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Chapter 1

Conic Sections

1 Ellipse

1.1 Definition

In the Cartesian plane, consider a point labeled focus
that is distance p from a vertical line labled directrix.
Now, let us seek the set of points {s} = {(x, y)} that
satisfy the following rule: the distance R to the focus
divided by the (purely horizontal) distance Q to the

directrix equals a constant e < 1. In algebraic terms,
this means

R

Q
= e < 1 . (1.1)

Sketched in Figure 1.1 are some of the points that
obey such a rule.
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4 CHAPTER 1. CONIC SECTIONS

Figure 1.1: Points obeying R/Q = e < 1 as measured
from a directrix and a focus separated by distance p.
The origin is at the focus.

To determine the proper shape defined by the
rule, begin with Equation (1.1) and discern from in-
spection that R, Q can be written:

R =
√
x2 + y2 (1.2)

Q = p− x (1.3)

Inserting the above into Equation (1.1) and complet-
ing the square in x, one finds

(x+ c)
2

a2
+

y2

b2
= 1 , (1.4)

describing an ellipse centered at x = −c. The semi-
major axis a, semiminor axis b, and offset c relate to
e, p by:

a =
ep

1− e2
(1.5)

b =
ep√
1− e2

(1.6)

c = ae (1.7)

The ellipse has two vertex points at (−c± a, 0), and
two covertex points at (−c,±b).

Problem 1
Derive Equation (1.4) simultaneously with Equa-

tions (1.5), (1.6), (1.7).

1.2 Eccentricity

The constant e is called the eccentricity of the ellipse,
and characterizes the proportions of the semimajor
and minor axes. The special case e = 0 reduces the
ellipse to a circle of radius r = a = b.

1.3 Internal Relations

Figure 1.2: Ellipse displaying internal relations bete-
ween a, b, c.

Having established that the set of points obeying
R/Q = e < 1 forms an ellipse, we label the semimajor
and semiminor axes, along with the center-to-focus
distance as shown in Figure 1.2. Note that the minor
axis b is never greater than the major axis a.

Problem 2
Derive the internal relations:

a2 − b2 = c2 (1.8)

e =

√
1− b2

a2
(1.9)

Problem 3
Determine the length of the line segment connect-

ing the upper vertex (height b from the center) to the
focus (horizontal distance c from the center).

Semilatus Rectum

Problem 4
The semilatus rectum is the vertical distance from

the focus to the ellipse. Prove this is equal to b2/a.

1.4 Symmetry

Reflected Origin

We decided by writing Equation (1.2) that the origin
is placed at the focus of the ellipse, which is to say
the origin is not at the ellipse’s geometric center. Due
the vertical symmetry of our construction, there also
exists a complimentary focus with its own directrix
in the mirror image of the ellipse as shown in Fig-
ure 1.3. Should we wish to choose to rebuild using
the ‘left’ focus as the origin, the resulting equation is
complimentary to Equation (1.4), with the sign on c
reversing:

(x− c)
2

a2
+

y2

b2
= 1
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Figure 1.3: Vertical symmetry of the ellipse implies
another directrix and focus.

1.5 Translations

Centered Origin

Placing the origin at the geometric center, the most
symmetric equation of the ellipse reads

x2

a2
+

y2

b2
= 1 . (1.10)

Having no offset term, the focii are located symmet-
rically at x = ±c.

Shifted Origin

An ellipse centered at the point (x0, y0) is represented
by

(x− x0)
2

a2
+

(y − y0)
2

b2
= 1 . (1.11)

Problem 5
For the ellipse

5x2 + y2 − 20x = 0 ,

find the major and minor axes, the center, the ec-
centricity, the vertex points, the covertex points,
and the focii. Answer: major = 2

√
5, minor = 2,

center = (2, 0), e = 2/
√
5, vertices =

(
2,±2

√
5
)
,

covertices = (2± 2, 0), focii = (2,±4)

Problem 6
For the ellipse

x2 + 2y2 + 4y − 6 = 0 ,

find the major and minor axes, the center, the ec-
centricity, the vertex points, the covertex points,
and the focii. Answer: major = 2

√
2, minor = 2,

center = (0,−1), e = 1/
√
2, vertices =

(
±2

√
2,−1

)
,

covertices = (0,−1± 2), focii = (±2,−1)

Problem 7

Find the equation of the ellipse with vertices at
(3, 1) and (−1, 1) and eccentricity e = 2/3. Answer:

(x− 1)
2
/4 + 9 (y − 1)

2
/20 = 1

1.6 Polar Representation

In polar coordinates, a point (x, y) in the Cartesian
plane is represented by

x = r cos (θ)

y = r sin (θ) ,

where r is the distance to the origin and θ is the an-
gular parameter. These can be inverted to solve for
r, θ with respect to x, y:

r =
√
x2 + y2

θ = arctan
(y
x

)
The definition (1.1) combined with Equations

(1.2), (1.3) lends naturally to polar coordinates:

e =
R

Q
=

r

p− x
=

r

p− r cos (θ)

Solving for r (θ), one finds

r =
pe

1 + e cos (θ)
. (1.12)

Equation (1.12) traces an ellipse in the plane from an
origin placed at the ‘right’ focus (x = c). To trace
the ellipse from the ‘left’ focus (x = −c), we change
the sign on the cosine term:

r =
pe

1− e cos (θ)

Problem 8

Show that the polar representation (focus on the
left)

r =
b2/a

1− e cos (θ)

is equivalent to the Cartesian version centered at
(ae, 0):

(x− ae)
2

a2
+

y2

b2
= 1
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1.7 Parametric Representation

Consider an ellipse centered at the origin described
by Equation (1.10):

x2

a2
+

y2

b2
= 1

By comparing the above to the fundamental identity
of triginometry, namely

cos (ϕ)
2
+ sin (ϕ)

2
= 1

for any angle ϕ, we cannot help but make the associ-
ation

x = a cos (ϕ) (1.13)

y = b sin (ϕ) . (1.14)

Equations (1.13), (1.14) constitute a parametric rep-
resentation of the ellipse.

