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Chapter 1

Complex Analysis

1 Complex Algebra Review

1.1 Complex Number

Let any complex number z be represented as

z = x+ iy ,

where x and y are real numbers, and i is the imagi-
nary unit satisfying

i2 = −1 .

The x-component is called the ‘real part’ of z,
written

x = Re (z) ,

and the y-component is the ‘imaginary part’ of z:

y = Im (z)

Complex Conjugate

Any complex number z has a complex conjugate
z = z∗, also a complex number, defined such that

z̄ = z∗ = x− iy .

That is, the complex conjugate simply reverses the
sign on the imaginary component.

Scalar Multiplication

A complex number z can be scaled by a dimensionless
real number λ by multiplying λ into each component
of z:

λz = λx+ iλy

1.2 Complex Arithmetic

For two complex numbers z1, z2, the equations of
complex arithmetic can be generated from two state-
ments

z1 ∗ z2 = z2 ∗ z1
z1 ∗ z2 = z1 ∗ z2 ,

where the generalized operator represents either com-
plex addition ( + ) or complex multiplication ( · ).

From the above, one finds

z1 + z2 = (x1 + x2) + i (y1 + y2)

and

z1z2 = (x1x2 − y1y2) + i (x1y2 + x2y1) .

3
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It’s straightforward to show that complex addition
and multiplication follow the standard associative
and distributive properties:

(z1z2) z3 = z1 (z2z3)

z1 (z2 + z3) = (z1z2) + (z1z3)

Complex Magnitude

The complex magnitude

|z| =
√
zz =

√
(x+ iy) (x− iy) =

√
x2 + y2

is a real number that measures the distance from z
to the origin in the complex plane.

Complex Division

For two complex number z1, z2, the ratio is defined
as:

z1
z2

=
z1 z2

|z2|2

One can readily check that this definition readily sat-
isfies z1 ∗ z2 = z1 ∗ z2, where the generalized arith-
metic operator ( ∗ ) is replaced by the division symbol
( / ).

1.3 Complex Plane

Polar Representation

Complex numbers lend naturally to polar representa-
tion

x = r cos (ϕ)

y = r sin (ϕ)

r = |z| =
√
x2 + y2

ϕ = arctan (y/x) ,

where ϕ is the complex phase of z.
This setup is identical to that of plane polar co-

ordinates with the real numbers along the x-axis and
the imaginary numbers along the y-axis. The com-
plex number z can be written

z = r (cos (ϕ) + i sin (ϕ)) .

Rotations

The special complex number zθ with |zθ| = 1 and any
phase θ is a rotation operator for complex numbers:

zθ = cos (θ) + i sin (θ)

This is because the product zθz for any z (r, ϕ) results
in:

zθz = r (cos (ϕ+ θ) + i sin (ϕ+ θ))

That is multiplying by zθ has the effect of a change
of phase ϕ → ϕ+ θ.

1.4 Euler’s Formula

Repeated Rotations

Making repeated use of the rotation operator zθ, sup-
pose we start with a complex number z (r, ϕ) and
make n identical rotations by the angle θ:

znθ z = r (cos (ϕ+ nθ) + i sin (ϕ+ nθ))

Without loss of generality, we can suppose the
original complex number z is the real number z = 1,
meaning r = 1 and ϕ = 0. This yields a new way to
write the rotation operator as

zθ =

(
cos

(
θ

h

)
+ i sin

(
θ

h

))h

,

where h = 1/n.
Pressing the limit h → ∞, the quantity θ/h tends

to zero, warranting the small-angle approximation to
replace both trigonometry terms:

zθ = lim
h→∞

(
1 +

iθ

h

)h

The right side is precisely the definition of Euler’s
constant e raised to the power iθ. In summary, we
have found

zθ = eiθ = cos (θ) + i sin (θ) ,

one of the msot useful relationships in mathematics.

Calculus-based Derivation

Begin with the polar representation of a complex
number

z = r (cos (ϕ) + i sin (ϕ)) ,

and compute the differential dz. From calculus, we
know

dz =
∂z

∂r
dr +

∂z

∂ϕ
dϕ ,

where the ∂ symbol denotes a partial derivative.
Evaluating this and simplifying, find

dz

z
=

dr

r
+ i dϕ .

With all variables separated, integrate the above
to find

ln (z) = ln (r) + iϕ+�C ,

dropping the integration constant. This result is sim-
ply the natural log of Euler’s formula:

z = r eiϕ
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Multiplication and Division

Euler’s formula makes quick work of multiplication
and division of complex numbers. For any two com-
plex numbers z1 (r1, ϕ1), z2 (r2, ϕ2), we always have

z1z2 = r1r2 e
i(ϕ1+ϕ2)

z1
z2

=
r1
r2

ei(ϕ1−ϕ2)

Complex Logarithm

Consider a general complex number

z (r, ϕ) = r eiϕ ,

which admits a logarithmic form

ln (z) = ln (r) + iϕ .

Branches

Unlike z (r, ϕ), the complex logarithm of z has a com-
plex phase term iϕ that does not ‘reset’ outside the
interval [0 : 2π). This raises an important subtlety
called branches, or branch cuts, which are apparent
phase discontinuities in complex functions projected
onto the complex plane.

Complex Exponent

For two complex numbers z (r, ϕ), w (α, β), the expo-
nent calculation zw proceeds as:

zw =
(
r eiϕ

)α+iβ

= rαriβ eiϕα e−ϕβ

= eln(r)α eln(r)iβ eiϕα e−ϕβ

= eα ln(r)−βϕ ei(β ln(r)+αϕ)

= exp ((ln (r) + iϕ) (α+ iβ))

= ew ln(z)

2 Solving Classic Systems

Complex numbers are a pathway to many abilities
some would consider to be unusual.

