗, 0), having length

b =
√

x2
∗ + y2∗ ,

and obeying the ratio

y∗
x∗

=
3

4
.

The height of the inscribed rectangle is

h = (4− x∗) sin (θ) ,

where sin (θ) = 3/5 from geometry.
The area of the rectangle is A = bh, or, all in

terms of one variable:

A (x∗) =
√

x2
∗ + y2∗ (4− x∗)

3

5
= x∗ (4− x∗)

The critical point xc is found by calculating
dA/dx∗ = 0, namely

dA

dx∗
= 0 = 4− 2xc ,

solved by xc = 2, immediately meaning yc = 3/2.
Calculating b from these values yields 5/2, which is
half of the length of the hypotenuse. The height
comes out to h = 6/5, and thus the area of the rect-
angle is A = 3.

4.6 Related Rate Problems

Implicit differentiation has some utility for analyzing
‘real world’ problems that aren’t a matter of opti-
mization. Instead, we may be concerned with the
way one rate of change related to another, a class
called related rate problems.

Melting Ice Sheet

A circular ice sheet of radius r (t) in meters and area
A (t) is melting at a rate of −αm2/s. How quickly is
the radius decreasing?

For this situation, we begin with

A (t) = π (r (t))
2
,

and use implicit differentiation with respect to time:

d

dt
A (t) = −α = 2πr (t)

d

dt
(r (t))

The time derivative of A is given as alpha, whereas
the time derivative of r (t) is the quantity we’re solv-
ing for.

So far then, we have

d

dt
(r (t)) = r′ (t) =

−α

2πr (t)
,

or in terms of A instead of r:

r′ =
−
√
πα

2
√
A (t)

Distance from a Rocket

A person stands distance D away from a rocket that
launches straight up with speed v0 at t = 0. Write
an equation for the distance r from the person to the
rocket as a function of time, and then determine its
derivative, r′ (t).

Use the Pythagorean theorem to get started

r2 = D2 + v20t
2 ,

and use implicit differentiation with respect to time:

2r (t)
d

dt
(r (t)) = 0 + 2v20t

Isolate r′ (t) to finish the job:

r′ (r) =
v20t√

D2 + v20t
2

5 Second Derivative

5.1 Slope of Slope

Recall that, for a differentiable function f (x), the no-
tion of ‘slope at a point’, i.e. the derivative, can be
expressed a few ways:

Slope at a point = f ′ (x) =
d

dx
f (x) = f (1) (x)
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If f ′ (x) is itself a differentiable function, there
must exist the notion of ‘slope of slope’, also known
as the second derivative of f (x):

Second Derivative = f ′′ (x) =
d2

dx2
f (x) = f (2) (x)

Starting with the definition of the derivative, a
formula for the second derivative can be straightfor-
wardly written:

f ′′ (x0) = lim
x→x0

f ′ (x)− f ′ (x0)

x− x0

Carefully replacing each f ′-term with the definition
again, we get

f ′′ (x0) = lim
x→x0

1

x− x0(
lim
w→x

f (w)− f (x)

w − x
− f (x)− f (x0)

x− x0

)
,

or, after some algebra,

f ′′ (x0) = lim
w→x

lim
x→x0

(
1

x− x0

)2

(λf (w)− (λ+ 1) f (x) + f (x0)) ,

where

λ =
x− x0

w − x
.

The above contains two simultaneous limits,
namely w → x and x → x0. Applying each limit
together, it should make sense that the ratio λ re-
solve to λ = 1 provided that x0 < x < w. With this,
we can set x− x0 = h and w − x = h, and the above
becomes

f ′′ (x0) = lim
h→0

lim
x→x0

f (x+ h)− 2f (x) + f (x− h)

h2
,

simplifying once more to the standard formula for the
second derivative:

f ′′ (x0) = lim
h→0

f (x0 + h) + f (x0 − h)− 2f (x0)

h2

(1.59)
In practice, one does not need to directly deploy

Equation (1.59) to calculate the second derivative. So
long as the first derivative f ′ (x) is on hand, simply
calculate the derivative of that to get a hold of f ′′ (x).

5.2 Stability at Critical Point

The second derivative f ′′ (x) carries important infor-
mation about the function f (x). To illustrate, con-
sider the cubic curve

f (x) =

(
x+

1

2

)3

− 3

(
x+

1

2

)
− 1

2

as shown in Figure 1.1.

A

B

C

x

y

Figure 1.1: Cubic curve having two critical points
and one inflection point.

Labeled in the Figure are three Cartesian points
A, B, C. By a quick inspection, one sees that A
and B correspond to critical points, and these can be
found by the standard means of setting f ′ (x) = 0.
Doing so, we first find

f ′ (x) = 3

(
x+

1

2

)2

− 3

for the entire curve, and f ′ (x) = 0 is solved by:

xA = −3/2

xB = 1/2

Concavity

While both A and B qualify as critical points, there
is something clearly different about them in the sense
that point A corresponds to a local maximum, and
point B corresponds to a local minimum.

Introducing some new terminology, the curve
f (x) is concave down at and near point A, as if the
only way to go is downhill. Conversely, in the ‘neigh-
borhood’ of the local minimum at B, the curve is
concave up.

In a mechanical analogy, a local maximum (such
as A) is often called an unstable equilibrium, as if the
curve f (x) is embedded uniform gravity and there is
a clear notion teetering on the top of a hill. A local
minimum (such as B) is called a stable equilibrium
for similar reasons.

The notion of concavity or stability begs a new
question, namely how can we tell if part of a curve
is concave up versus concave down without looking
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at the plot of the function? This is where the sec-
ond derivative comes in. Starting from f ′ (x) written
above, the second derivative comes out to

f ′′ (x) = 6x+ 3

alone the whole curve.
Since we know the critical points occur at xA =

−3/2, xB = 1/2, toss these into f ′′ (x) to learn

f ′′ (−3/2) = 6 (−3/2) + 3 = −6

f ′′ (1/2) = 6 (1/2) + 3 = 6 .

Evidently, the sign on the second derivative tells the
story of concavity. When negative, the curve is con-
cave down. When positive, the curve is concave up.

Inflection

Since the derivative operation ‘knocks down’ one or-
der of x from the function, it follows that the second
derivative of a cubic curve is a straight line, y = 6x+3
in this case. Furthermore, the second derivative has
an x-intercept at xC = −1/2, which is why point C
is significant in Figure 1.1.

Point C is called an inflection point, which is
where the second derivative f ′′ (x) is momentarily
zero, and the concavity of the curve flips from down-
ward to upward.

To summarize the role of the second derivative in
general:

f ′′ (x) =


< 0 Concave down

= 0 Inflection

> 0 Concave up

6 Taylor’s Theorem

6.1 Kinematic Motivation

In freshman kinematics, one encounters the equations
of motion under uniform acceleration

x (t) = x0 + v0t+
1

2
at2

v (t) = v0 + at ,

where x (t) and v (t) are the position and velocity,
respectively, with their initial values written as

x (0) = x0

v (0) = v0 ,

all the while acceleration a is held constant in time t.

Uniform Jerk

Extending the picture of kinematics, we consider the
acceleration being allowed to vary. The simplest
regime has acceleration varying linearly in time such
that the derivative of a (t) is constant called jerk, de-
noted j. In such a case, two kinematic equations are
readily evident:

v (t) = v0 + a0t+
1

2
jt2

a (t) = a0 + jt

The equation for x (t) is a little more tricky
though. Going from the pattern, there should be a
new term proportional to jt3, but the leading coeffi-
cient must be left as a variable

x (t) = x0 + v0t+
1

2
a0t

2 +
1

A
jt3 ,

and the issue is deciding what A should be.

6.2 Time-Shift Analysis

Solving for A

To solve the riddle of the 1/A-coefficient, consider a
shift in the time variable

t → t+ h ,

where h is any constant. Inserting this into the above
gives

x (t+ h) = x0 + v0 (t+ h)

+
1

2
a0 (t+ h)

2
+

1

A
j (t+ h)

3
,

and now the job is to expand all factors involving
(t+ h). Doing so, and then combining like terms in
powers of h, something interesting happens:

x (t+ h) =

(
x0 + v0t+

1

2
a0t

2 +
1

A
jt3
)

+ h

(
v0 + a0t+

3

A
jt2
)

+
1

2
h2

(
a0 +

6

A
jt

)
+

1

6
h3 (j)

From this, we see the only way to correctly recover
the identities already written is to have

A = 6

and no other choice suffices.
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Time-Shifted Kinematics

Looking at the expanded x (t+ h) equation while
knowing that A = 6, recall that the first parenthe-
sized group of terms is just x (t). Similarly the sec-
ond group is v (t), the third group, a (t), and so on.
Therefore we can write the same equation as

x (t+ h) = xt + vth+
1

2
ath

2 +
1

6
jh3 ,

which is quite a beautiful result. In effect, we can
pretend that t is constant, and h does the whole job
of the time variable. Any point t along the path of
motion can be considered as the ‘initial’ state.

6.3 Generalized Kinematics

Using the same procedures that led us to finding A =
6 in the kinematics-with-jerk analysis, it’s straightfor-
ward to incorporate higher derivatives into the equa-
tions of motion. The derivative of jerk is called snap,
denoted k. (Beyond this the derivatives aren’t con-
ventionally named.) Going through the exercise, one
finds

x (t+ h) = xt + vth+
at
2!
h2 +

jt
3!
h3 +

kt
4!
h4 + · · ·

The factorial operator is used to tightly represent the
kinematic coefficients.

To handle t being considered fixed while h is the
varying quantity, let us relabel t to tp, as in ‘time
at some special point’, and write the effective time
variable as

t = tp + h .