Problem 9

Check that Equations (1.13), (1.14) combine to
recover Equation (1.10).

1.8 Interior Identities

Sum of Radii

Consider a point (x, y) on an ellipse centered on the
origin, and let

r1 =

√
(x+ c)

2
+ y2

r2 =

√
(x− c)

2
+ y2

be the distance from (x, y) to each respective focus
as shown in Figure 1.4. By brute force, we can show
that the sum of r1 and r2 is a constant. Proceed by
writing

A = r1 + r2 ,

and square both sides to get

A2 = 2
(
x2 + y2 + c2

)
+ 2
√
(x2e2 + a2 + 2cx) (x2e2 + a2 − 2cx) ,

simplifying further to

A2 = 2
(
x2e2 + a2

)
+ 2

(
a2 − x2e2

)
.

Performing the final cancelation, we find A2 = 4a2,
or

r1 + r2 = 2a . (1.15)

Figure 1.4: Line segments r1,2 connect each focus to
the point s on the ellipse. The sum r1 + r2 always
equals the constant 2a.

Drawing an Ellipse

The interior length identity (1.15) teaches how to
draw an ellipse in the plane. Fix two pins a dis-
tance 2c apart, and then place a closed loop of string
around the pins. Use a pen to pull the string tight,
and trace around the pins while maintaining tension.
The resultant shape is an ellipse with a pin at each
focus.

Problem 10
Derive Equation (1.15).

Problem 11
An ellipse with eccentricity e = 0.5 is traced in

the plane using two pins and a string. In terms of
the semimajor axis a, how far apart are the pins and
how long is the string?

Difference of Radii

We learned from Equation (1.15) that the sum of the
interior radii r1 + r2 in the ellipse always yields the
constant 2a. Natuarally one wonders if the difference
of radii r2 − r1 simplifies in any nice way. Recycling
most of the work done previously, we quickly find

r1 − r2 = 2xe . (1.16)

Problem 12
Derive Equation (1.16).

Decoupled Identities

Having Equations (1.15) and (1.16) in hand, we can
isolate each of r1,2 to yield a pair of tight formulas
representing the ellipse:

r1 = a+ xe (1.17)

r2 = a− xe (1.18)
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1.9 Tangent Line to the Ellipse

At a point s = (x, y) on an ellipse, there exists a tan-
gent line AB that represents the instantaneous slope
ms of the ellipse as shown in Figure 1.6. The value
of ms is straightforwardly attained by implicit differ-
entiation1 of (1.10), which comes out to

ms =
−b2

a2
x

y
. (1.19)

Problem 13
At a point (x̃, ỹ) on the ellipse x2/a2+ y2/b2 = 1,

show that the tangent line is

xx̃

a2
+

yỹ

b2
= 1 .

Derivation of Slope

If ‘implicit differentiation’ sounds foreign, we must
calculate ms the hard way by asking about the slope
mc of a chord connecting two points s1 = (x1, y1),
s2 = (x2, y2) on the ellipse as sketched in Figure 1.5.
Jotting down the rise-over-run formula for the slope,
we have

mc =
y2 − y1
x2 − x1

,

and by placing the origin at the center of the ellipse,
we use Equation (1.10) to eliminate y1, y2 such that

mc =
b
√
1− x2

2/a
2 − b

√
1− x2

1/a
2

x2 − x1
.

Figure 1.5: A chord cutting through the ellipse is con-
structed on the ellipse’s edge so the endpoints share
a common location s. The extension of the chord at
s is the tangent line to the ellipse having slope ms.
The origin is at the center.

Our next move is to suppose that the points s1,
s2 are very close to each other such that

h = x2 − x1

is a small number. In such a case, the chord connect-
ing s1 to s2 becomes shorter and moves closer to the
edge of the ellipse. In the limit that s1 is approx-
imately equal to s2, the chord has essentially zero
length, but has a slope equal to that of the tangent
line to the ellipse at s1,2. To summarize, the slope is
written in ‘limit’ notation:

ms = lim
h small

b

√
1− (x1 + h)

2
/a2 − b

√
1− x2

1/a
2

h

To simplify this, we exploit the ‘smallness’ of h
by realizing that h2 is so small that it can be ignored
altogether such that

(x1 + h)
2 ≈ x2

1 + 2x1h+��h
2 .

The argument inside the square root shall be handled
by the approximation

lim
z small

√
1 + z ≈ 1 +

z

2
− z2

8
+ · · · , (1.20)

where any terms of power 2 or higher can be ignored.
For our problem, this means

b

√
1− x2

1 + 2x1h

a2
≈ y1 −

x1b
2h

y1a2
,

allowing the formula for ms to simplify with all fac-
tors of h canceling out:

ms = lim
h small

1

h

(
y1 −

x1b
2h

y1a2
− y1

)
= − b2x1

a2y1

Note that the 1-subscript becomes redundant, as the
points s1 and s2 become the same point s (with no
subscript). Finally then, we recover Equation (1.19)
for the slope of the ellipse at point s.

1.10 Reflection Property

Consider an ellipse centered on the origin as shown
in Figure 1.6, with respective focii labeled f1,2. The
radii extending to a point s = (x, y) on the ellipse
are labeled r1,2, and the tangent line AB is indicated.
The reflection property of the ellipse states that a ray
emerging from one focus will reflect from the ellipse

1A trick from calculus.
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to the other focus. To prove this, let us define:

Angle Asf1 = θ

Angle Bsf2 = ϕ

Slope of AB = ms

Slope of r1 = m1

Slope of r2 = m2

The slopes m1, m2 are straightforward to write by
inspsection of Figure 1.6:

m1 =
y

x+ c

m2 =
y

x− c

Figure 1.6: A ray emerging from one focus will reflect
from the ellipse to the other focus.

Next, we’ll need to use the angle-sum identity for
tangent, namely

tan (α+ β) =
tan (α)± tan (β)

1∓ tan (α) tan (β)
, (1.21)

and observe again from the Figure that

tan (θ) =
m1 −ms

1 +m1ms

tan (ϕ) =
m2 −ms

1 +m2ms
.