2.1 Velocity and Acceleration

If a complex number z depends on time via

z (t) = r (t) eiθ(t) ,

we may take derivatives to write equations for ‘veloc-
ity’ and ‘acceleration’ in the complex plane. Letting

dr

dt
= ṙ

dθ

dt
= θ̇ = ω ,

one finds:

d

dt
z (t) = ṙeiθ + ieiθrω

d2

dt2
z (t) = eiθ

(
r̈ − rω2

)
+ ieiθ (2ṙω + rω̇)

The results for ż and z̈ are each complex num-
bers, carrying real and imaginary components. By
associating

eiθ → r̂

ieiθ → θ̂ ,

we discover a shortcut for the velocity and accelera-
tion vectors in polar coordinates.

2.2 Simple Harmonic Oscillator

Near a stable point, many classical systems are char-
acterized by a position x (t) that obeys

ẍ+ ω2
0 x = 0 ,

where the ‘double-dot’ operator implies two time
derivatives, i.e. ẍ = d2x/dt2, and the angular fre-
quency ω0 is a real-valued constant. This is the so-
called simple harmonic oscillator having known solu-
tions based on trigonometric functions.

Setup

The SHO problem is elegantly solved using com-
plex numbers. Let us pose the same problem for a
complex-valued, time-dependent variable w (t):

ẅ + ω2
0 w = 0

As a complex number w, decomposes to

w (t) = x (t) + iy (t) ,

or in terms of real and imaginary components

x (t) = Re (w (t))

y (t) = Im (w (t)) ,

specifically

ẍ+ ω2
0 x = 0

ÿ + ω2
0 y = 0 .
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Solution

Next, we propose solutions to w (t) as

w (t) = A eλt ,

where A is the amplitude constant and λ is a fre-
quency constant. Substitution of w (t) into the SHO
differential equation quickly reveals

λ2 + ω2
0 = 0 ,

telling us
λ = ±iω0 .

Since the SHO differential equation is linear, it fol-
lows that the general solution is the sum of partial
solutions

w (t) = A1 e
iω0t +A2 e

−iω0t

Proceed by writing the complex constants A1, A2

in polar form

A1 = a1 e
iϕ1

A2 = a2 e
iϕ2 ,

where a1, a2 are real-valued, and ϕ1, ϕ2 are phase
constants.

Using Euler’s formula to expand the exponential
terms, we find

w (t) = a1 cos (ϕ1 + ω0t) + a2 cos (ϕ2 − ω0t)

+ ia1 sin (ϕ1 + ω0t) + ia2 sin (ϕ2 − ω0t) ,

or, splitting the real from the imaginary parts:

x (t) = a1 cos (ϕ1 + ω0t) + a2 cos (ϕ2 − ω0t)

y (t) = a1 sin (ϕ1 + ω0t) + a2 sin (ϕ2 − ω0t)

These solutions are identical up to the phase con-
stants ϕ1, ϕ2. For instance, let ϕ2 → ϕ2 + π/2 to
transform the sines into cosines. Proceeding with the
x (t)-equation, let

a = a1 cos (ϕ1) + a2 cos (ϕ2)

b = −a1 sin (ϕ1) + a2 sin (ϕ2) ,

and we get

x (t) = a cos (ω0t) + b sin (ω0t) .

Or, to make the solution even tighter, let

a = R cos (ϕ0)

b = R sin (ϕ0) ,

and x (t) becomes

x (t) = R cos (ω0t− ϕ0) .

Note that the number of free constants is down to
two, which should be the case for a second-order dif-
ferential equation.

Damped Harmonic Oscillator

Now we consider the differential equation for the
damped harmonic oscillator given by

ẍ+ bẋ+ ω2
0 x = 0 ,

where b is the camping coefficient.
Following the same procedure that applies to the

SHO case, we replace all x (t) with w (t) and consider
complex solutions

w (t) = A eλt ,

immediately leading to

λ2 + bλ+ ω2
0 = 0 .

The two solutions for λ come out as

λ± = − b

2
±
√

b2

4
− ω2

0 .

The way b relates to ω0 dictates the overall character
of the solution.

Overdamped Harmonic Oscillator

In the special case b/2 > ω0, the damping term is
strong enough to overwhelm the system’s tendency to
oscillate, and the solution decays exponentially with-
out oscillating. (All relevant variables in the prob-
lem are real-valued.) Up to arbitrary constants de-
termined by initial conditions, the overdamped oscil-
lator obeys

x (t) = A1 e
λ+t +A2 e

λ−t .

Underdamped Harmonic Oscillator

If we instead have b/2 < ω0, the λ-terms become

λ± = − b

2
± i

√
ω2
0 −

b2

4
,

now including an imaginary component. Utilizing the
SHO analysis above, the general solution to this case
reads

w (t) = e−bt/2
(
a1 e

ω̃t+ϕ1 + a2 e
−ω̃t+ϕ2

)
,

where

ω̃ =
√
ω2
0 − b2/4 .

The damping term causes the amplitude to decay ex-
ponentially in time. Note the oscillatory portion of
the solution is identical to that of the simple harmonic
oscillator, and can be reduced to sine and/or cosine
terms with two arbitrary constants. Note that the ef-
fective angular frequency ω̃ depends on the damping
term.
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Critically-Damped Harmonic Oscillator

The behavior of the damped oscillator depends chiefly
on the quantity ω2

0−b2/4, giving rise to either damped
or oscillatory motion. The special case ω2

0 = b2/4
is the criteria for critical damping. Physically, a
critically-damped system returns to its equilibrium
position in the shortest time.

Returning to the proposed solution w (t) =
A exp (λt) under the condition

ω2
0 −

b2

4
= 0 ,

we see there is only one choice for λ, namely λ = b/2.
As such, this would mean there is only one arbitrary
parameter A in the the solution, which is one too
few parameters to qualify as a general solution to a
second-order differential equation. In other words,
something is wrong with our guess for w (t).