The above transforms into

x (t) = xtp + vtp (t− tp)

+
1

2!
atp (t− tp)

2
+

1

3!
jtp (t− tp)

3
+ · · ·

Using a generalized notation to represent the ve-
locity, acceleration, jerk, and so on, let us make the
associations

xtp → x
(0)
tp

vtp → x
(1)
tp

atp → x
(2)
tp

jtp → x
(3)
tp

ktp → x
(4)
tp ,

and so on. On the left we’ve run out of ‘named’ items
after snap, thus the general symbol x

(q)
tp is utilized to

denote the qth coefficient.

Taylor Polynomial

In condensed form, x (t) can be written in a most
general way using summation notation

x (t) = xtp +

n∑
q=1

1

q!
x
(q)
tp (t− tp)

q
+Rn (t) , (1.60)

known as the Taylor polynomial. The upper limit n
can be any natural number, depending on the total
number of motion coefficients in play.

The so-called ‘remainder’ term Rn (t) contains the
rest of the terms not included in the main sum. If
Rn (t) tends to zero for increasing n, the Taylor poly-
nomial converges. The polynomial diverges if Rn (t)
fails to vanish for large n.

6.4 Taylor’s Theorem

The Taylor polynomial for generalized kinematics is
an extremely powerful and general result that is the
center of Taylor’s theorem. In a phrase, Taylor’s the-
orem states that any n-times differentiable function
can be approximated a Taylor polynomial or order n.

In terms of a function f (x), near the point x0,
Taylor’s theorem reads

p (x) = f (x0) +

n∑
q=1

1

q!
f (q) (x0) (x− x0)

q
+Rn (x) ,

(1.61)
where f (q) (x0) is the qth derivative of f (x) evalu-
ated at x0. The approximation p (x) may or may not
successfully approximate the entire function in its do-
main, but it does a great job in the neighborhood of
x0 in any case.

A less pedantic statement of Taylor’s theorem
omits the remainder unless it becomes necessary, and
also acknowledges its approximate nature by replac-
ing the equal sign:

f (x) ≈ f (x0) +

n∑
q=1

1

q!
f (q) (x0) (x− x0)

q

Proof of Taylor’s Theorem

A formal proof of Taylor’s theorem can begin with a
new function hn (x) defined as:

hn (x) =

{
(f (x)− p (x)) / ((x− x0)

n
) x ̸= a

0 x = a

It is required that f (x) is an n-times differentiable
function and p (x) is the Taylor polynomial appear-
ing in Equation (1.61).
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The theorem is considered proven when we show
that hn (x) = 0 for all x near x0. Setting this up,
begin with

Hn = lim
x→x0

hn (x) = lim
x→x0

f (x)− p (x)

(x− x0)
n ,

and recognize the right side as an indeterminate ratio.
Indeterminate ratios of this kind are handled by

L’Hopital’s rule, thus apply the d/dx operator to the
numerator and denominator:

lim
x→x0

d
dx (f (x)− p (x))

d
dx ((x− x0)

n
)

= lim
x→x0

f (1) (x)− p(1) (x)

n (x− x0)
n−1

The right side is again an indeterminate ratio,
calling for another application of L’Hopital’s rule:

Hn = lim
x→x0

f (2) (x)− p(2) (x)

n (n− 1) (x− x0)
n−2

In fact, this pattern continues n− 1 times, with each
application of L’Hopital’s rules knocking down the
exponent in the denominator. Exhausting this loop,
one should find:

Hn =
1

n!

(
lim

x→x0

f (n−1) (x)− p(n−1) (x)

x− x0

)
The parenthesized limit is equivalent to the def-

inition of the derivative of f (n) (x) evaluated at x0.
Or, use L’Hopital once more to sap the denominator
entirely, and the quantity Hn evaluates to

Hn =
1

n!

(
f (n) (x0)− f (n) (x0)

)
= 0

and the proof is done.

Order of Approximation

In certain scenarios, especially when working near the
point x0, it suffices to truncate the Taylor polyno-
mial to a small, finite number of terms. This works
only when the sum converges ‘rapidly enough’ so that
higher powers of x− x0 become negligible. To put a
label to the first few approximations, we have, for a
function f (x):

Zeroth Order:

p0 (x) = f (x0)

First Order:

p1 (x) = f (x0) + f ′ (x0) (x− x0)

Second Order:

p2 (x) = f (x0) + f ′ (x0) (x− x0)

+
f ′′ (x0)

2!
(x− x0)

2

6.5 Testing Taylor’s Theorem

In a certain sense, Taylor’s theorem contains the en-
tire lesson of elementary calculus. Here we spend a
moment recovering some already-known results.

Geometric Series

Consider the function

f (x) =
1

1− x

in the domain |x| < 1. Near any point x0, the infinite
Taylor polynomial approximation to f (x) reads:

p (x) = f (x0) + f ′ (x0) (x− x0)

+
f ′′ (x0)

2!
(x− x0)

2
+

f ′′′ (x0)

3!
(x− x0)

3
+ · · ·

The derivatives f ′, f ′′, etc., are straightforwardly
attained from f (x):

f ′ (x0) = 1/ (x− x0)
2

f ′′ (x0) = 2!/ (x− x0)
3

f ′′′ (x0) = 3!/ (x− x0)
4

Substituting these into p (x) and performing the ob-
vious cancellations gives:

p (x) =
1

1− x0

(
1 + λ+ λ2 + · · ·

)
,

where for brevity, λ contains the x-dependence via

λ =
x− x0

1− x0
.

Note, of course, that the parenthesized sum con-
taining powers of λ is a geometric series guaranteed
to converge because |x| < 1. Realizing this, replace
the infinite sum with the ratio 1/ (1− λ) as

p (x) =
1

1− x0

1

1− λ
,

simplifying to

p (x) =
1

1− x
= f (x) .

Evidently, the infinite Taylor polynomial approxima-
tion of the geometric series is no approximation at all
- the result is exact.
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Trigonometric Functions

Another regime where the Taylor polynomial exactly
approximates the function is in trigonometry, namely
the sine and cosine. Choosing the sine function to
play with, we have f (x) = sin (x), and then,

f ′ (x0) = cos (x0)

f ′′ (x0) = − sin (x0)

f ′′′ (x0) = − cos (x0)

f ′′′′ (x0) = sin (x0)

and by the fourth derivative we’re back to sin (x).
The simplest case has x0 = 0, which nixes all of

the sine terms in the list of evaluated derivatives. The
cosines all resolve to either 1 or −1, and we quickly
find

sin (x) = x− x3

3!
+

x5

5!
− · · · .

Choosing a juicier example, let x0 = π/2 and all
the signs change:

sin (x) = 1− (x− π/2)
2

2!
+

(x− π/2)
4

4!
+ · · ·

On the right is the polynomial expression for the co-
sine offset by −π/2, and the whole thing reduces to
the trig identity

sin (x) = cos
(
x− π

2

)
.

6.6 Recovering Differentiation Rules

Taylor’s theorem also jives with the rules of differen-
tiation.

Product and Quotient Rules

Consider two differentiable functions f (x), g (x).
From these, construct the product P (x) = f (x)·g (x)
along with the quotient Q (x) = f (x) /g (x). A ques-
tion that immediately arises from this is, what are
the first-order approximations to P (x), Q (x)?

To handle the product case, write each function
f (x), g (x) to first-order approximation,

f (x) ≈ f (x0) + f ′ (x0) (x− x0)

g (x) ≈ g (x0) + g′ (x0) (x− x0)

with the understanding that x is near x0.
Denoting

∆x = x− x0 ,

the product P (x) reads

P (x) ≈ f (x0) g (x0)

+ ∆x (f ′ (x0) g (x) + f (x) g′ (x0))

+(((((((((
(∆x)

2
f ′ (x0) g

′ (x0)

where the term (∆x)
2
is negligible compared to the

others and is dropped.
The middle term in the above is ∆x multiplied by

the derivative of the product f (x) g (x) per Equation
(1.32), i.e. the product rule. After simplifying, we
can summarize by writing the first-order approxima-
tion to P (x):

P1 (x) = f (x0) g (x0)+
d

dx
(f (x) g (x))

∣∣∣∣
x0

∆x (1.62)

The case for quotients is a little harder. To pre-
pare, let us apply Taylor’s theorem to 1/g (x) on its
own. Begin using the first order approximation for
g (x) via

1

g (x)
≈ lim

x→x0

1

g (x0) + g′ (x0) (x− x0)
,

and then factor out 1/g (x0):

1

g (x)
≈ 1

g (x0)
lim

x→x0

1

1 + λ
,

where the x-dependence is wrapped up in λ:

λ =
g′ (x0)

g (x0)
(x− x0)

Like we’ve seen before, it suffices to proceed with
|λ| < 1 for all x, and the fraction 1/ (1 + λ) can be
replaced with the geometric series:

1

1 + λ
= 1− λ+ λ2 − λ3 + · · ·

Of course, terms λ2 and above are omitted in the
first-order approximation, thus we have

1

g (x)
≈ 1

g (x0)
lim

x→x0

(
1− g′ (x0)

g (x0)
(x− x0)

)
.

The first-order approximation to Q (x) can be
taken as the product f1 (x) and 1/g1 (x). Doing this

out while dropping the inevitable (∆x)
2
term, we

find:

Q (x) ≈ f (x0)

g (x0)
+ ∆x

(
f ′ (x0) g (x)− f (x) g′ (x0)

(g (x0))
2

)

The latter term in the above is ∆x multiplied by
the derivative of the quotient f (x) /g (x) per Equa-
tion (1.33), i.e. the quotient rule. After simplifying,
we can summarize by writing the first-order approx-
imation to Q (x):

Q1 (x) =
f (x0)

g (x0)
+

d

dx

(
f (x)

g (x)

) ∣∣∣∣
x0

∆x (1.63)
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Chain Rule

Consider the composite function

C (x) = f (g (x)) .