Simplifying each expression delivers

|tan (θ)| = |tan (ϕ)| = b2

cy
, (1.22)

telling us that θ = ϕ and the proof is done.

Problem 14
Prove Equation (1.22).

1.11 Normal Line to the Ellipse

Consider a normal line q that is perpendicular to
the tangent line at point s = (x, y) on the ellipse
as shown in Figure 1.7. The slope of the normal line
is defined as the negative reciprocal of the tangent’s
slope, namely −1/ms given by (1.19). The normal
line q can thus be written

yq = −xq/ms + bq ,

with bq = y+x/ms. Such a line is more conveniently
expressed as

yq = y + (x− xq) /ms . (1.23)

The normal line intersects the x-axis at the point
xq = q0, which we determine by setting yq = 0:

q0 = x+msy = x+

(
−b2

a2
x

y

)
y

q0 = x

(
1− b2

a2

)
= xe2 (1.24)

Figure 1.7: A point s on the ellipse implies a normal
line q that intersects the x-axis at x = q0. The origin
is at the focus.

Problem 15

Determine where the normal line intersects the
y-axis.

Problem 16

At a point (x̃, ỹ) on the ellipse x2/a2+ y2/b2 = 1,
show that the normal line is

x

x̃
− y

ỹ

(
1− e2

)
= e2 .
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1.12 Vector Analysis (Optional)

Three Vectors

Refering again to Figure 1.7, let us construct three
vectors from straight lines:

Line f1s = r⃗1

Line f2s = r⃗2

Line q0s = q⃗

Introducing the unit vector x̂ that points horizontally
to the right, we can jot down three ways to get from
the origin to point s:

s⃗ = −cx̂+ r⃗1 (1.25)

s⃗ = cx̂+ r⃗2 (1.26)

s⃗ = q0x̂+ q⃗ (1.27)

Solving (1.25), (1.26) for r⃗1, r⃗2 respectively, we can
divide each by its own magnitude to write unit vec-
tors:

r̂1 =
s⃗+ cx̂

r1

r̂2 =
s⃗− cx̂

r2

Recovering Reflection Property

In terms of the vectors r⃗1, r⃗1, q⃗, the reflection prop-
erty of the ellipse can be proposed by writing

r̂1 · q⃗ = r̂2 · q⃗ , (1.28)

which is to claim that the angle formed bewtween ei-
ther r̂j and q⃗ is the same. Proceeding carefully, one
can simplify the above down to

b2

a��
���

(
a+ xe

r1

)
=

b2

a��
���

(
a− xe

r2

)
, (1.29)

and the claim is proven. The parenthesized terms
cancel due to Equations (1.17), (1.18). Evidently,
we discover that the dot product between either unit
vector r̂1,2 and the normal vector q⃗ equals a constant:

r̂1,2 · q⃗ =
b2

a
(1.30)

Problem 17
Derive Equation (1.29) from (1.28).

Recovering Interior Length Identites

Next, we make use of the reflection property of the
ellipse to realize that the sum of r̂1 and r̂2 must be

parallel to (i.e. proportional to) the vector q⃗. Follow-
ing this lead, we first take the sum

r̂1 + r̂2 = s⃗

(
1

r1
+

1

r2

)
+ c

(
1

r1
− 1

r2

)
x̂ ,

simplifying down to

r̂1 + r̂2 =

(
r1 + r2
r1r2

)(
s⃗+

e

2
(r2 − r1) x̂

)
(1.31)

Note that the interior length identity r1 + r2 = 2a
was used along the way. Comparing the above to
Equation (1.27), we must have

q0 =
e

2
(r1 − r2) . (1.32)

Problem 18
Derive Equations (1.31), (1.32) and then recover

Equation (1.16).

2 Hyperbola

2.1 Definition

In the Cartesian plane, consider a point labeled focus
that is distance p from a vertical line labled directrix.
Now, let us seek the set of points {s} = {(x, y)} that
satisfy the following rule: the distance R to the focus
divided by the (purely horizontal) distance Q to the
directrix equals a constant e > 1. In algebraic terms,
this means

R

Q
= e > 1 . (1.33)

Sketched in Figure 1.8 are some of the points that
obey such a rule.

Figure 1.8: Points obeying R/Q = e > 1 as measured
from a directrix and a focus separated by distance p.
The origin is at the focus.
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To determine the proper shape defined by the
rule, begin with (1.33) and discern from inspection
that R, Q can be written:

R =
√
x2 + y2 (1.34)

Q = p+ x (1.35)

Inserting the above into (1.33) and completing the
square in x, one finds

(x+ c)
2

a2
− y2

b2
= 1 , (1.36)

describing a hyperbola. The constants a, b, c relate
to e, p by:

a =
ep

e2 − 1
(1.37)

b =
ep√
e2 − 1

(1.38)

c = ae (1.39)

The hyperbola has two vertex points occurring at
x = ±a− c.

2.2 Asymptotes

The hyperbola is not a closed curve like a circle or
ellipse, and it’s worthwhile to inquire about the hy-
perbola far from the origin. Supposing we let x and
y be very large, especially such that x ≫ c, Equation
(1.36) roughly reads

x2

a2
≈ y2

b2
,

implying a pair of straight lines having slope

m± = ± b

a
(1.40)

that are asymptopes to the hyperbola.
To find an exact equation for each asymptote, be-

gin with the equation of the hyperbola (1.36) and let
y = 0 to determine the value x∗ at which the curve
touches the x-axis. Doing so, we find

x∗ =

{
a− c

−a− c
.

Each x-intercept is negative, i.e. to the left of the
focus, however the curve sketched in Figure 1.8 has a
focus at a−c and ‘opens up’ to the right. Evidently, a
second x-intercept occurs at −a−c, implying a mirror
image hyperbola opening up to the left.

The line of vertical symmetry between each copy
of the hyperbola is defined by the average of each
x∗-value, or

x∗
ave =

(a− c) + (−a− c)

2
= −c

By horizontal symmetry, we argue that each asymp-
tote crosses the x-axis at x∗

ave. This is enough to
determine the equation of each asymptote, coming
out to

y = ± b

a
(x+ c) . (1.41)

Our findings are summarized in Figure 1.9.