Starting the problem over again by introducing
the shorthand notation

d

dt
x (t) = ẋ = dtx (t) ,

the differential equation of the damped oscillator can
be written [

dtt + bdt + ω2
0

]
x (t) = 0 ,

where the quantity in square brackets is an object
that operates on x (t). Proceed by ‘completing the
square’ within the operator to land at[

dt +
b

2

]2
x (t) =

(
b2

4
− ω2

0

)
x (t) .

For convenience, use the shorthand

D =

[
dt +

b

2

]
−ω̃2 =

b2

4
− ω2

0

to write
D2x (t) = −ω̃2x (t) .

Next, let

x (t) = e−bt/2x̃ (t) ,

and the above becomes

e−bt/2D2x̃ (t) + x̃ (t)D2e−bt/2 = −ω̃2e−bt/2x̃ (t) .

Dealing with the middle term first, notice

D2e−bt/2 =

[
dtt + bdt +

b2

4

]
e−bt/2

=

(
b2

4
− b2

2
+

b2

4

)
e−bt/2 = 0 ,

and the above simplifies to

D2x̃ (t) = −ω̃2x̃ (t) .

At this point, we finally apply the case of critical
damping, in where ω̃ = 0. This reduces the above to

D2x̃ (t) = 0 ,

having general solution

x̃ (t) = a1 + a2t .

To see this quickly, you may treat D as a deriva-
tive operator and mentally integrate both sides of the
equation. If skeptical, formally unpack the operation
via D = dt + b/2 and find the same result. Finally,
we assemble the solution to the critically-damped os-
cillator:

x (t) = e−bt/2 (a1 + a2t)

Driven Harmonic Oscillator

It’s also possible to analyze the so-called driven os-
cillator, generally described by

ẍ+ bẋ+ ω2
0x = f (t) .

Due to the linearity in the left hand side, we know
already that the solution to the above takes the form

x (t) = xh (t) + xp (t) ,

i.e. the sum of a homogeneous part xh (t) and a par-
ticular part xp (t). Knowing xh (t) already to be

xh (t) = R e−bt/2 cos (ω0t− ϕ0) ,

the task is reduced to finding a particular solution
xp (t).

In general, finding the particular solution to the
the above with arbitrary f (t) is as difficult as it
sounds, so we make the job easier by considering a
sinusoidal driving function

f (t) = γ cos (αt) .

To solve the problem on hand, it’s convenient to con-
vert all variables to polar form, and then take only
the real part of the solution. Proceeding this way, we
have, for a complex variable w (t),

ẅ + bẇ + ω2
0w = γ eiαt .

Next, we postulate complex solutions of the form

w (t) = A eiαt
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for some arbitrary constantA, and the above becomes

A
(
−α2 + ibα+ ω2

0

)
��eiαt = γ��eiαt .

Solving for A gives

A =
γ
(
ω2
0 − α2

)
− iγbα

(ω2
0 − α2)

2
+ b2α2

,

where if we let

u = ω2
0 − α2

v = βα ,

a complex number q can be written as

q = u− iv = q0 e
−iϕ0 ,

with

q0 =

√
(ω2

0 − α2)
2
+ b2α2 .

Rewriting A, we have:

A =
γq0 e

−iϕ0

q20
=

γ e−iϕ0√
(ω2

0 − α2)
2
+ b2α2

Finally, the particular solution to the driven os-
cillator reads

w (t) =
γ ei(αt−ϕ0)√

(ω2
0 − α2)

2
+ b2α2

ϕ0 = tan−1

(
bα

ω2
0 − α2

)
Note that this particular solution lacks a term like
exp (bt/2), which, much unlike the homogeneous so-
lution, doesn’t decay over long times.

The amplitude A depends on how ω0 relates to α.
Calculating

d

dα
|A (α)| = 0

indicates the special αR for which the amplitude is
maximal. Performing this calculation, one finds

α2
R = ω2

0 −
b2

2
,

indicating

AR =
γ/b√

ω2
0 − b2/2

.

Note that when α = αR, the system is said to be in
resonance.

2.3 Particle in Magnetic Field

Consider a particle of mass m and charge q in the
presence of a uniform magnetic field B⃗. The force
incident on the particle is given by

F⃗ = q v⃗ (t)× B⃗ ,

where v⃗ (t) is the instantaneous velocity. Equations of
motion are determined by applying Newton’s second
law

F⃗ = m
d

dt
v⃗ (t) .

Being a three-dimensional problem, let us choose
to align the magnetic field with the positive z-axis.
Then, by eliminating F⃗ , we have

m
d

dt
v⃗ (t) = qB v⃗ (t)× ẑ ,

or

d

dt
v⃗ (t) = ω0 v⃗ (t)× ẑ

ω0 =
qB

m
.

The unpacks into three equations:

d

dt
vx (t) = ω0vy (t)

d

dt
vy (t) = −ω0vx (t)

d

dt
vz (t) = 0

Noting that vz (t) is constant in time, we imme-
diately know the solution for z (t), namely

z (t) = z0 + vzt ,

and we may focus entirely on what occurs in the xy-
plane. Defining a complex variable

w (t) = vx (t) + ivy (t) ,

we capture the information written above using the
derivative

d

dt
w (t) = ω0vy (t)− iω0vx (t) ,

simplifying to

i
d

dt
w (t) = ω0w (t) .