To a first-order approximation the functions f and g
obey

f (g) ≈ f (g0) + f ′ (g0) (g − g0)

g (x) ≈ g (x0) + g′ (x0) (x− x0) ,

where g0 = g (x0).
With these, the composite function reads

f (g (x)) ≈ f (g (x0)) + f ′ (g (x0)) g
′ (x0) (x− x0) ,

or more succinctly:

C1 (x) = f (g (x0)) + f ′ (g (x0)) g
′ (x0)∆x (1.64)

Second Derivative

The formula for the second derivative can also be
wriggled from the Taylor polynomial. First write the
standard approximation of f (x):

f (x) ≈ f (x0) + f ′ (x0) (x− x0)

+
f ′′ (x0)

2!
(x− x0)

2

+
f ′′′ (x0)

3!
(x− x0)

3
+ · · ·

The same function can be approximated from a
different base point, namely x → 2x0 − x. Writing
this out, we have

f (2x0 − x) ≈ f (x0) + f ′ (x0) (x0 − x)

+
f ′′ (x0)

2!
(x0 − x)

2

+
f ′′′ (x0)

3!
(x0 − x)

3
+ · · · ,

which has the effect of reversing the sign on ∆x on
the odd-powered terms.

Next take the sum of the two equations to make
all odd-powered terms cancel, and then and reshuffle
a little to write

f (x) + f (2x0 − x)− 2f (x0)

(x− x0)
2 ≈ f ′′ (x0)

+
�������2

2!
f ′′′′ (x0)∆x2 ,

where terms containing powers of ∆x2 and above are
negligible in a first-order approximation.

In the infinitesimal limit x → x0, the above re-
duces to the exact formula for the second derivative,
Equation (1.59). Specifically, let x − x0 = h and let
h go to zero.

6.7 Binomial Expansion

Consider the function

f (x) = (x+ a)
r
,

where a is a constant and r is an arbitrary exponent.
In preparation for Taylor’s theorem, crank out the
first few derivatives of f (x) and spot the pattern:

f (1) (x0) = r (x0 + a)
r−1

f (2) (x0) = r (r − 1) (x0 + a)
r−2

f (3) (x0) = r (r − 1) (r − 2) (x0 + a)
r−3

f (q) (x0) =
r!

(r − q)!
(x0 + a)

r−q

As a sum, the approximation for f (x) then reads

f (x) ≈ (x0 + a)
r

+

n∑
q=1

r!

q! (r − q)!
(x0 + a)

r−q
(x− x0)

q
.

Next, impose the condition

x ≈ x0 = 0 ,

which causes increasing powers of ∆xq tend to zero
quickly. The above becomes

f (x) ≈ ar + ar
n∑

q=1

r!

q! (r − q)!

(x
a

)q
,

and the condition x ≈ 0 is represented by (x/a)
q

tending to zero for increasing q.

Binomial Coefficients

The pattern of factorials in the above has a special
name called the binomial coefficients, which follow a
special notation: (

r
q

)
=

r!

q! (r − q)!
(1.65)

In terms of binomial coefficients, the sum repre-
senting f (x) is written

(x+ a)
r ≈ ar

n∑
q=0

(
r
q

)(x
a

)q
(1.66)

valid for ‘small’ x. This is called the binomial expan-
sion formula. The above can be written in open form
for more practical use:

(x+ a)
r ≈ ar + rar−1x+

r (r − 1)

2!
ar−2x2

+
r (r − 1) (r − 2)

3!
ar−3x3 + · · ·



6. TAYLOR’S THEOREM 27

Examples

Example 1

Expand
√
1 + x for small x.

√
1 + x ≈ 1 +

1

2
x− 1

8
x2 + · · · (1.67)

Example 2

Expand 1/
√
1 + x for small x.

1√
1 + x

≈ 1− 1

2
x+

3

8
x2 − · · · (1.68)

6.8 Generalized Taylor Expansion

Taylor’s theorem can be used to approximate any dif-
ferentiable function in addition to polynomials.

Shifted Natural Logarithm

Consider the shifted natural logarithm

f (x) = ln (1 + x) .

At a point x0, the derivatives of f (x) are:

f (1) (x0) = 1/ (1 + x0)

f (2) (x0) = −1/ (1 + x0)
2

f (3) (x0) = 2/ (1 + x0)
3

f (4) (x0) = −3 · 2/ (1 + x0)
4

f (q) (x0) = (−1)
q−1

(q − 1)!/ (1 + x0)
q

Then, the approximation for f (x) near x0 reads

f (x) ≈ ln (1 + x0) +

n∑
q=1

(−1)
q−1

q

(x− x0)
q

(1 + x0)
q .

This result boils down to a quaint infinite series for
x near zero:

ln (1 + x) ≈ x− x2

2
+

x3

3
− x4

4
+ · · · (1.69)

Arctangent Near Zero

Using Taylor’s theorem involves derivative calcula-
tions that can get increasingly messy without an ob-
vious pattern showing.

To demonstrate, let’s run through the exercise us-
ing f (x) = arctan (x), where we have:

f (1) (x0) =
1

1 + x2
0

f (2) (x0) =
−2

(1 + x2
0)

2

f (3) (x0) =
6x2

0 − 2

(1 + x2
0)

3

f (4) (x0) =
−24x0

(
x2
0 − 1

)
(1 + x2

0)
4

f (5) (x0) =
24
(
5x4

0 − 10x2
0 + 1

)
(1 + x2

0)
5

Clearly the derivatives are not exhibiting a clear
pattern. To reign in the work we’re doing, let x0 = 0
and simplify to end up with an infinite series approx-
imation for the arctan (x) near x = 0:

arctan (x) ≈ x− x3

3
+

x5

5
− x7

7
+ · · · (1.70)

The last term x7/7 wasn’t directly calculated, but
tacked on due to the prevailing pattern in the coef-
ficients. This move isn’t safe unless you’re sure the
pattern really is there.

Arctangent Near One

Taking another easy case, the arctangent near x = 1
can be found in the same way as above, resulting in:

arctan (x)x≈1 =
π

4
+

x− 1

2

− (x− 1)
2

4
+

(x− 1)
3

12

− (x− 1)
5

40
+

(x− 1)
6

48
− · · · (1.71)

Arctangent near Two

For the sake of completeness, the arctangent near
x = 2 case works out to be:

arctan (x)x≈2 = arctan (2) +
x− 2

5

− 2 (x− 2)
2

25
+

11 (x− 2)
3

375
− · · ·

(1.72)

Arctangent of Two

It’s worth pausing a moment on the quantity
arctan (2), which is required to evaluate Equation
(1.72).
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A situation with arctan (2) could arise from a
right triangle with adjacent side 1, opposite side 2,
and hypotenuse

√
5. No rational multiple of π ra-

dians or degrees corresponds to the interior angles of
such a triangle. Moreover, Equation (1.71) cannot be
used as x = 2 is outside the valid domain of approxi-
mation.

To crack this problem, consider some argument z
and list the trig identity

cot
(π
2
− z
)
= tan (z) .

Then substitute z = arctan (x) to get

cot
(π
2
− arctan (x)

)
= tan (arctan (x)) = x ,

and simplifying further:

π

2
− arctan (x) = arccot (x)

To deal with arccot (x), recall also from trigonom-
etry that

arccot (x) = arctan

(
1

x

)
,

thus we land at a powerful identity:

arctan (x) =
π

2
− arctan

(
1

x

)
(1.73)

This puts us in position to finally calculate
arctan (2) via

arctan (2) =
π

2
− arctan

(
1

2

)
.

Either of Equations (1.70), (1.71) is sufficient to cal-
culate arctan (1/2).

Tangent Near Zero

The tangent function is a bit ugly for having verti-
cal asymptotes at integer multiples of ±π/2, ±3π/2,
etc. The function is otherwise handled in typical
fashion, first by listing off the first few derivatives
of f (x0) = tan (x0):

f (1) (x0) = sec2 (x0)

f (2) (x0) = 2 sec2 (x0) tan (x0)

f (3) (x0) = 2 sec2 (x0)
(
sec2 (x0) + 2 tan2 (x0)

)
f (4) (x0) = 16 sec4 (x0) tan (x0)

+ 8 sec2 (x0) tan
3 (x0)

f (5) (x0) = 88 sec4 (x0) tan
2 (x0) + 16 sec6 (x0)

+ 16 tan4 (x0) sec
2 (x0)

The above simplifies differently depending on
which x0 is chosen. Going with x0 = 0 first, ac-
knowledge that

sec (0) = 1

tan (0) = 0 ,

and quickly find:

f (1) (0) = 1 f (2) (0) = 0

f (3) (0) = 2 f (4) (0) = 0

f (5) (0) = 16

Plugging this information into Taylor’s theorem
yields a useful approximation to the tangent func-
tion:

tan (x) ≈ x+
x3

3
+

2x5

15
+O

(
x7
)

(1.74)

The symbol O
(
x7
)
signifies that the next nonzero

term in the approximation is of order 7, and then the
terms get smaller after that. In this particular case,
it happens that

O
(
x7
)
=

17x7

315
,

which you are welcome to verify.