Figure 1.9: Vertical symmetry of the hyperbola im-
plies another directrix and focus.

2.3 Internal Relations

Problem 1

Derive the internal relations:

a2 + b2 = c2 (1.42)

e =

√
b2

a2
+ 1 (1.43)

Problem 2

Show that a is the distance from the vertex of
the hyperbola to the intersection of the asymptotes.
Show that b is the vertical distance from the focus to
the asymptote. Sbow that c is the distance from the
focus to the intersection of the asymptotes.
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2.4 Symmetry

Reflected Origin

We decided by wtiring Equation (1.34) that the origin
is placed at the right focus of the hyperbola, which is
to say the origin is not at the hyperbola’s geometric
center. Due the vertical symmetry of our construc-
tion, there also exists a complimentary focus with its
own directrix in the mirror image of the hyperbola as
shown in Figure 1.9. Should we wish to choose to re-
build using the ‘left’ focus as the origin, the resulting
equation is complimentary to (1.36), with the sign on
c reversing:

(x− c)
2

a2
− y2

b2
= 1

2.5 Translations

Centered Origin

Placing the origin at the geometric center, the most
symmetric equation of the hyperbola reads

x2

a2
− y2

b2
= 1 . (1.44)

Having no offset term, the focii are located symmet-
rically at x = ±c.

Shifted Origin

A hyperbola centered at the point (x0, y0) is repre-
sented by

(x− x0)
2

a2
− (y − y0)

2

b2
= 1 . (1.45)

Problem 3
For the hyperbola

16y2 − 9x2 = 144 ,

find the major and minor axes, the center, the ec-
centricity, the vertex points, the asymptotes, and the
focii. Answer: major = 4, minor = 3, center = (0, 0),
e = 5/4, vertices = (0,±3), y = ±3x/4, focii =
(0,±5)

Problem 4
For the hyperbola

12x2 − 32y2 − 12x+ 96y + 27 = 0 ,

find the major and minor axes, the center, the ec-
centricity, the vertex points, the asymptotes, and the
focii. Answer: major =

√
3, minor = 2

√
2, center =

(1/2, 3/2), e =
√
11/3, vertices =

(
1/2, 3/2±

√
3
)
,

y = ±
√
3/8x∓

√
3/32+3/2, focii =

(
1/2, 3/2±

√
11
)

Problem 5
Find the equation of the hyperbola with vertices

at (0,±2) with asymptotes y = ±x/2. Answer:
y2/4− x2/16 = 1

Problem 6
Find the equation of the hyperbola with focus

points (7, 0) and (−1, 0) passes through
(
6,
√
15
)
.

Answer: (x− 3)
2
/4− y2/12 = 1

2.6 Polar Representation

In polar coordinates, recall that a point (x, y) in the
Cartesian plane is represented by

x = r cos (θ)

y = r sin (θ) ,

where r is the distance to the origin and θ is the an-
gular parameter. These can be inverted to solve for
r, θ with respect to x, y:

r =
√
x2 + y2

θ = arctan
(y
x

)
The definition (1.33) combined with (1.34), (1.35)

lends naturally to polar coordinates:

e =
R

Q
=

r

p+ x
=

r

p+ r cos (θ)

Solving for r (θ), one finds

r =
pe

1− e cos (θ)
. (1.46)

Equation (1.46) traces a hyperbola in the plane from
an origin placed at the ‘right’ focus (x = c). To
trace the hyperbola from the ‘left’ focus (x = −c),
we change the sign on the cosine term:

r =
pe

1 + e cos (θ)

2.7 Parametric Representation

Consider a hyperbola centered at the origin described
by Equation (1.44):

x2

a2
− y2

b2
= 1

By comparing the above to the fundamental identity
of hyperbolic trigonometry, namely

cosh (ϕ)
2 − sinh (ϕ)

2
= 1
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for any value of ϕ, we cannot help but make the as-
sociation

x = a cosh (ϕ) (1.47)

y = b sinh (ϕ) . (1.48)

Equations (1.47), (1.48) constitute a parametric rep-
resentation of the hyperbola.

Problem 7

Check that Equations (1.47), (1.48) combine to
recover Equation (1.44).

2.8 Interior Identities

Difference of Radii

Consider a point (x, y) on a hyperbola centered on
the origin, and let

r1 =

√
(x+ c)

2
+ y2

r2 =

√
(x− c)

2
+ y2

be the distance from (x, y) to each respective focus
as shown in Figure 1.10. By brute force, we can show
that the difference between r1 and r2 is a constant.
Proceed by writing

A = r1 − r2 ,

and square both sides to get

A2 = 2
(
x2 + y2 + c2

)
− 2
√

(x2e2 + a2 + 2cx) (x2e2 + a2 − 2cx) ,

simplifying further to

A2 = 2
(
x2e2 + a2

)
+ 2

(
a2 − x2e2

)
.

Performing the final cancellation, we find A2 = 4a2,
or

r1 − r2 = 2a . (1.49)

Problem 8

Derive Equation (1.49).

Figure 1.10: Line segments r1,2 connect each focus to
the point s on the hyperbola. The difference r1 − r2
always equals a constant 2a.

Locating Ships

The interior length identity (1.49) teaches how to lo-
cate ships at sea by noticing that a signal emitted
from any point on a hyperbola will reach each focus
a fixed time apart. If the signal propagation speed
(the speed of light for radar) is v, then the time in-
terval ∆t is 2a/v. Supposing two receiver stations
are separated by distance d = 2c on land, we use the
internal relation a2 + b2 = c2 to write

b = ±
√
c2 = a2 = ±1

2

√
d2 − v2∆t2 ,

telling us the ship is somewhere on a known hyper-
bola. The ship’s exact location can be discerned using
a third station and the intersection of two hyperbolas.

Sum of Radii

We learned from Equation (1.49) that the difference
of the interior radii r1 − r2 in the hyperbola always
yields the constant 2a. Natuarally one wonders if the
sum of radii r2 + r1 simplifies in any nice way. Re-
cycling most of the work done previously, we quickly
find

r1 + r2 = 2xe . (1.50)

Problem 9

Derive Equation (1.50).