This first-order differential equation is easily
solved by

w (t) = Ae−iω0t = |A| ei(ϕ0−ω0t) ,
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where A is an arbitrary complex constant. Taking the
real and imaginary parts of the above, the equations
for vx (t), vy (t) emerge:

vx (t) = Re (w (t)) = |A| cos (ω0t− ϕ0t)

vy (t) = Im (w (t)) = − |A| sin (ω0t− ϕ0)

While the above can be integrated separately to
attain equations of motion x (t), y (t), we can inte-
grate w (t) directly by introducing a variable

R = x (t) + iy (t) ,

whose derivative is w (t):

d

dt
R (t) = w (t)

Then, the integral of the above can be written

R (t) = R0 + |A|
∫ t

0

ei(ϕ0−ω0t
′)dt′ ,

which can be solved with relative ease:

R (t) = R0 + |A| eiϕ0

∫ t

0

e−iω0t
′
dt′

= R0 + |A| eiϕ0
1

−iω0
e−iω0t

′
∣∣∣∣t
0

= R0 + |A| eiϕ0
i

ω0

(
e−iω0t − 1

)
= R0 + |A| eiϕ0−iω0t

i

ω0
− |A| eiϕ0

i

ω0

Repacking the integration constants together, we
write

R̃0 = R0 − |A| eiϕ0
i

ω0
,

the solution reads

R (t) = R̃0 + |A| ei(ϕ0−ω0t)
i

ω0

= R̃0 +
|A|
ω0

(i cos (ω0t− ϕ0) + sin (ω0t− ϕ0)) .

Finally, we find

x (t) = Re (R (t)) = x̃0 +
|A|
ω0

sin (ω0t− ϕ0)

y (t) = Im (R (t)) = ỹ0 +
|A|
ω0

cos (ω0t− ϕ0) ,

where

x̃0 = x0 +
|A|
ω0

sin (ϕ0)

ỹ0 = y0 −
|A|
ω0

cos (ϕ0) .

This is the exact circular motion for a charged parti-
cle in a uniform magnetic field.

3 Complex Differentiation

A complex function w (z) of a single variable z =
x+ iy has the structure

w (z) = u (x, y) + iv (x, y) ,

where u and v are the respective real and imaginary
components of the function.

If the components of w depend on time, we’ve
seen that taking derivatives of w (z (t)) have utility
in problem solving. However, a treatment of complex
derivatives require care in the general case.

3.1 Partial Derivatives

Begin by calculating the differential of a function
w (u, v) while substituting dx and dy for their rep-
resentations in terms of dz and dz̄:

dw (x, y) = dx
∂w

∂x
+ dy

∂w

∂y

=
1

2
(dz + dz̄)

∂w

∂x
+

1

2i
(dz − dz̄)

∂w

∂y

=
dz

2

(
∂w

∂x
− i

∂w

∂y

)
+

dz̄

2

(
∂w

∂x
+ i

∂w

∂y

)
Meanwhile, the same function w can be written

w (z, z̄), having differential version

δw (z, z̄) = δz
∂w

∂z
+ δz̄

∂w

∂z̄
.

Comparing the two equations provides a definition
for ∂w/∂z and ∂w/∂z̄:

∂w

∂z
=

1

2

(
∂w

∂x
− i

∂w

∂y

)
∂w

∂z̄
=

1

2

(
∂w

∂x
+ i

∂w

∂y

)
Polar Frame

In place of x and y, we may cast complex functions in
terms of r and θ, leading to the following derivative
operators:

r
∂

∂r
= x

∂

∂x
+ y

∂

∂y
= z

∂

∂z
+ z̄

∂

∂z̄

∂

∂θ
= x

∂

∂y
− y

∂

∂x
= iz

∂

∂z
− iz̄

∂

∂z̄

z
∂

∂z
=

1

2

(
r
∂

∂r
− i

∂

∂θ

)
z̄
∂

∂z̄
=

1

2

(
r
∂

∂r
+ i

∂

∂θ

)
To derive the these, let x = r cos θ and y = r sin θ,
and then use the chain rule on w (r, θ) and w (z, z̄).
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3.2 Total Derivative

While partial derivatives of complex functions are
straightforward, the total derivative is trouble. Pro-
ceeding in a calculus-101 analogy, we write

dw (z, z̄)

dz
= lim

∆z→0

∂w

∂z
+

∂w

∂z̄

∆z̄

∆z
,

where if ∆z = |∆z| eiθ, then the ratio ∆z̄/∆z be-
comes e−2iθ, which can have any phase θ as ∆z → 0.
The best thing we can do about the total derivative is
to restrict w to have no explicit z̄-dependence, elimi-
nating the second term altogether. We therefore take
the following two equations as criteria of the total
derivative:

dw

dz
=

∂w

dz
∂w

∂z̄
= 0

3.3 Analytic Functions

We have seen that a complex function’s simultaneous
dependence on the complex point z and its complex
conjugate z̄ can have an ambiguous total derivative.
Such functions where z and z̄ appear are denoted as
w (z, z̄), with the letter w reserved.

Many interesting complex functions only depend
on z (with z̄ absent), denoted f (z). If the deriva-
tive df/dz exists then the function is called analytic.
Points where df/dz does not exist are called singular,
where isolated singular points are called poles. An
entire function has no singular points in its domain.

To demonstrate, the following three functions are
not analytic for all z:

f1 (z) = x2 − y2

f2 (z) = x2 + iy2

f3 (z) = r2 (cos (θ) + i sin (θ))

Check this by calculating derivatives of each:

∂

∂z
f1 (z) =

∂

∂z
(zz) = z ̸= 0

∂

∂z
f2 (z) =

1

2

(
∂f2
∂x

+ i
∂f2
∂y

)
= x− y ̸= 0

∂

∂z
f3 (z) =

1

2z

(
r
∂f3
∂r

+ i
∂f3
∂θ

)
=

2rz − irz

2z
̸= 0

On the other hand, the following functions are
analytic for all z:

f4 (z) = x2 + 2ixy − y2 = z2

f5 (z) = ln (r) + iθ = ln (z)

f6 (z) = rα eiαθ = zα

You can puzzle these out from algebra alone. If z
vanishes from the function, the function is likely an-
alytic.