Tangent Near Pi/4

Shifting the base point to x0 = π/4, we can recycle
all of the work in calculating the derivatives of tan (x)
and re-evaluate using

sec (π/4) =
√
2

tan (π/4) = 1 ,

which gives:

f (1) (π/4) = 2 f (2) (π/4) = 4

f (3) (π/4) = 16 f (4) (π/4) = 80

f (5) (π/4) = 512

Not forgetting the shift by x0 units, the approxi-
mation for the tangent near x = π/4 reads

tan (x)x≈π/4 = 1 + 2
(
x− π

4

)
+ 2

(
x− π

4

)2
+

8

3

(
x− π

4

)3
+

10

3

(
x− π

4

)4
+

64

15

(
x− π

4

)5
+O

(
x− π

4

)6
(1.75)
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Cotangent Near Pi/2

The same routine can be applied to the cotangent.
For f (x) = cot (x), find:

f (1) (x0) = − csc2 (x0)

f (2) (x0) = 2 csc2 (x0) cot (x0)

f (3) (x0) = −2 csc2 (x0)
(
csc2 (x0) + 2 cot2 (x0)

)
f (4) (x0) = 16 csc4 (x0) cot (x0)

+ 8 csc2 (x0) cot
3 (x0)

f (5) (x0) = −88 csc4 (x0) cot
2 (x0)− 16 csc6 (x0)

− 16 cot4 (x0) csc
2 (x0)

Setting x0 = π/2 first, note that

csc (π/2) = 1

cot (π/2) = 0 ,

and quickly find:

f (1) (0) = −1 f (2) (0) = 0

f (3) (0) = −2 f (4) (0) = 0

f (5) (0) = −16

Evidently, the expansion for the cotangent near
x = π/2 is somewhat like the tangent near x = 0 with
the signs reversed. For conciseness, let z = x − π/2
and find

cot (z) ≈ −z − z3

3
− 2z5

15
−O

(
z7
)
. (1.76)

6.9 Expansion Near Asymptotes

Tangent near Pi/2

Returning to the problem of the tangent function, we
know tan (x) has a hopeless singularity at x = π/2
tending to +∞ on the left and−∞ on the right. With
this, how can derivatives evaluated at π/2, which are
surely divergent, mean anything?

It seems that Taylor would have nothing to say
about expansion near an asymptote, but there is a
trick. Since the tangent and cotangent are mutually
reciprocal, then it should make sense to approximate
the ratio 1/ cot (x) near x = π/2 and get the answer
we want.

Letting z = x− π/2, this means we start with

tan (z)z≈0 =
1

cot (z)z≈0

=
−1

z + z3/3 + 2z5/15
,

where any terms of order 7 or higher are ignored as
negligible. Carrying out the polynomial division leads
to an infinite sum:

tan (z) ≈ −1

z
+

z

3
+

z3

45
+O

(
z5
)

(1.77)

Notice the result is two orders lower than the
quantity we started with, thus any terms of order 5
or greater can’t be trusted. More important are the
low-order terms, and we see −1/z being the dominant
one. This captures the divergent behavior of the tan-
gent near its first asymptote and the trailing terms
improve accuracy.

Cotangent Near Zero

The cotangent function behaves asymptotically near
x = 0, thus the same trick is needed to explore this
case. That is, take the approximation for tan (x) near
x = 0 and perform long division. Leaving the details
for an exercise, the result is:

cot (x) ≈ 1

x
− x

3
− x3

45
−O

(
x5
)

(1.78)

6.10 Kinematics with Air Damping

When studying kinematics, one comes to understand
that it all starts with a uniform gravitational field in
vacuum, which on earth near sea level means

a = −g = −9.8m/s2 .

From this, we know the velocity will be a linear func-
tion in time, i.e.

v (x) = v0 + at ,

and the position is a quadratic:

x (t) = x0 + v0t+
1

2
at2

Of course, this is the most baseline picture of kine-
matics in the sense that there are no jerk-like terms
or higher derivatives. Starkly absent too are real-
world effects that would alter the idealized image of
projectile motion, particularly the presence of the at-
mosphere as a resisting fluid.

Using a simplified model for air damping, we can
imagine a new component to the acceleration that
tries to slow down an object by an amount propor-
tional to its speed. To capture this, we let the accel-
eration vary in time via

a (t) = −g − bv (t) ,

where b is a linear damping coefficient and v (t) is the
velocity.
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Acknowledging that a (t) is the second derivative
of x (t) and v (t) is the first derivative, the above is
more clearly stated in Leibniz notation as

d2x

dt2
= −g − b

dx

dt
,

which is an honest-to-goodness differential equation.
The signature of a differential equation is that the
function x (t) is tied up in some kind of relationship
with its own derivative(s), and solving for x can’t be
done algebraically. A less intimidating version of the
same equation can be written strictly in terms of v (t):

dv

dt
= −g − bv (1.79)

Frobenius Method

There is a brilliant trick attributed to Ferdinand
Georg Frobenius (1849-1917) for solving equations
like the one above. Suppose v (t) takes the form of
an infinite, Taylor-like polynomial with unknown co-
efficients:

v (t) = v0 +A1t+A2t
2 +A3t

3 + · · ·

Without knowing much else about v (t), we can still
compute the derivative:

dv

dt
= A1 + 2A2t+ 3A3t

2 + 4A4t
3 + · · ·

Now, plug both of these into −g = bv + dv/dt:

−g = bv0 + bA1t+ bA2t
2 + bA3t

3 + · · ·
+A1 + 2A2t+ 3A3t

2 + 4A4t
3 + · · ·

This seems to be a greater mess than we started with
until matching coefficients, which means the coeffi-
cients on matching powers of t must balance. This
means

−g = bv0 +A1

0 = bA1 + 2A2

0 = bA2 + 3A3

0 = bA3 + 4A4 ,

and the pattern continues forever.

Velocity

Astonishingly, notice that all of the coefficients can
all be related back to the first few, and v (t) can now
be written:

v (t) = v0 +A1t−
bA1

2!
t2 +

b2A1

3!
t3 − b3A1

4!
t4 + · · ·

The polynomial on the right looks tantalizingly close
to an exponential, which it indeed is. Proceeding
carefully, we next have

v (t) = v0 +
A1

b

(
1− e−bt

)
,

simplifying once more to

v (t) =
−g

b
+
(
v0 +

g

b

)
e−bt . (1.80)

The final unknown v0 is the initial velocity v (0).
If an object is left in freefall in atmosphere for a

long time, it’s likely to achieve a state called terminal
velocity where the force of gravity balances the force
of air damping. To see this, let t run to infinity in
the above, and we find

vterminal = lim
t→∞

v (t) =
−g

b
.

Position

It just happens that the Frobenius method works for
attaining x (t). Postulating

x (t) = x0 +B1t+B2t
2 +B3t

3 + · · · ,

one finds, after plugging into

−g =
d2x

dt2
+ b

dx

dt
,

that

x (t) = x0 −
gt

b
− 2B2

b2
(
1− e−bt

)
,

where x0 is the initial position x (0).
Since the derivative of x (t) is identically v (t), we

can relate the coefficient B2 to the initial velocity via

B2 = −1

2
(g + bv0) ,

and the position equation takes the form:

x (t) = x0 −
gt

b
+

1

b

(
v0 +

g

b

) (
1− e−bt

)
(1.81)

Small-b Limit

In the case that the damping constant b is small, the
velocity and position equations ought to restore to
their ideal form, or at least approximately. Doing the
v (t)-case first, Equation (1.80) in the small-b limit
reads

v (t) ≈ −g

b
+
(
v0 +

g

b

)
(1− bt) ,

reducing readily to

v (t) ≈ v0 − (g + v0b) t
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with no factor of b in the denominator. The v0b term
plays essentially no role in the numerator and the
form v ≈ v0 − gt is recovered.

The position equation ought to churn out some-
thing similar. Starting from Equation (1.81) and ex-
panding the exponential to second order gives:

x (t) ≈ x0 −
gt

b
+

1

b

(
v0 +

g

b

)(
bt− 1

2
b2t2

)
,

which simplifies to

x (t) ≈ x0 + v0t−
1

2
(g + v0b) t

2

as expected.

7 Numerical Methods

Transcendental Equations

Fairly often, solving a problem by analytical means
is not a straightforward task, and a whole class of
creatures called transcendental equations have no an-
alytical solution at all. For these, the best thing we
can do is approximate the answer.

For instance, try solving for x in the equation

x = cos (x) ,

but don’t try too long. While it is possible to manip-
ulate a transcendental equation, there is no satisfac-
tory way to isolate x. One may transform the above
into either of

arccos (x) = x

x = cos (cos (cos (· · ·x · · · ))) ,

but each of these are also transcendental. To actually
solve the problem on hand, you’re better off plotting
y = x with y = cos (x) and hunting for the intersec-
tion of the two.

7.1 Newton’s Method

A fascinating trick called Newton’s Method can be
used for solving certain problems, including transcen-
dental equations, by numerical estimation.

Borrowing from the example above, consider a
function

g (x) = x− cos (x) ,

which has solutions g (x∗) = 0 for some (or several
or many) special x∗. This setup, of course, works for
any scenario where g (x) is a differentiable function,
and we’ll proceed as if working in general.

Expand g (x) to a first-order approximation

g1 (x) = g (x0) + g′ (x0) (x− x0) ,

where x0 is some value in the domain of g (x), called
an initial guess that is presumably not equal to x∗.
The variable x represents any point near x0.