Decoupled Identities

Having Equations (1.49) and (1.50) in hand, we can
isolate each of r1,2 to yield a pair of tight formulas
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representing the hyperbola:

r1 = a+ xe (1.51)

r2 = −a+ xe (1.52)

2.9 Tangent Line to the Hyperbola

At a point s = (x, y) on a hyperbola, there exists
a tangent line AB that represents the instantaneous
slope ms of the hyperbola as shown in Figure 1.11.
The value of ms is straightforwardly attained by im-
plicit diffentiation of Equation (1.44), which comes
out to

ms =
b2

a2
x

y
. (1.53)

Problem 10
At a point (x̃, ỹ) on the hyperbola x2/a2−y2/b2 =

1, show that the tangent line is

xx̃

a2
− yỹ

b2
= 1 .

Figure 1.11: An incoming ray aimed at f2 intersects
the hyperbola at s = (x, y). The reflected ray goes
toward f1. The angle formed between the incoming
ray and the tangent line AB is is identical to angle
Asf2. The origin is at the focus.

2.10 Reflection Property

Consider a hyperbola centered on the origin as shown
in Figure 1.11, with respective focii labeled f1,2. The
radii extending to a point s = (x, y) on the hyperbola
are labeled r1,2, and the tangent line AB is indicated.
The reflection property of the hyperbola states that
an external ray aimed at a focus will be reflected by

the hyperbola to the other focus. To prove this, let us
define:

Angle Asf1 = θ

Angle Asf2 = ϕ

Slope of AB = ms

Slope of r1 = m1

Slope of r2 = m2

The slopes m1, m2 are straightforward to write by
inspsection of Figure 1.11:

m1 =
y

x+ c

m2 =
y

x− c

Next, we’ll need to use the angle-sum identity for
tangent, namely

tan (α+ β) =
tan (α)± tan (β)

1∓ tan (α) tan (β)
,

and observe again from the Figure that

tan (θ) =
m1 −ms

1 +m1ms

tan (ϕ) =
m2 −ms

1 +m2ms
.

Simplifying each expression delivers

|tan (θ)| = |tan (ϕ)| = b2

cy
, (1.54)

telling us that θ = ϕ and the proof is done.

Problem 11

Prove Equation (1.54).

2.11 Normal Line to the Hyperbola

Consider a normal line q that is perpendicular to the
tangent line at point s = (x, y) on the hyperbola as
shown in Figure 1.12. The slope of the normal line
is defined as the negative reciprocal of the tangent’s
slope, namely −1/ms given by Equation (1.53). The
normal line q can thus be written

yq = −xq/ms + bq ,

with bq = y+x/ms. Such a line is more conveniently
expressed as

yq = y + (x− xq) /ms . (1.55)
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The normal line intersects the x-axis at the point
xq = q0, which we determine by setting yq = 0:

q0 = x+msy = x+

(
b2

a2
x

y

)
y

q0 = x

(
1 +

b2

a2

)
= xe2 (1.56)

Figure 1.12: A point s on the hyperbola implies a
normal line q that intersects the x-axis at x = q0.
The origin is at the focus.

Problem 12
Determine where the normal line intersects the

y-axis.

Problem 13
At a point (x̃, ỹ) on the hyperbola x2/a2−y2/b2 =

1, show that the normal line is

x

x̃
+

y

ỹ

(
e2 − 1

)
= e2 .

3 Parabola

3.1 Definition

In the Cartesian plane, consider a point labeled focus
that is distance p from a vertical line labled directrix.
Now, let us seek the set of points {s} = {(x, y)} that
satisfy the following rule: the distance R to the focus
divided by the (purely horizontal) distance Q to the
directrix equals a constant e = 1. In algebraic terms,
this means

R

Q
= 1 . (1.57)

Sketched in Figure 1.13 are some of the points that
obey such a rule.

Figure 1.13: Points obeying R/Q = 1 as measured
from a directrix and a focus separated by distance p.
The origin is at the focus.

To determine the proper shape defined by the
rule, begin with (1.57) and discern from inspection
that R, Q can be written:

R =
√

x2 + y2 (1.58)

Q = p+ x (1.59)

Inserting the above into (1.57), one finds

y2 = p2 + 2px , (1.60)

describing a parabola that ‘opens up’ to the right.
The parabola has one focus point (the second one
is at infinity, if you like). If we want the parabola to
open up to the left, place the focus on the other side of
the directrix. This has the effect of reversing the sign
on p. The vertex of the parabola occurs at x = −p/2.
The line of symmetry halving the parabola is called
the axis.

3.2 Opening Direction of the Parabola

A parabola is often found in the wild opening in the
up- or down-direction (as opposed to left or right).
To generate the parabola that opens ‘upward’, let the
directrix run horizontally and place the focus above
it, effectively swapping the x- and y- variables in the
equation of the parabola as shown in Figure 1.14:

x2 = p2 + 2py (1.61)

The sign on the p-term determines the opening direc-
tion in either case.
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Figure 1.14: The directrix-focus construction rotated
by ninety degrees produces an up- (or down-) open-
ing parabola.

3.3 Parabolic Expressions

In Equations (1.60), (1.61), the value p2 acts to trans-
late the parabola vertically or horzontally. The factor
of 2p is a scaling factor that stretches or skews the
overall parabola. If we let scaling be handled by a
new variable a, and let the translation vector (x0, y0)
take care of the absolute placement of the parabola,
Equation (1.60) is more generally written as

x = x0 + a (y − y0)
2
. (1.62)

By the same token, Equation (1.61) is more generally
written as

y = y0 + a (x− x0)
2
. (1.63)

The sign on a dictates whether the parabola opens
up right-left or up-down, respectively.

Problem 1

Sketch the parabola x2 − 2y − 6x = 0, and show
that the focus is located at (3,−4) and that the di-
rectrix is located at y = −5.