3.4 Cauchy-Riemann Conditions

Complex functions with no explicit z̄-dependence fol-
low an analogy from vector calculus. Start with
∂w/∂z̄ = 0, and take the derivative of

f (x, y) = u (x, y) + iv (x, y)

using
∂f

∂z̄
=

1

2

(
∂w

∂x
+ i

∂w

∂y

)
to write the Cauchy-Riemann conditions:

∂u

∂x
=

∂v

∂y

∂v

∂x
= −∂u

∂y

Level Curves

For a complex function

f (x, y) = u (x, y) + iv (x, y)

obeying the Cauchy-Riemann conditions, note that
for two constants c1 and c2, the level curves

u (x, y) = c1

v (x, y) = c2

are orthogonal, as

∇u · ∇v =

(
∂u

∂x
x̂+

∂u

∂y
ŷ

)
·
(
∂v

∂x
x̂+

∂v

∂y
ŷ

)
=

∂u

∂x

∂v

∂x
+

∂u

∂y

∂v

∂y

= −∂u

∂x

∂u

∂y
+

∂u

∂y

∂u

∂x
= 0 .

Harmonic Functions

For a complex function

f (x, y) = u (x, y) + iv (x, y)

obeying the Cauchy-Riemann conditions, the Lapla-
cian always vanishes, as

∇2f = ∇ · ∇f (x, y)

=
∂2u

∂xx
+

∂2v

∂xx
+

∂2u

∂yy
+

∂2v

∂yy

=
∂2v

∂xy
− ∂2u

∂xy
− ∂2v

∂xy
+

∂2u

∂xy
= 0 ,
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or more strongly,

∇2u (x, y) = 0

∇2v (x, y) = 0 .

Conventionally, u (x, y) and v (x, y) that satisfy the
above are called harmonic functions.

Connection to Electromagnetism

In two dimensions, consider two real vector fields A⃗
and B⃗ defined in terms of harmonic functions u (x, y),
v (x, y):

A⃗ = u x̂− v ŷ

B⃗ = v x̂+ u ŷ

Imposing the Cauchy-Riemann equations onto A⃗
and B⃗, we see that the divergence and curl of each
field resemble Maxwell’s equations in charge-free two-
dimensional space:

∇⃗ · A⃗ = 0

∇⃗ × A⃗ = 0

∇⃗ · B⃗ = 0

∇⃗ × B⃗ = 0

Approaching this differently, it turns out that two
problems from electromagnetism are solved by the
complex function:

f (z) =
1

z − z0

Letting

x− x0 = ρ cos θ

y − y0 = ρ sin θ ,

f (z) my be written

f (z) =
x− x0

(x− x0)
2
+ (y − y0)

2

− i
y − y0

(x− x0)
2
+ (y − y0)

2

=
1

ρ
(cos θ − i sin θ)

= u+ iv ,

where

u = ρ−1 cos θ

v = −ρ−1 sin θ .

Then, the fields A⃗ = u x̂− v ŷ and B⃗ = v x̂+ u ŷ
respectively tell us

A⃗ =
cos θ x̂+ sin θ ŷ

ρ
=

r̂

ρ

B⃗ =
− sin θ x̂+ cos θ ŷ

ρ
=

θ̂

ρ
.

Explicitly, A⃗ is proportional to the electric field vec-
tor due to a line of charge, whereas B⃗ is proportional
to the magnetic field vector due to a line of current.

4 Contour Integrals

Now we develop the notion of integration in the com-
plex plane. Consider a contour C that begins and
ends at the respective points za and zb in the com-
plex plane. The integral of a function f (z) over C
can be recast using a real parameter t via the chain
rule: ∫

C

f (z) dz =

∫ tb

ta

f (z (t))
dz (t)

dt
dt

Substituting

f (z) = u (x, y) + iv (x, y)

and using prime notation for derivatives via

z′ = x′ (t) + iy′ (t) ,

the contour integral splits into real and imaginary
parts:∫

C

f (z) dz =

∫
C

(ux′ − vy′) dt+ i

∫
C

(vx′ + uy′) dt

Re-using the notation A⃗ = ux̂−v ŷ, B⃗ = v x̂+uŷ,
write the integral in vector notation∫

C

f (z) dz =

∫
C

A⃗ · d⃗l + i

∫
C

B⃗ · d⃗l ,

where d⃗l = dx x̂ + dy ŷ. Evidently, the the integral
of a function f (z) in the complex plane decomposes

into a pair of integrals involving the fields A⃗, B⃗.

4.1 Cauchy’s Integral Theorem

Starting with the result above, we may consider
closed contours C and apply Stokes’s theorem to
transform each line integral into an area integral in
the complex plane. Denoting the the off-plane direc-
tion k̂, we have∮

C

f (z) dz =

∫
Ω

k̂ ·
(
∇⃗ × A⃗

)
dx dy

+ i

∫
Ω

k̂ ·
(
∇⃗ × B⃗

)
dx dy ,
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which, by the rules of vector calculus, resolves to zero
when region the Ω is completely enclosed by C.

This is the essence (and the proof) of the Cauchy
Integral Theorem, formally stating that if a function
f (z) is analytic in a simply-connected region R, then
the integral along a closed path C in R equals zero.

4.2 Defects

Singular points in the integration region that cause
f (z) to become non-analytic must be ‘stepped
around’ to be excluded from the contour C.