Now, we already know g (x) = 0 is hard to deal
with, but g1 (x) is easy to deal with. Imposing the
condition g1 (x) = 0 causes x to take on a new value
x1 away from x0 and presumably closer to x∗ as:

x1 = x0 −
g (x0)

g′ (x0)

The reason x1 is an ‘improvement’ over the initial
guess x0, i.e. closer to x∗, can be seen geometrically
in Figure 1.2. In the Cartesian plane, g1 (x) is the
tangent line to the function at x0. If x0 is reason-
ably close to x∗ to begin with, we’re dealing with a
‘zoomed in’ picture of g (x) where things behave lin-
early anyway, supposing the function is well-behaved.

x0

x1

x∗

g(x)
g1(x)

x

y

Figure 1.2: Newton’s method.

With the improved guess x1 attained, the process
can be repeated to generate x2, which forms the ini-
tial guess for x3, and so on until you get tired. The
process is captured in a single recursive formula

xn+1 = xn − g (xn)

g′ (xn)
, (1.82)

which, just to remind, attempts to solve g (x∗) = 0.

X Equals Cos(X)

Finishing the example that got us here, namely

g (x) = x− cos (x)

implies
g′ (x) = 1 + sin (x) ,
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thus we write

xn+1 = xn − xn − cos (xn)

1 + sin (xn)
.

Choosing a reasonable initial guess such as x0 = 0.25,
the evolution of xn proceeds as:

n xn

0 0.25
1 0.8263268718020449
2 0.7406169010184902
3 0.7390856504615118
4 0.7390851332152197
5 0.7390851332151607
6 0.7390851332151607

By the sixth iteration, the approximation for x∗
seems to have converged to a number whose preci-
sion outruns that of the numerical system used. In
conclusion, we find x∗ = cos (x∗) is solved by

x∗ ≈ 0.7390851332151607 . . . .

Cube Roots

Newton’s method need not work only on transcen-
dental equations, as things like cube roots are just as
straightforward to churn out as well. The nice part
is, you only need a standard four-function calculator
to do so. For example, take

g (x) = x3 − 29 ,

solved by the cube root of 29. Setting up the proper
recursive formula, we have

xn+1 = xn − x3 − 29

3x2

With an initial guess of x0 = 3, the evolution of
xn proceeds as:

n xn

0 3
1 3.0740740740740740
2 3.0723178299991580
3 3.0723168256861757
4 3.0723168256858470
5 3.0723168256858475
6 3.072316825685847 . . .

Stopping at six iterations, the result seems to be
converging near x∗ ≈ 3.072 . . . , or

(29)
1/3 ≈ 3.072316825685847 .

Digits of Pi

On a scientific calculator set to radians, type

3.14− tan (3.14)

to get an approximate output

π ≈ 3.14159265 . . . .

The reason this works is left as an exercise for the
reader.

Second-Order Newton’s Method

It’s possible to improve the convergence time of New-
ton’s method by including the second order term via

g2 (x0 + h) = g (x0) + g′ (x0)h+
g′′ (x0)

2!
h2 ,

where h = x− x0.
Playing a similar game as the first-order case, the

original curve is approximated using a parabola in-
stead of a line. Solutions are attained by setting
g2 (x0 + h) = 0 and isolating h with the quadratic
formula:

h =
−g′ (x0)

g′′ (x0)
± g′ (x0)

g′′ (x0)

√
1− 2g (x0) g′′ (x0)

(g′ (x0))
2

To deal with the square root term, we turn to an-
other order-two approximation in the form of Equa-
tion (1.67). Churning through the algebra gives, in
abbreviated notation,

h =
−g′

g′′
±

(
g′

g′′
− g

g′
− g2g′′

2 (g′)
3

)
.

The second-order result needs to reduce to the first-
order result in the small g′′-limit, thus we choose the
positive root in the solution for h. In final form, h
reads

h =
−g

g′

(
1 +

gg′′

2 (g′)
2

)
.

Restoring the iterative notation and writing the
above as a recursive formula yields a useful improve-
ment to Newton’s method:

xn+1 = xn − −g (xn)

g′ (xn)

(
1 +

g (xn) g
′′ (xn)

2 (g′ (xn))
2

)
(1.83)

7.2 Babylonian Method

A procedure less powerful but slightly more straight-
forward than Newton’s method is something that
works on roots alone, credited to the ancient Babylo-
nians.
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Square Root

Suppose that we need to estimate the square root of
some number N . Proceed by assuming N to be com-
prised of some lesser number Q < N , along with a
smaller contribution x ≪ Q such that Q+ x = N , or
also

Q2 + 2Qx+ x2 = N2 .

If x is ‘small enough’, then the term x2 is negligible,
allowing the first-order equation in x to be written:

x ≈ N2 −Q2

2Q

The formula Q+ x = N is replaced with

Q+
N2 −Q2

2Q
≈ N .

Now, if the left side always evaluates to approxi-
mately N , it does so especially well for Q ≈ N , and
it should be true that whatever number we get on the
left can become the next Q. In other words, we have
a recursive formula

Qn+1 = Qn +
N2 −Q2

n

2Qn
, (1.84)

or more simply,

Qn+1 =
Qn

2
+

N2

2Qn

Cube Root

The Babylonian method for cube roots starts the
same as the square root case. This time though, we
write the third-power expansion of Q+ x:

Q3 + 3Q2x+ 3x2Q+ x3 = N3 ,

and then take the x2- and x3 terms to be negligible.
This means x is approximately

x ≈ N3 −Q3

3Q2
,

the recursive formula settles to

Qn+1 =
2

3
Qn +

N3

3Q2
n

.

Kth Root

One may pursue the generalized Babylonian method
for the kth root of the number N . Leaving the details
as an exercise, the recursive formula is

Qn+1 =

(
1− 1

k

)
Qn +

Nk

kQk−1
n

.

Perhaps not surprisingly, this result is recovering
what Newton’s method would have said about the
same problem. The above can also be written

Qn+1 = Qn − Qk
n −Nk

kQk−1
n

,

which is indeed Newton’s method applied to

g (x) = xk −Nk ,

solved by x∗ = N .

7.3 Euler’s Method

Numerical methods need not be limited to estimat-
ing individual numbers, as estimating entire curves is
also fair game.

Revisiting the scenario of kinematics with air
damping, the situation is governed by the differen-
tial equation

dv

dt
= −g − bv ,

where v (t) is the velocity of a falling body, g is the
local gravity constant, and b is the linear damping
coefficient. By the Frobenius method we were able to
jot down exact solutions to this problem, namely

v (t) =
−g

b
+
(
v0 +

g

b

)
e−bt

x (t) = x0 −
gt

b
+

1

b

(
v0 +

g

b

) (
1− e−bt

)
,

where after supplying the initial values v0, x0, the
motion is completely determined.

The haunting question now is, what if we could
not easily get hold of solutions for v (t), x (t)? It
seems that things fell into place by pure luck in a
sense, and if the differential equation had been more
complicated, maybe solutions would be be hopelessly
tangled up.

A technique called Euler’s method allows for ap-
proximating the path of motion directly from the dif-
ferential equation. Assuming v0, x0 as given, the idea
is, much like Newton’s method, to calculate the up-
dated information v1, x1 using linear approximations.
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Forward Euler’s Method

Starting with an easy case, consider the frictionless
constant-acceleration scenario characterized by

dv/dt = −g

dx/dt = v (t) .

Expanding each of these to first order, we have

v (t) ≈ v (t0)− g∆t

x (t) ≈ x (t0) + v (t0)∆t .

To turn these into something useful, we first un-
derstand that the quantity ∆t is meant to be a ‘small
enough’ number such that g∆t and v (t0)∆t are small
compared to v (t0), x (t0). (This is the essence of the
first-order approximation.)

Also, note that the right side of each equation
contains all ‘known’ information, and the left side
contains the ‘updated’ versions of v, x. Much like
Newton’s method, this setup invites a recursive rep-
resentation given by

vn+1 = vn − g∆t (1.85)

xn+1 = xn + vn∆t (1.86)

This setup in particular is called the forward Eu-
ler’s method. Supplying v0, x0 as initial values, the
above can be used to estimate the subsequent motion
as a set of points. The number of points generated
has to do with the size of ∆t and the total time in-
terval being considered.

Backward Euler’s Method

Recalling the definition of the derivative, namely

f ′ (x) = lim
h→0

f (x+ h)− f (x)

h
,

note that the definition remains intact by reversing
the sign on h:

f ′ (x) = lim
h→0

f (x)− f (x− h)

h
.

Moreover, no error is made if we simply shift variables
x → x+ h, so we can also write

lim
h→0

f ′ (x+ h) = lim
h→0

f (x+ h)− f (x)

h
,

which essentially recovers the definition.
Recasting the above as a first-order approxima-

tion, we get, after rearranging,

f (x+ h) ≈ f (x) + hf ′ (x+ h) .

Interestingly, the f ′-term uses the updated version
of x, namely x + h as its argument. This configu-
ration leads to the backward Euler’d method, and is
an implicit formula in the sense that some extra work
needs to be done to isolate f (x+ h) in terms of initial
quantities.

For the problem on hand, the backward Euler’s
method is represented recursively via

vn+1 = vn − g∆t (1.87)

xn+1 = xn + vn+1∆t , (1.88)

which is subtlety different from Equations (1.85),
(1.86). Note that in a more general case, the g-term
would instead be an+1.

Energy Considerations

In the absence of friction, freefall kinematics qualifies
as an energy-conserving system. At any point during
motion, the kinetic energy is given by

T (v) =
1

2
mv2 ,

where m is the mass of the object that is falling.
Meanwhile, freefall near sea level implies the poten-
tial energy is

U (x) = mgx ,

where g is the familiar gravity constant. For this sit-
uation, conservation of energy means

E = T (v) + U (x)

is constant.
If conservation of energy is to hold, then the re-

cursive formulas for the forward and backward Eu-
ler’s method ought to reflect this. At a given step n,
the energy is

En =
1

2
mv2n +mgxn .