Problem 2

The parabola y2− 2ay+2x− a2 = 0 has its focus
on the y-axis above the origin. Find the number a
and sketch the graph. Answer: a = 1/

√
2

Problem 3

An up- or down-opening parabola can be gen-
erally expressed as y = ax2 + bx + c. In terms
of a, b, c, find the vertex and the focus. Answer:(
−b/2a, c− b2/4a

)
, 1/4a above the vertex

3.4 Polar Representation

In polar coordinates, recall that a point (x, y) in the
Cartesian plane is represented by

x = r cos (θ)

y = r sin (θ) ,

where r is the distance to the origin and θ is the an-
gular parameter. These can be inverted to solve for
r, θ with respect to x, y:

r =
√
x2 + y2

θ = arctan
(y
x

)
The definition (1.57) combined with Equations

(1.58), (1.59) lends naturally to polar coordinates:

1 =
R

Q
=

r

p+ x
=

r

p+ r cos (θ)

Solving for r (θ), one finds

r =
p

1− cos (θ)
. (1.64)

Equation (1.64) traces a parabola in the plane.

3.5 Internal Relations

Right Focal Chord

Problem 4
Prove that in a parabola the length of the chord

passing through the focus making an angle θ with
the axis is equal to L/ sin2 θ, where L is the length
of the right focal chord, the line that passes through
the focus and is perpendicular to the axis. Hint: Use
x2 = p2 + 2py and then focal chords are given by
y = cot (θ)x.

Problem 5
A parabolic segment (i.e. the area bounded by a

parabola and a chord perpendicular to the axis) is 32
cm high and its base is 16 cm. How far is the focus
from the directrix? Answer: 1 cm

3.6 Tangent Line to the Parabola

At a point s = (x, y) on a parabola, there exists a tan-
gent line AB that represents the instantaneous slope
ms of the parabola as shown in Figure 1.15. The
value of ms is straightforwardly attained by implicit
diffentiation of Equation (1.60), which comes out to

ms =
p

y
. (1.65)
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Figure 1.15: A point s on the parabola implies a tan-
gent line AB that represents the instantaneous slope
of the parabola. The origin is at the focus.

Problem 6

At a point (x̃, ỹ) on the parabola y2 = p2 + 2px,
show that the tangent line is

yỹ = p2 + p (x+ x̃) .

3.7 Normal Line to the Parabola

Consider a normal line q that is perpendicular to the
tangent line at point s = (x, y) on the parabola as
shown in Figure 1.16. The slope of the normal line
is defined as the negative reciprocal of the tangent’s
slope, namely −1/ms given by (1.65). The normal
line q can thus be written

yq = −xq/ms + bq ,

with bq = y+x/ms. Such a line is more conveniently
expressed as

yq = y + (x− xq) /ms . (1.66)

The normal line intersects the x-axis at the point
xq = q0, which we determine by setting yq = 0:

q0 = x+msy = x+ p (1.67)

Figure 1.16: A point s on the parabola implies a nor-
mal line q that intersects the x-axis at x = q0. The
origin is at the focus.

Problem 7

Determine where the normal line intersects the
y-axis.

Problem 8

At a point (x̃, ỹ) on the parabola y2 = p2 + 2px,
show that the normal line is

x− x̃

p
+

y

ỹ
= 1 .

3.8 Reflection Property

Consider the parabola described by y2 = p2 + 2px
with the origin at the focus. As shown in Figure
1.17, a point s = (x, y) on the parabola implies a
tangent line AB, along with a normal line q. The
reflection property of the parabola states that a ray
from the focus to the parabola is reflected parallel to
the axis. Reading this backwards, we can also say
that incoming rays parallel to the axis are reflected
by the parabola to the focus.
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Figure 1.17: A ray emitted from the focus will inter-
sect the parabola at s = (x, y) and reflect parallel to
the axis along line sW.

To proceed, refer to Figure 1.17 to define:

Angle Asf = α1

Angle BsW = α2

Angle fsq0 = β1

Angle Wsq0 = β2

Line sW ∝ x̂

Slope of AB = ms

Note that the line sW is parallel to the axis. To
establish the reflection property, we must show that
either α1 = α2 or that β1 = β2.

Vector Analysis

With the construction on hand, let us write a vector
q⃗ that points from q0 to s:

q⃗ = s⃗− q0 x̂ (1.68)

Note that s⃗ is equivalent to the position vector r⃗,
which is itself composed of a magnitude r and unit
vector r̂. To prove that β1 = β2, we observe that
the unit vector representing s⃗ projected onto q⃗ has to
equal that of the unit vector −x̂ projected onto q⃗:

q cos (β1) = r̂ · q⃗ = −x̂ · q⃗ = q cos (β2) (1.69)

Substituting q⃗ from Equation (1.68), we have

r̂ · (s⃗− q0 x̂) = −x̂ · (s⃗− q0 x̂) ,

boiling down to

r −
�
����

(
x+ p

r

)
x = −x+ q0 .

On the right, the quantity −x+ q0 is simply the con-
stant p according to Equation (1.67). The parenthe-
sized quantity on the left resolves to one according
to definition (1.57), bringing the result to

r − x = p . (1.70)

To check that Equation (1.70) is true we employ po-
lar coordinates, x = r cos (θ), and the above quickly
resolves to the polar representation (1.64) of the
parabola, finishing the proof.

Problem 9

Derive Equation (1.70) from Equation (1.69).

Slope Analysis of the Parabola

The proof that that α1 = α2 using pure slope anal-
ysis is slightly tricky. We first note that the angle
formed between R and the x-axis, i.e. θ as used in
polar coordinates, is equal to two times α1, leading
us to write

tan (2α1) =
y

x
.

Meanwhile, the slope ms of line AB is the tangent of
α2:

ms = tan (α2)

From this point, let us cautiously assume that α1,
α2 are equal to a common value α and make sure no
contradictions arise.

Next, use the angle-sum identity (1.21) for tan-
gent to write

tan (2α) =
2 tan (α)

1− tan2 (α)
,

and replace all trigonometric terms with factors of x,
y, and ms:

0 = m2
s + 2

x

y
ms − 1 (1.71)

Complete the square in ms and then solve for ms.
The result boils down to

ms =
p

y
,

the formula (1.65) for the slope at the point (x, y) on
the parabola, validating the assumption α1 = α2 and
completes the proof.