Consider the integral

I(0)n =

∮
C

dz

(z − z0)
n ,

where n is an integer and z0 is a singular point inte-
rior to C. Since the integration contour may be ar-
bitrarily shaped, we may choose a unit circular path
around the point z0, running counter-clockwise by
convention, with

z (θ) = z0 + eiθ

z′ (θ) = ieiθ .

Substituting z (θ) into the above and using the
delta function

δ (t) =
1

2π

∫ 2π

0

e−iαt dα ,

the above integral becomes:

I(0)n = 2πi δ (n− 1) =

{
2πi n = 1

0 n ̸= 1

4.3 Cauchy Integral Formula

Generalizing the analysis of defects, we consider the
integral

In =

∮
C

f (z) dz

(z − z0)
n

about a circular path of arbitrarily-small radius

z (θ) = lim
r→0

z0 + reiθ .

The act of taking r → 0 is equivalent to expanding
f (z0) by Taylor series to discard high-order terms,
provided that derivatives of f (z) exist. Using the
expansion

f (z) =

∞∑
q=0

f (q) (z0)

q!
(z − z0)

q
,

the above simplifies to

In =

∞∑
q=0

f (q) (z0)

q!
I
(0)
n−q .

The term I
(0)
n−q contains a delta function in the

quantity n− q − 1, which nukes all terms in the sum
except the one satisfying q = n− 1, and thus

In =
2πi

(n− 1)!
f (n−1) (z0) .

Rewriting the integral gives us the (very impor-
tant) Cauchy integral formula:∮

C

f (z) dz

(z − z0)
n =

2πi

(n− 1)!
f (n−1) (z0)

Speaking to the pedantic reader, it’s possible to prove
that the existence of all derivatives f (n) (z) is guar-
anteed by the Cauchy integral formula.

4.4 Analytic Continuation

Taylor series is convergent until the contour C
touches a singular point z0, where the radius of con-
vergence corresponds to the largest contour C0. In a
process called analytic continuation, we may choose
a point z1 inside C0 where Taylor expansion is valid,
implying a new contour C1 centered on z1 with its
own radius of convergence, in which another Taylor
expansion for f (z) applies. The non-overlapping part
of C1 is new ‘territory’ that the z0-centered approxi-
mation doesn’t cover. Iterating this process, we may
cover the whole complex plane, as long as singular
points (and regions) are stepped around.

It readily follows that a closed contour integral
that encloses singularities is equal to the sum of el-
ementary integrals around the singularities. If the
region of analyticity is a multiply-connected surface
due to singularities, f (z) may be multi-valued.

4.5 Laurent Series

A generalization of the Taylor series that includes
both positive and negative exponents is the Laurent
series:

f (z) =

∞∑
n=−∞

an (z − z0)
n

Bringing the Cauchy integral formula

In =

∮
C

f (z) dz

(z − z0)
n
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into the mix, we find, by direct substitution:

In =

∮
C

∞∑
m=−∞

am (z − z0)
m
dz

(z − z0)
n

=

∞∑
m=−∞

am

∮
C

dz

(z − z0)
n−m

The remaining integral is simply I
(0)
n−m, so we have

In =

∞∑
m=−∞

amI
(0)
n−m

=

∞∑
m=−∞

am2πi δ (n−m− 1) ,

so the surviving term satisfies m = n−1. Simplifying
quickly gives In = an−12πi, or In+1 = an2πi.

Solving for an, we find a formula for the Laurent
series coefficients:

an =
1

2πi

∮
Γ

f (z) dz

(z − z0)
n+1

n = 0,±1,±2, . . .

Note that Γ is a contour topologically equivalent to
C0.

Example: Annulus

Consider a function f (z) that is analytic in the an-
nulus

R1 ≤ |z − z0| ≤ R0

centered on z0. Begin by writing the n = 0 case of
the Cauchy integral formula

2πi f (z) =

∮
C

f (z̃) dz̃

z̃ − z
,

where the function f (z) is approximated by Laurent
series, and contour C encloses z.

Next, stretch C so as to wrap the inside of the
annulus, with a tight ‘bridge’ of canceling paths that
connect the enclosing radii. The resulting contours
are C1 and C0 with opposing directions of integra-
tion. The contour integral along C0 corresponding
to R0 was solved previously and generates the n ≥ 0
terms:

an≥0 =
1

2πi

∮
C0

f (z) dz

(z − z0)
n+1

Along contour C1, the fraction 1/ (z̃ − z) may be
expanded via geometric series

1

z̃ − z
=

1

z̃ − z0 + z0 − z

=
1

z0 − z

1

1 + z̃−z0
z0−z

=

∞∑
m=0

(z0 − z̃)
m

(z0 − z)
m+1 ,

which guarantees convergence as

|z − z0| > |z̃ − z0| = R1 .

To discover the restriction on an along C1, replace
z̃ − z and f (z̃) in the integral formula as follows:

2πi f (z) =

∮
C1

f (z̃) dz̃

z̃ − z

=

∮
C1

∞∑
n=−∞

an (z̃ − z0)
n

×
∞∑

m=0

(z0 − z̃)
m

(z0 − z)
m+1 dz̃

Keep condensing terms to write

2πi f (z) =

∞∑
n=−∞

an

∞∑
m=0

(z − z0)
−(m+1)

×
∮
C1

(z̃ − z0)
m+n

dz̃ ,

and further

��2πi f (z) =��2πi

∞∑
n=−∞

an

×
∞∑

m=0

(z − z0)
−(m+1)

δ (− (m+ n)− 1) .

The delta functions tells us m + n = −1, and we
find

f (z) =

−∞∑
n=−1

an (z − z0)
n
.

Evidently, only the negative n-terms have survived
on contour C1. We conclude that

an<0 =
1

2πi

∮
C1

f (z) dz

(z − z0)
n+1 .