At the next step n+1 the same energy ought to read

En+1 =
1

2
mv2n+1 +mgxn+1 .

All is fair until we want to substitute vn+1 and
xn+1 into En+1. That is, nothing says to only use
the forward method represented by Equations (1.85),
(1.86), or for that matter, nothing forbids the pair of
Equations (1.87), (1.88). Which pair is correct? At
this point we’re obligated to try both, and doing each
case carefully, we find:

forward: En+1 = En +
1

2
mg2∆t2

backward: En+1 = En − 1

2
mg2∆t2
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Evidently, the energy is conserved to zeroth order
and first order by each method. There is, however,
a pesky second-order term lingering in each result.
This will surely introduce artificiality in the results.

It should be noted that error can be minimized
when ∆t is very small, but this still leaves the ques-
tion of, can we do better?

Mixed Euler’s Method

Given how the forward and backward Euler’s method
produce equal and opposite errors in the total energy,
one has to wonder if some mixture of the methods
will be better than either alone. Trying the average
of the two, we write the mixed Euler’s method for

this problem:

vn+1 = vn − g∆t (1.89)

xn+1 = xn +
1

2
(vn + vn+1)∆t (1.90)

As it turns out, this pair of equations does in fact sat-
isfy En+1 = En which you are encouraged to verify.

To see each of Euler’s methods in action against a
concrete problem, consider the one-dimensional mo-
tion of a body that begins at x0 = 10 m at t = 0 s
with initial upward speed of v0 = 10m/s. For a time
step we’ll use ∆t = 0.1 s over a total of 20 iterations.
Writing the appropriate C program and producing
graphs with gnuplot, we generate the outputs shown
in Figure 1.3.

Figure 1.3: Various Euler’s method approximations of ideal freefall motion compared to exact solution.

As shown in the Figure, the exact solution is
traced by a solid line with the three approximations,
namely forward, backward, mixed, appearing as un-
connected colored dots. The forward method sails
consistently over the exact solution, while the back-
ward method sails under. Perhaps not surprisingly,
the mixed method approximation stays perfectly with
the exact solution.

Air Damping Problem

Returning to the problem of kinematics with air
damping, governed by

dv

dt
= −g − bv ,

we can immediately dispense with any hope of con-
serving energy, as the effect of friction eats away at
the kinetic component without replenishing the po-
tential. Nonetheless, we may still approximate solu-
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tions with variations of Euler’s method.
For the air damping problem, a set of ‘forward’

equations are (as always) easy to write explicitly:

vn+1 = vn − g∆t− bvn∆t

xn+1 = xn + vn∆t

That is, the above is analogous to Equations (1.85),
(1.86) and only differ by the presence of the b-term.

As for a ‘backward’ set of equations, replace
downstream n on the right with n+ 1 to get

vn+1 = vn − g∆t− bvn+1∆t

xn+1 = xn + vn+1∆t ,

analogous to Equations (1.87), (1.88). Solving for
vn+1 and xn+1 explicitly, we find these to mean

vn+1 =
vn − g∆t

1 + b∆t

xn+1 = xn +

(
vn − g∆t

1 + b∆t

)
∆t .

Finally, we can pursue a set of ‘mixed’ equations
by imposing the average on the downstream terms as

vn+1 = vn − g∆t− b

2
(vn + vn+1)∆t

xn+1 = xn + (vn + vn+1)∆t ,

which are analogous to Equations (1.89), (1.90). Af-
ter some effort, these can be expressed entirely with
n+ 1 on the left and n on the right:

vn+1 =
vn (1− b∆t/2)− g∆t

1 + b∆t/2

xn+1 = xn +

(
vn − g∆t/2

1 + b∆t/2

)
∆t

We’re now in position to plot each of the three ap-
proximations along with the exact solution for x (t)
for the air damping problem. Using the same initial
conditions as previous while introducing a damping
coefficient of b = 3s−1, we generate the output shown
in Figure 1.4.

Figure 1.4: Various Euler’s method approximations of damped freefall motion compared to exact solution.

In the Figure, note that all approximations agree
with the exact solution in the large-t limit, corre-
sponding to the falling body reaching terminal veloc-
ity. The slope of the asymptotic line implied ought

to be −g/b, or roughly −3.3m/s in the plot.

Comparing the overall performance of each ap-
proximation, as seen in the ideal case, the forward
method is a little too generous in its output, and the
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backward method is a little too thrifty. Astonishingly
though, the mixed method is spot on with the exact
solution.

8 Antiderivative

Reflecting on the notion of the derivative f ′ (x) as it
relates to the original function f (x), there is a sense
that the derivative operator is a one-way arrow from
one ‘space’ of functions to another. For any given
f (x), we can more-or-less confidently calculate f ′ (x)
using the techniques gained above.

The derivative calculation begs an interesting
question though, namely, can we start with f ′ (x)
and infer what the original f (x) could have been?
This idea is like running the derivative operator back-
wards, and is aptly named the antiderivative.

8.1 Motivation

A natural way to frame the antiderivative question
starts with definition of the derivative

f ′ (x0) = lim
x→x0

f (x)− f (x0)

x− x0
,

and then set the left side to a function that is given,
call it g (x):

g (x0) = lim
x→x0

f (x)− f (x0)

x− x0

Next, consider any sequence of manipulations,
symbolized by Q, that is applied to both sides of
the above. By ‘manipulations’, we mean adding zero,
multiplying by one, and so on. Symbolically, this
would mean

Q (g (x0)) = Q

(
lim

x→x0

f (x)− f (x0)

x− x0

)
.

If the sequence Q is chosen properly, the quan-
tity Q (g (x0)) on the left is some new function of
x0, which, and this is the key - should match the
form of a known derivative. That is, we should be
able to recognize Q (g (x0)) as the derivative of some
previously-cataloged function r (x). This lets us re-
place the right side of the above:

Q (g (x0)) =
d

dx
(r (x))

∣∣∣∣
x0

Finally, isolate g (x0) algebraically via

g (x0) = Q−1

(
d

dx
(r (x))

∣∣∣∣
x0

)
,

where Q−1 reverses the manipulations represented by
Q.

8.2 Exemplary Cases

Natural Logarithm

Going for an interesting example, it turns out that the
natural logarithm ln (x) didn’t turn up as the result
of any derivative calculation previously done. Letting
f ′ (x) = ln (x), we can puzzle out f (x) starting with:

ln (x0) = lim
x→x0

f (x)− f (x0)

x− x0

ln (x0) + 1 = lim
x→x0

f (x)− f (x0)

x− x0
+ 1

By adding 1 to each side, the left is suddenly rec-
ognizable from Equation (1.35), which reads

d

dx
(ln (xx)) = ln (x) + 1 .

Knowing this, replace the right side of our working
equation:

ln (x0) + 1 =
d

dx
(ln (xx))

∣∣∣∣
x0

ln (x0) + 1 = lim
x→x0

ln (xx)− ln (xx0
0 )

x− x0

Now subtract 1 from each side, thereby applying
Q−1, and simplify:

ln (x0) = lim
x→x0

(x ln (x)− x)− (x0 ln (x0)− x0)

x− x0

The right side is none other than the derivative of
x ln (x)− x, and we’re done:

ln (x) =
d

dx
(x ln (x)− x) (1.91)

X Times Cos(X)

It’s a bit more practical to work in Leibniz notation
if we have a good handle of how to isolate the desired
derivative.

To illustrate, suppose we want to know which
function has a slope of f ′ (x) = x cos (x). Reach-
ing for a table of derivatives, recall Equation (1.28),
namely

d

dx
(x sin (x)) = sin (x) + x cos (x) ,

which contains the answer as the rightmost term. To
proceed, note that the sine term can be replaced by
the negative derivative of the cosine:

d

dx
(x sin (x)) =

d

dx
(− cos (x)) + x cos (x)
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Since the derivative operator is a linear one, we can
cram all derivative terms on the same side to write
the final answer:

x cos (x) =
d

dx
(x sin (x) + cos (x)) (1.92)

By identical reasoning, one can work out the case
f ′ (x) = x sin (x) using Equation (1.29). Leaving the
details as an exercise, the result is

x sin (x) =
d

dx
(sin (x)− x cos (x)) . (1.93)

8.3 Powers and Roots

The rule governing powers and roots is covered by
Equation (1.2), namely

d

dx
(xn) = nxn−1 ,

which reads cleanly in both directions, i.e. it’s ready
for derivative and antiderivatives.

In light of the chain rule, we can replace x with a
function f (x) to have:

d

dx
((f (x))

n
) =

n

(f (x))
n−1

d

dx
(f (x))

Despite the above result being general, it’s still a
bit messy and not worth memorizing. One exception,
though, is the special case n = 1/2:

d

dx

√
f (x) =

f ′ (x)

2
√
f (x)

As you train your eye solve antiderivative problems,
it helps to know that the ratio f ′/

√
f can be dealt

with using the above.
To illustrate, consider the case

g′± (x) =
±x√
1± x2

,

which has f (x) = 1± x2 and f ′ (x) = ±2x. Immedi-
ately from this, we can write:

±x√
1± x2

=
d

dx

√
1± x2 (1.94)

Reciprocal

One exception to the usual pattern for powers and
roots is the reciprocal function f ′ (x) = 1/x. This
antiderivative is handled by Equation (1.14) going
backwards, namely:

1

x
=

d

dx
(ln (x))

8.4 Logarithmic Antiderivatives

Diminished Natural Logarithm

Much of the struggle in calculating antiderivatives is
deciding which functions to try. For instance, sup-
pose we have the diminished natural logarithm rep-
resented by

f ′ (x) =
ln (x)

x
.