Problem 10

Derive Equation (1.65) from Equation (1.71).
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Differential Analysis

Starting from Equation (1.71), multuiply through by
y2 and make the subsitution

y2 = r2 − x2 ,

where implicit differentiation tells us

yms = r
dr

dx
− x .

With this, Equation (1.71) reduces to

0 = r2 − r2
(
dr

dx

)2

,

telling us
dr

dx
= 1 ,

which is integrated to give us r as a function of x up
to a constant:

r = x+ const

Comparing the above to Equation (1.70), the inte-
gration constant is essentially p. Arriving at a famil-
iar result without contradiction, we assure again that
α1 = α2.

4 Slicing the Cone

4.1 Conic Sections

Now we address why the ellipse, hyperbola, and
parabola are called conic sections. It turns out that
each of these curves can be produced from the in-
tersection of a cone and a plane. The cone can slice
the plane in any way, at any angle, and only conic
sections are produced. Consider a cone in three di-
mensions represented by

x2 + y2 = αz2 , (1.72)

where α is a dimensionless parameter controlling the
‘sharpness’ of the cone. Next we’ll need a plane to
slice the cone, which we represent by

1 =
x

x0
+

z

z0
. (1.73)

Conspiculously absent from Equation (1.73) is any
representation of the y-variable. Due to the axial
symmety of the cone, one can always choose a coor-
dinate system where the horizontal coodinate on the
the plane aligns perfectly with a cartesian axis. In
this case, the plane’s intersection with the cone is de-
fined by the angle θ formed between the plane and
the horizontal. The special case θ = 0 means the

plane slices through the cone’s vertex (an infinitely
small ellipse).

To proceed, suppose the coordinate system em-
bedded on the plane is labeled u, v (in analog to x,
y). From geometry, we can write several observations
about this system:

u cos (θ) = x0 − x (1.74)

u sin (θ) = z (1.75)

v = y (1.76)

tan (θ) =
z0
x0

(1.77)

In other words, the u-coordinate on the plane corre-
sponds to locations mixing x and z. The v-coordinate
is equivalent to the y-coordinate.

Using everything we have on hand, we write an
equation

z0 = tan (θ)

√
αu2 sin2 (θ)− v2 + u sin (θ) ,

implying

1 =
u2

z20
sin2 (θ)

(
α tan2 (θ)− 1

)
+ 2

u

z0
sin (θ)− tan2 (θ)

v2

z20
(1.78)

and furthermore, after a page of algebra:

1 =

(
u

z0
cos (θ)

(
1− α tan2 (θ)

)
√
α

− cot (θ)√
α

)2

+
v2

z20

(
1− α tan2 (θ)

α

)
(1.79)

Problem 1
Derive Equation (1.78) and Equation (1.79).

Gamma Factor

To help tame the symbolic explosion that has oc-
curred, let us introduce yet another symbol γ such
that

γ = 1− α tan2 (θ) . (1.80)

4.2 Parabolic Case

If the quantity γ = 1 − α tan2 (θ) resolves to zero
for some special choice of α, θ, then Equation (1.78)
reduces to that of a parabola:

1 = 2
u

z0
sin (θ)− tan2 (θ)

v2

z20

To assure we’re looking at a parabola, note the v-
coordinate occurs as v2, whereas the u-coordinate oc-
curs to the first power.
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4.3 Ellipse vs. Hyperbola

Looking again at Equation (1.79), it turns out that
the γ factor also dictates whether we’re looking at
an ellipse versus a hyperbola. For small angles θ,
and/or for small stretch factors α, the quantity γ
will always remain positive. This corresponds to an
elliptical conic section. On the other hand, for large
angles θ and/or large stretch factors α, the quantity γ
becomes negative, giving rise to the hyperbolic conic
section. In either case, we have:

1 =

(
u

z0
cos (θ)

γ√
α
− cot (θ)√

α

)2

+
v2

z20

(γ
α

)
(1.81)

With u, v playing analogous roles to x, y, we can
immediately pick out the major and minor axes a, b
which come out to:

a =
z0
√
α

γ cos (θ)

b = z0

√
α

γ

Eccentricity

Going by definition, the eccentricity of the ellipse is

e =

√
1− b2

a2
=
√
1− γ cos2 (θ)

= sin (θ)
√
1 + α . (1.82)

Similarly, the eccentricity of the hyperobla is

e =

√
1 +

b2

a2
=
√
1 + γ cos2 (θ)

=

√
2− sin2 (θ) (1 + α) . (1.83)

Problem 2
Derive Equation (1.82) and Equation (1.83).

5 General Conic Sections

5.1 Review

By playing certain games with a directrix (line) and
a focus (point) in the plane, three distinct species of
curve emerge, namely the ellipse, the hyperbola, and
the parabola. Each curve has a distict shape and at
least one focus as detailed:

equation focus
ellipse x2/a2 + y2/b2 = 1 (c, 0)

hyperbola y2/a2 − x2/b2 = 1 (0, c)
parabola y = ax2 + bx+ c 1/4a

Eccentricity

A single number called eccentricity, denoted e, clas-
sifies whether the curve is an ellipse (e < 1), a hyper-
bola (e > 1), or a parabola (e = 1), as summarized:

eccentricity

ellipse e =
√
1− b2/a2 < 1

hyperbola e =
√
1 + b2/a2 > 1

parabola e = 1

Polar Representation of Conics

The ellipse, hyperbola, and parabola are siblings in
polar coordinates when the origin is at a focus. Re-
markably, all three curves are represented by one sin-
gle equation tuned by the eccentricity:

r =
pe

1− e cos (θ)

5.2 Generalized Conics

In the most general case, a conic section in the Carte-
sian plane can come to you in the form

Ax2 +Bxy + Cy2 +Dx+ Ey = F . (1.84)

The coefficients A through F not only determine the
curve species, but also the placement and rotation of
the curve via the Bxy term.