5 Residue Calculus

Our study of contour integrals in the complex plane
has yielded several useful results. First, the Cauchy
integral theorem tells us that an analytic function
f (z) integrated along a closed contour C free of sin-
gularities always resolves to zero.

Isolated singularities (poles) z
(p)
0 are handled by

expanding f (z) as a Laurent series

f (z) =

∞∑
n=−∞

a(p)n

(
z − z

(p)
0

)n
,
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where the coefficients an were found to be

a(p)n =
1

2πi

∮
C

(p)
0

f (z) dz(
z − z

(p)
0

)n+1

n = 0,±1,±2, . . . .

Take the special case n = −1 to write

2πi a
(p)
−1 =

∮
C

(p)
0

f (z) dz ,

telling us that the integral of f (z) around a pole is

equal to the constant 2πi a
(p)
−1.

This process may repeat for each pole inside the
contour C, resulting in the sum

2πi
∑
p

a
(p)
−1 =

∮
C

f (z) dz .

This amazing result says that solving contour inte-
grals is reduced to finding the Laurent coefficients

a
(p)
−1 at each pole z

(p)
0 . The coefficient a

(p)
−1 is called

the residue at z
(p)
0 :

2πi
∑
p

Res
[
f
(
z
(p)
0

)]
=

∮
C

f (z) dz

Calculating Residue(s)

The order of a pole z
(p)
0 is the lowest (most negative)

index of the Laurent series expansion of f (z) around
the pole. A simple pole has a lowest index of −1.
In general, a pole z0 of order m has corresponding
Laurent series

f (z) =

∞∑
n=−m

an (z − z0)
n
.

Now we introduce the function g (z) such that

g (z) = (z − z0)
m
f (z) =

∞∑
q=0

aq−m (z − z0)
q
,

which bumps z0 to the numerator. Since the sum
index begins at zero, g (z) is simply a Taylor series,
meaning

aq−m =
g(q) (z0)

(q)!
,

where the case q −m = −1 gives the residue of f (z)
at z0:

Res [f (z0)] =
g(m−1) (z0)

(m− 1)!

For functions containing only simple poles, the
above reduces to

Res [f (z0)] = g (z0) .

What we see is an integral on the left, and a sim-
ple function evaluation on the right. In practice, this
means that whole families of integrals can be cheated
by choosing an integration contour that makes the
residue easy to calculate.

5.1 Ratios

For functions of the form

f (z) =
p (z)

q (z)
,

containing a simple pole in the denominator, i.e.
q (z0) = 0, it’s simple to show that the residue calcu-
lation always resolves to

Res [f (z0)] =
p (z0)

q′ (z0)
.

To prove this, write the definition of q′ (z) and
simplify to produce

lim
z→z0

z − z0
q (z)

=
1

q′ (z)
,

and then eliminate z − z0 using

g (z) = (z − z0) f (z) = (z − z0)
p (z)

q (z)

to get

lim
z→z0

g (z) =
p (z)

q′ (z)
= Res [f (z0)] .

5.2 Polynomial Functions

Consider the integral

I =

∫ ∞

−∞

dx

1 + x2

whose domain is the real number line. If we connect
x = ∞ to x = −∞ with a (counterclockwise) semi-
circular arc, the resulting contour encloses the upper
half of the complex plane.

Factoring the denominator to clearly see the sin-
gular points, the integral becomes

I =

∮
C

dz

(z − i) (z + i)
,

which encloses one simple pole z0 = i. The pole at
z = −i is outside the integration contour and is ig-
nored.
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Proceed by writing

g (z) = (z − i) f (z)

and quickly find

Res [f (i)] =
1

2i
,

and the integral resolves to

I = 2πi Res [f (i)] = π

Example 1
Evaluate:

I =

∫ ∞

−∞

dx

(x2 + 1) (x2 + 4)

Contour contains two poles.

I =

∮
C

dz

(z + i) (z − i) (z + 2i) (z − 2i)

g1 (z) =
����(z − i)

����(z − i) (z + i) (z2 + 4)

g2 (z) =
����(z − 2i)

(z2 + 1)����(z − 2i) (z + 2i)

I = 2πi (g1 (i) + g2 (2i)) =
π

6

(Or use partial fractions.)

Example 2
Evaluate:

I =

∫ ∞

0

x2 dx

(x2 + 4) (x2 + 9)

Contour contains two poles.

2I =

∮
C

z2 dz

(z + 2i) (z − 2i) (z + 3i) (z − 3i)

g1 (z) =
z2����(z − 2i)

(z + 2i)����(z − 2i) (z2 + 9)

g2 (z) =
z2����(z − 3i)

(z2 + 4) (z + 3i)����(z − 3i)

I =
2πi

2
(g1 (2i) + g2 (3i)) =

π

10

Example 3
Evaluate:

I =

∫ ∞

−∞

dx

(x2 + 1)
2

Contour contains one order-two pole.

I =

∮
C

dz

((z + i) (z − i))
2

g (z) =
����(z − i)

2

((z + i)����(z − i))
2

I = 2πi

(
d

dz
g (z)

∣∣∣∣
z=i

)
=

π

2

Example 4
Evaluate:

I =

∫ ∞

0

dx

(4x2 + 1)
3

Contour contains one order-3 pole.

2I =

∮
C

dz

43
(
z + i

2

)3 (
z − i

2

)3
g (z) =

����(
z − i

2

)3
43
(
z + i

2

)3
����(
z − i

2

)3
I =

2πi

2

(
1

2

d2

dz2
g (z)

∣∣∣∣
z=i/2

)
=

3π

32

5.3 Jordan’s Lemma

Starting with the Fourier transform integral

I =

∫ ∞

−∞
f (x) eikx dx ,

we carry the problem to the complex plane under
three assumptions: (i) k > 0 and is a real number,
(ii) f (z) is analytic in the upper-half plane with the
exception of simple poles, (iii) lim|z|→∞ f (z) = 0.