After some fiddling with the chain rule, one even-
tually stumbles upon

d

dx

(
(ln (x))

2
)
=

2

x
ln (x) . (1.95)

Recognizing the original problem embedded on the
right, we have the answer:

ln (x)

x
=

1

2

d

dx

(
(ln (x))

2
)
. (1.96)

Shifted Natural Logarithm

Consider the case f ′ (x) = ln (x+ 1). For this, use
the product rule to establish

d

dx
((x+ 1) ln (x+ 1)) = ln (x+ 1) + 1 .

In order to isolate x ln (x), everything else must
be part of the same derivative, and this can be done
by replacing the 1-term via

1 =
dx

dx
.

Substituting this into the above and simplifying gives
the result we’re after:

ln (x+ 1) =
d

dx
((x+ 1) ln (x+ 1)− x) (1.97)

Nonlinear Natural Logarithm

Consider the case f ′ (x) = x ln (x). For this, use the
product rule to establish

d

dx

(
x2 ln (x)

)
= 2x ln (x) + x .

Like the previous case, in order to isolate x ln (x),
everything else must be part of the same derivative,
and this can be done by replacing the x-term via

x =
1

2

d

dx

(
x2
)
.

Substituting this into the above and simplifying gives
the result we’re after:

x ln (x) =
1

2

d

dx

(
x2

(
ln (x)− 1

2

))
(1.98)



8. ANTIDERIVATIVE 39

Modified Natural Logarithm

Finding the antiderivative of the modified natural
logarithm f ′ (x) = ln

(
1 + x2

)
is a challenge. To be-

gin we’ll write something that contains 1 + x2 and
hope for the best, particularly:

d

dx

(
x ln

(
1 + x2

))
= ln

(
1 + x2

)
+

2x2

1 + x2

The rightmost term can be split apart by algebra

2x2

1 + x2
= 2

(
1− 1

1 + x2

)
,

and now the problem reduces to writing the paren-
thesized quantity as a derivative. Luckily, we know
exactly how to do this:

2x2

1 + x2
= 2

(
dx

dx
− d

dx
arctan (x)

)
Putting all derivative terms on the same side yields
the answer:

ln
(
1 + x2

)
=

d

dx

(
x
(
ln
(
1 + x2

)
− 2
))

+ 2
d

dx
(arctan (x)) (1.99)

8.5 Exponential Antiderivatives

Exponential Times X

To handle the case f ′ (x) = xex, use the product rule
on the same quantity

d

dx
(xex) = ex + xex ,

and notice the right-most term contains the answer
we want. Exploiting the fact that ex is its own deriva-
tive, we can write everything else as a total derivative
to have the answer:

xex =
d

dx
(ex (x− 1)) (1.100)

Exponential Times X*X

To handle the case f ′ (x) = x2ex, use the product
rule on the same quantity

d

dx

(
x2ex

)
= 2xex + x2ex ,

and notice the right-most term contains the answer
we want. The middle term would be show-stopper if
it weren’t for Equation (1.100), which allows the rest
to be written as a total derivative:

x2ex =
d

dx

(
ex
(
x2 − 2x+ 2

))
(1.101)

Exponential Times Cos(X)

The set of problems

f ′
1 (x) = ex cos (x)

f ′
2 (x) = ex sin (x)

can be handled simultaneously. First, write two re-
sults easily attainable by the product rule:

d

dx
(ex sin (x)) = ex sin (x) + ex cos (x)

d

dx
(ex cos (x)) = ex cos (x)− ex sin (x)

Next, take the sum and the difference of the
two above equations and exploit the linearity of the
derivative operator to get both results at once:

ex cos (x) =
1

2

d

dx
(ex cos (x) + ex sin (x)) (1.102)

ex sin (x) =
1

2

d

dx
(ex sin (x)− ex cos (x)) (1.103)

8.6 Trigonometric Antiderivatives

Tangent and Cotangent

The case for f ′ (x) = tan (x) is a bit tricky. Hunt-
ing for any derivative calculation that has tan (x) as
part of the answer, Equation (1.24) comes to mind,
namely

d

dx
(sec (x)) = tan (x) sec (x) .

Proceed by letting u = sec (x) and separate variables:

1

u

du

dx
= tan (x)

By the chain rule, or equivalently by the ‘loga-
rithm trick’ represented by Equation (1.36), the left
side is equivalent to the derivative of the natural log
of u:

d

dx
(ln (u)) = tan (x)

Reversing the u-substitution, the final answer is

tan (x) =
d

dx
(− ln (cos (x))) . (1.104)

By a similar line of reasoning, the cotangent ver-
sion can also be done, with the details left as an ex-
ercise:

cot (x) =
d

dx
(ln (sin (x))) . (1.105)
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Secant and Cosecant

The case of f ′ (x) = sec (x) can be attacked with par-
tial fractions. Following the algebra, we find

1

cos (x)
=

cos (x)

cos2 (x)
=

cos (x)

1− sin2 (x)

=
1

2

(
cos (x)

1− sin (x)
+

cos (x)

1 + sin (x)

)
.

Now, spotting this takes some getting used to, but
the above can be rewritten using the logarithm trick

1

cos (x)
= −1

2

d

dx
(ln (1− sin (x)))

+
1

2

d

dx
(ln (1 + sin (x))) ,

which can be simplified and the problem is solved:

sec (x) =
1

2

d

dx

(
ln

(
1 + sin (x)

1− sin (x)

))
(1.106)

With a little more algebra, the above can be simpli-
fied to

sec (x) =
d

dx
(ln (sec (x) + tan (x))) .

Leaving the details for an exercise, a similar exer-
cise leads to the cosecant version

csc (x) = −1

2

d

dx

(
ln

(
1 + cos (x)

1− cos (x)

))
, (1.107)

or

csc (x) = − d

dx
(ln (csc (x) + cot (x))) .

Cos(X) Squared

The set of problems

f ′
1 (x) = cos2 (x)

f ′
2 (x) = sin2 (x)

can be handled simultaneously. First, note from the
product rule that

d

dx
(sin (x) cos (x)) = cos2 (x)− sin2 (x) ,

which is equivalent to both of:

d

dx
(sin (x) cos (x)) = 1− 2 sin2 (x)

d

dx
(sin (x) cos (x)) = 2 cos2 (x)− 1

Finally, note that the factor 1 is equivalent to
dx/dx, which allows the left side (in each) to be writ-
ten as a total derivative, leading to

sin2 (x) =
1

2

d

dx
(x− sin (x) cos (x)) (1.108)

cos2 (x) =
1

2

d

dx
(x+ sin (x) cos (x)) (1.109)

Cos(X) Times Sin(X)

The case f ′ (x) = cos (x) sin (x) has two unique an-
swers. Handling both possibilities in one blow, use
the chain rule to write

d

dx

(
sin2 (x)

)
= − d

dx

(
cos2 (x)

)
= 2 cos (x) sin (x) ,

and the result is isolated:

cos (x) sin (x) =
1

2

d

dx

(
(sin (x))

2
)

(1.110)

cos (x) sin (x) =
−1

2

d

dx

(
(cos (x))

2
)

(1.111)

8.7 Inverse Trig Antiderivatives

Arccosine and Arcsine

The roulette of inverse trigonometric functions can
also be tackled. Going for f ′ (x) = arccos (x) first,
consider the following application of the product rule:

d

dx
(x arccos (x)) = arccos (x) + x

d

dx
(arccos (x))

The derivative of arccos (x) can be replaced by
Equation (1.37), namely

d

dx
arccos (x) =

−1√
1− x2

,

and the above becomes

d

dx
(x arccos (x)) = arccos (x)− x√

1− x2
.

The square root term is itself the derivative of a
function obeying Equation (1.94), or

−x√
1± x2

=
d

dx

√
1− x2 .

Condensing derivatives on one side with arccos (x)
on the other gives the answer:

arccos (x) =
d

dx

(
x arccos (x)−

√
1− x2

)
(1.112)

By similar reasoning, the arcsin (x) case works out as

arcsin (x) =
d

dx

(
x arcsin (x) +

√
1− x2

)
. (1.113)
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Arctangent and Arccotangent

To handle f ′ (x) = arctan (x), consider the following
application of the product rule:

d

dx
(x arctan (x)) = arctan (x) + x

d

dx
(arctan (x))

The derivative of arctan (x) can be replaced by
Equation (1.39), namely

d

dx
arctan (x) =

1

1 + x2
,

and the above becomes

d

dx
(x arctan (x)) = arctan (x) +

x

1 + x2
.

The rightmost term needs to be replaced with the
derivative of something. It turns out that Equation
(1.15) does the job, namely

d

dx

(
ln
(
1 + x2

))
=

2x

1 + x2
.

Condensing derivatives on one side with arctan on
the other gives the answer:

arctan (x) =
d

dx

(
x arctan (x)−

ln
(
1 + x2

)
2

)
(1.114)

By similar reasoning, the arccot (x) case works out as

arccot (x) =
d

dx

(
x arccot (x) +

ln
(
1 + x2

)
2

)
.

(1.115)

8.8 Trigonometric Substitution

Arcsecant and Arccosecant

The last two inverse trig functions, namely the arc-
secant and the arc-cosecant, don’t follow as easily as
the others. To handle f ′ (x) = arcsec (x), consider
the application of the product rule

d

dx
(x arcsec (x)) = arcsec (x) + x

d

dx
(arcsec (x)) ,

which, by Equation (1.40), is equivalent to

d

dx
(x arcsec (x)) = arcsec (x) +

1√
x2 − 1

.