5.3 Rotated Coordinates

To analyze Equation (1.84), it helps to use a second
coordinate system uv that is rotated with respect to
the original xy coordinate system so there is no mixed
‘rotation’ term. The uv system shares the shame ori-
gin as the xy system, but is tuned by θ to align with
the curve’s principal axes. Such a rotated coordinate
system can be written

u = x cos (θ) + y sin (θ)

v = −x sin (θ) + y cos (θ) ,

which can be inverted to read

x = u cos (θ)− v sin (θ)

y = u sin (θ) + v cos (θ) .

Note that a positive rotation in θ corresponds to
counterclockwise progression of the uv system with
respect to the xy system, which makes the curve it-
self appear to progress clockwise in the uv frame.
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To proceed, take the quantity Ax2 + Bxy + Cy2

and substitute the x- and y-equations above to find

Ax2 +Bxy + Cy2

= u2
(
A cos2 (θ) + C sin2 (θ) +B sin (θ) cos (θ)

)
+ v2

(
A sin2 (θ) + C cos2 (θ)−B sin (θ) cos (θ)

)
+ uv (−A sin (2θ) + C sin (2θ) +B cos (2θ))

In order to eliminate the ‘mixed’ uv-term in the ro-
tated coordinate system, we find the restriction on θ
to be given by

B′ = −A sin (2θ) + C sin (2θ) +B cos (2θ) = 0 ,

or

tan (2θ) =
B

A− C
. (1.85)

So far then, we can write

A′u2 + C ′v2 +D′u+ E′v = F , (1.86)

where the primed coeffcients A′ through E′ can be
traced back to the original coefficients.

Problem 1
Write explicit formulas for A′, B′, C ′, D′, E′ in

terms of θ and the unprimed coefficients.

Problem 2
The equation

21x2 + 31y2 −
√
300xy = 144

describes a tilted ellipse centered at the origin. De-
termine the angle θ required to un-tilt the ellipse and
write the new equation. (Answer: 2θ = tan−1

(√
3
)
,

u2/9 + v2/4 = 1)

Problem 3
The axis of the hyperbola x2/a2 − y2/b2 = 1 is

tilted by 45 degrees using the origin as a pivot so
that the new axis lies along the line y = x. (The axis
cuts through both focus points and the rotated hy-
perbola lives strictly in the first and third quadrants.)
Prove that the equation of the tilted hyperbola is

v =

(
a2 + b2

a2 − b2

)
u± ab

a2 − b2

√
4u2 − 2 (a2 − b2) .

Problem 4
The axis of the hyperbola x2 − y2 = 2 is tilted

by 45 degrees using the origin as a pivot so that the
new axis lies along the line y = x. Show that the new
equation is v = 1/u.

Problem 5

The axis of the parabola y = x2 − 1/4 is tilted
by 45 degrees using the focus as a pivot so that the
new axis lies along the line y = x. Prove that the
equation of the tilted parabola is

v = u+
1√
2
±
√

2
√
2u+ 1 .

Classifying Rotated Conics

With the mixed uv-term squelched out, the type of
curve described by Equation (1.86) is indicated by
the signs on the A′ and C ′ terms. If either A′ or C ′

is zero, the curve is parabolic. The curve is elliptical
if A and C agree each positive, and so on. If both A
and C are zero, the curve at best linear.

5.4 Discrimanant of a Conic

It is possible to determine the type of curve described
by the general Equation (1.84) without manually ro-
tating coordinates. To do this, we must calculate the
discrimanant of the conic, defined by

D = B2 − 4AC . (1.87)

It turns out that D resolves to the same value regard-
less of the rotation angle of the coordiante system,
making D an invariant quantity. To prove this, let
us calculate

D′ = (B′)
2 − 4A′C ′

and check if D′ = D in the general case. To get
started, we’ll calculate the square of B′ and the prod-
uct −4A′C ′ separately:

(B′)
2
=
(
A2 + C2 − 2AC

)
sin2 (2θ)

+B2 cos2 (2θ) +B (C −A) sin (4θ)

−4A′C ′ =
(
−A2 − C2 +B2

)
sin2 (2θ)

−B (C −A) sin (4θ)

− 4AC + 2AC sin2 (2θ)

Taking the sum of the two results, we see that all of
the ugly terms cancel out and the form B2 − 4AC
emerges:

(B′)
2 − 4A′C ′ = B2 − 4AC (1.88)

More succintly, we see D′ = D for any angle θ. Not
surprisingly, the coefficients D, D′, E, E′, F , are not
involved in the discrimanant or the classification of
the curve.

Problem 6
Derive Equation (1.88).
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5.5 Classifying General Conics

Having shown that the discrimanant B2 − 4AC of a
general conic section

Ax2 +Bxy + Cy2 +Dx+ Ey = F

is invariant with respect to coordinate system rota-
tions, we are free to choose the system that tunes for
B′ = 0 in accordance with Equation (1.85) to write

D = B2 − 4AC = −4A′C ′ . (1.89)

Recall that the parabolic case corresponds to either
of A′ or C ′ being zero, causing D = 0. If A′ and C ′

agree in sign, the curve is elliptical and D remains
negative. If A′ and C ′ disagree in sign, the curve is
hyperbolic and D is positive.

discrimanant
ellipse B2 − 4AC < 0

hyperbola B2 − 4AC > 0
parabola B2 − 4AC = 0

Problem 7
Consider the hyperbola given by xy = 1. Use

Equation (1.89) to express the same hyberbola with
no mixing term.

Using the Discriminant

It’s possible to show using calculus that the area of
the ellipse is given by

Area = πab ,

where a, b are the major and minor axes. With this
information, we can determine the area of the ellipse

Ax2 +Bxy + Cy2 = 1 .

Choose a second uv-coordinate system whose ori-
entation satisfies Equation (1.85), and the same el-
lipse takes the form

A′u2 + C ′v2 = 1 .

Comparing this to the usual equation of an ellipse, it
seems that A′ is the inverse square of the major axis,
and similarly for C ′ and the minor axis. The area of
this ellipse is thus

Area =
π√
A′C ′

.

Now involve the discriminant via Equation (1.89)

B2 − 4AC = −4A′C ′

to replace the primed terms with the original vari-
ables and the problem is finished:

Area =
π√

4AC −B2
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