As usual, the rightmost term needs to be the
derivative of something else. Innocent as this looks,
a different technique called trigonometric substitution

must be used. For the example on hand, introduce a
new variable θ such that

x = sec (θ) .

Then, standard trig identities tell us

tan2 (θ) = sec2 (θ)− 1 = x2 − 1 ,

or
tan (θ (x)) =

√
x2 − 1 .

Meanwhile, we can take the θ-derivative of x to
write

dx

dθ
=

d

dθ
(sec (θ)) = sec (θ) tan (θ) = x

√
x2 − 1 ,

and by the chain rule, this means

dθ

dx
=

1

x
√
x2 − 1

.

Now, if the term 1/
√
x2 − 1 is to be the deriva-

tive of some unknown function q (x), we have, by the
chain rule,

dq

dx
=

dq

dθ

dθ

dx
=

dq

dθ

1

x
√
x2 − 1

,

which can only mean

1 =
dq

dθ

1

x
.

Since x is already known as sec (θ), the question
has come to looking for a function whose derivative
is sec (θ). For this we may refer to Equation (1.106)
using θ as the variable:

sec (θ) =
d

dθ
(ln (sec (θ) + tan (θ))) ,

or
q (θ) = ln (sec (θ) + tan (θ)) .

Switching variables back to x, the above reads

q (x) = ln
(
x+

√
x2 − 1

)
.

This result alone is worth noting,

1√
x2 − 1

=
d

dx

(
ln
(
x+

√
x2 − 1

))
, (1.116)

and more importanly, we can write the final answer
to the arcsec (x) antiderivative:

arcsec (x) =
d

dx

(
x arcsec (x)− ln

(
x+

√
x2 − 1

))
(1.117)

A similar exercise gives the arccsc (x) version:

arccsc (x) =
d

dx

(
x arccsc (x) + ln

(
x+

√
x2 − 1

))
(1.118)
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8.9 Hyperbolic Cases

The nontrivial hyperbolic trig antiderivatives are
mostly analogous to their ordinary trig counterparts:

tanh (x) =
d

dx
(ln (cosh (x))) (1.119)

coth (x) =
d

dx
(ln (sinh (x))) (1.120)

The hyperbolic secant and cosecant are a little
less obvious, but turn out to be:

sech (x) =
d

dx

(
2 arctan

(
tanh

(x
2

)))
(1.121)

csch (x) =
d

dx

(
ln
(
tanh

(x
2

)))
(1.122)

The details are left for an exercise.

Arccosh and Arcsinh

Luckily, some of the inverse hyperbolic trig deriva-
tives are analogous to calculations previously done.
For the cases arccosh, arcsinh, one straightforwardly
finds

arccosh (x) =
d

dx

(
x arccosh (x)−

√
x2 − 1

)
(1.123)

arcsinh (x) =
d

dx

(
x arcsinh (x)−

√
x2 + 1

)
.

(1.124)

Arctanh and Arccoth

The arccosh, arcsinh functions have antiderivatives
that are remarkably similar to their trig counterparts:

arctanh (x) =
d

dx

(
x arctanh (x) +

ln
(
1− x2

)
2

)
(1.125)

arccoth (x) =
d

dx

(
x arccoth (x) +

ln
(
1− x2

)
2

)
(1.126)

Arcsech and Arccsch

The arcsech, arccsch functions can be aced with a
trick. Handling both at the same time, introduce
two unknown functions f (x) and g (x) to write the
following total derivatives

arcsech (x) =
d

dx
(f (x) + x arcsech (x))

arccsch (x) =
d

dx
(g (x) + x arccsch (x)) ,

and now the whole problem is about finding out what
f (x) and g (x) must be.

Applying the product rule across the right side,
we find

f ′ (x) =
1√

1− x2

g′ (x) =
1√

1 + x2
,

telling us, according to Equations (1.38), (1.50), that

f (x) = arcsin (x)

g (x) = arcsinh (x) ,

and thus:

arcsech (x) =
d

dx
(x arcsech (x) + arcsin (x))

(1.127)

arccsch (x) =
d

dx
(x arccsch (x) + arcsinh (x))

(1.128)

9 Simple Harmonic Oscillator

The simple harmonic oscillator is a mathematical
model used for approximating many real-world sys-
tems. Common simple harmonic oscillators are (i)
a mass attached to a spring moving in a frictionless
environment, (ii) a hanging pendulum making small
deflections from equilibrium, or most generally, (iii)
small displacements in any system featuring a local
minimum in the potential energy.

Problem Setup

To get going, consider a body of mass m tethered to
the point x = 0 subject to the linear restoring force

F = −kx

corresponding to a potential energy

Uspring (x) =
1

2
kx2 .

By Newton’s second law

m
d2

dt2
x (t) = − d

dx
U (x) ,

we can assemble an equation governing the so-called
harmonic motion of the oscillator:

d2

dt2
x (t) = − k

m
x (t) (1.129)



9. SIMPLE HARMONIC OSCILLATOR 43

Finding the Solution

The task now is to ‘solve’ the above equation, which
means to find the correct x (t) that satisfies it. With
x (t) in hand, we will know the position of the body
as a function of time.

We seek x (t) as a function whose second deriva-
tive is equal to the negative of itself multiplied by
a constant. Right away, two trigonometric functions
come to mind:

d2

dt2
cos

(√
k

m
t

)
=

−k

m
cos

(√
k

m
t

)
d2

dt2
sin

(√
k

m
t

)
=

−k

m
sin

(√
k

m
t

)

Angular Frequency

Both the cosine and the sine seem to satisfy Equation
(1.129), so let’s keep track of both for a moment. The
quantity

√
k/m is called the angular frequency and

is designated the symbol ω (Greek omega):

ω =

√
k

m

So far we can sketch out two possible solutions:

x1 (t) ∝ cos (ωt)

x2 (t) ∝ sin (ωt)

Scaling Constants

Notice now that scaling each of these by an unknown
constant to make A cos (ωt), B sin (ωt) would leave
the oscillator equation unchanged, yet the presence
of scaling constants would clearly affect the final so-
lution. The updated solutions are now

x1 (t) = A cos (ωt)

x2 (t) = B sin (ωt)

fur two undetermined coefficients A, B.

General Solution

With the preparatory work done, we can write a gen-
eral solution for the problem:

x (t) = A cos (ωt) +B sin (ωt) ,

and from x (t) we can take a time derivative to get
the velocity:

v (t) = −Aω sin (ωt) +Bω cos (ωt)

For a sanity check, we should be able to take the
time derivative of v (t) to recover Equation (1.129).

Doing so, we find

d2

dt2
x (t) = −Aω2 cos (ωt)−Bω2 sin (ωt)

= −ω2 (A cos (ωt) +B sin (ωt))

= −ω2x (t)

=
−k

m
x (t)

as expected.

Initial Conditions

To refine the solution to the harmonic oscillator equa-
tion, suppose at t = 0 the body is known to be at
position x0 with initial velocity v0. Such initial con-
ditions can be worked into the solution by setting
t = 0 in the x- and v-equations

x0 = x (0) = A cos (0) + 0

v0 = v (0) = 0 +Bω cos (0)

to discern:

A = x0

B = v0/ω

With this, the updated position and velocity read:

x (t) = x0 cos (ωt) +
v0
ω

sin (ωt)

v (t) = −x0ω sin (ωt) + v0 cos (ωt)

Magnitude and Phase

While the above is a workable solution to the simple
harmonic oscillator, everything can be made tighter
by introducing a magnitude coefficient R, along with
a phase coefficient ϕ such that:

x0 = R cos (ϕ)
v0
ω

= −R sin (ϕ)

The magnitude and phase have a trigonometric rela-
tionship to the initial conditions, namely

R =
√
x2
0 + v20/ω

2

ϕ = arctan

(
−v0
ωx0

)
.

In terms of R and ϕ, the solution x (t) reads

x (t) = R cos (ϕ) cos (ωt)−R sin (ϕ) sin (ωt) ,

which, using a trigonometric angle-sum formula, sim-
plifies to:

x (t) = R cos (ωt+ ϕ)


	Differential Calculus
	Slope at a Point
	Derivative
	Elementary Derivatives
	Exponential Derivatives
	Logarithmic Derivatives
	Trigonometric Derivatives
	Small-Angle Approximation

	Techniques of Differentiation
	Product Rule
	Quotient Rule
	Chain Rule
	Implicit Differentiation

	Mixed Techniques
	Inverse Trig Derivatives
	Hyperbolic Derivatives

	Applied Differentiation
	Tangent Line
	Mean Value Theorem
	L’Hopital’s Rule
	Critical Points
	Optimization Problems
	Related Rate Problems

	Second Derivative
	Slope of Slope
	Stability at Critical Point

	Taylor's Theorem
	Kinematic Motivation
	Time-Shift Analysis
	Generalized Kinematics
	Taylor's Theorem
	Testing Taylor's Theorem
	Recovering Differentiation Rules
	Binomial Expansion
	Generalized Taylor Expansion
	Expansion Near Asymptotes
	Kinematics with Air Damping

	Numerical Methods
	Newton's Method
	Babylonian Method
	Euler's Method

	Antiderivative
	Motivation
	Exemplary Cases
	Powers and Roots
	Logarithmic Antiderivatives
	Exponential Antiderivatives
	Trigonometric Antiderivatives
	Inverse Trig Antiderivatives
	Trigonometric Substitution
	Hyperbolic Cases

	Simple Harmonic Oscillator