Jordan’s lemma for Fourier transform states that
the integration path can be closed by an infinite semi-
circle in the upper-half plane. For th k < 0 case, the
path would enclose the lower half-plane.

5.4 Sine and Cosine in Polynomial

For a real variable a > 0, the integral

I =

∫ ∞

−∞

cos kx

x2 + a2
dx

= Re

∫ ∞

−∞

eikx dx

x2 + a2
=

∮
C

eikz dz

z2 + a2

is easily recast as a contour integral using Jordan’s
lemma.
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Using g (z) = eikz/ (z + ia), we quickly find I =
(π/a) e−ka. Generalizing this, one finds:∫

f (x) cos (kx) dx = Re

∫
f (x) eikx dx∫

f (x) sin (kx) dx = Im

∫
f (x) eikx dx

Example 5
Evaluate:

I =

∫ ∞

0

cos 2x

9x2 + 4
dx

Contour contains one pole.

I =
1

18
Re

∮
C

e2iz dz(
z + 2i

3

) (
z − 2i

3

)
g (z) =

e2iz

z + 2i
3

g (2i/3) =
3

4i
e−4/3

I =
2πi

18

3

4i
e−4/3 =

π

12
e−4/3

Example 6
Evaluate:

I =

∫ ∞

0

cos 2x

(9x2 + 4)
2 dx

Contour contains one order-two pole.

I =
1

2 · 92
Re

∮
C

e2iz dz(
z + 2i

3

)2 (
z − 2i

3

)2
g (z) =

e2iz�����(
z − 2i

3

)2(
z + 2i

3

)2
�����(
z − 2i

3

)2
g(1) (2i/3) = −i

(
14

3
· 3

3

43

)
e−4/3

I = 2πi
(
g(1) (2i/3)

)
=

7π

288
e−4/3

Example 7
Evaluate:

I =

∫ ∞

−∞

cos kx

(x2 + a2)
2 dx

Contour contains one order-two pole.

I = Re

∮
C

eikz dz

(z2 + a2)
2

g (z) =
eikz

(z + ia)
2

g(1) (ia) =
i

4 eka
ka+ 1

a3

I =
π

2 eka
ka+ 1

a3

Example 8
Evaluate:

I =

∫ ∞

−∞

x sin kx

x2 + a2
dx

Contour contains one pole.

I = Im

∮
C

z eikz dz

z2 + a2

g (z) =
z eikz

z + ia

g (ia) =
1

2
e−ka

I = Im
2πi

2 eka
=

π

eka

Example 9
Evaluate:

I =

∫ ∞

−∞

x sin kx

(x2 + a2)
2 dx

Exploit a previous example to ease calculations.

I = − ∂

∂k

∫ ∞

−∞

cos kx

(x2 + a2)
2 dx

= − ∂

∂k

(
π

2 eka
ka+ 1

a3

)
=

πk

2a eka

or, by standard means:

I = Im

∮
C

z eikz dz

(z2 + a2)
2 = Im

2πik

4a eka
=

πk

2a eka

Example 10
Evaluate:

I =

∫ ∞

−∞

x sinx

x2 + 4x+ 5
dx

Contour contains one pole.

I = Im

∮
C

z eikz dz

(z + 2 + i) (z + 2− i)

g (z) =
z eikz�����

(z + 2− i)

(z + 2 + i)�����
(z + 2− i)

g (−2 + i) =
(−2 + i) ei(−2+i)

2i

I =
π

e
(2 sin 2 + cos 2)
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5.5 Trigonometric Functions

Integrals of the form

I =

∫ 2π

0

f (cos (θ) , sin (θ)) dθ

can be recast by expressing all θ-terms in terms of z
and choosing an integration contour C0 as the unit
circle centered on z = 0. Using the equations of com-
plex trigonometry, and also noting that dz = ireiθdθ,
the above becomes

I = −i

∮
C0

f

(
z + z−1

2
,
z − z−1

2i

)
dz

z
.

Example 11
Evaluate:

I =

∫ 2π

0

dθ

13 + 5 sin θ

Contour contains one pole.

I = −i

∮
C0

dz

z

1

13 + (5/2i) (z − z̄)

=

∮
C0

dz
5
2

(
z + i

5

)
(z + 5i)

g (z) =
����(
z + i

5

)
5
2����(
z + i

5

)
(z + 5i)

g

(
−i

5

)
=

−i

12

I = 2πi

(
−i

12

)
=

π

6

Example 12
Evaluate:

I =

∫ 2π

0

dθ

5− 4 sin θ

Contour contains one pole.

I = −i

∮
C0

dz

z

1

5 + 2i (z − z̄)

= −
∮
C0

dz

2
(
z − i

2

)
(z − 2i)

g (z) =
−1 ·����(

z − i
2

)
����(
z − i

2

)
2 (z − 2i)

g

(
i

2

)
=

−i

3

I = 2πi

(
−i

3

)
=

2π

3

Example 13
For a > |b|, evaluate:

I =

∫ 2π

0

dθ

a+ b cos θ

Contour contains one pole.

I = −i

∮
C0

2 dz

2az + b (1 + z2)

= −i

∮
C0

2 dz

b
(
z + a

b −
√
a2−b2

b

)(
z + a

b +
√
a2−b2

b

)

z0 = −a

b
+

√
a2 − b2

b

g (z) =
2����(z − z0)

b
���������(
z + a

b −
√
a2−b2

b

)(
z + a

b +
√
a2−b2

b

)
g (z0) =

1√
a2 − b2

I = 2πi

(
−i√

a2 − b2

)
=

2π√
a2 − b2

Example 14
For a > 1, evaluate:

I =

∫ π

0

dθ

(a+ cos θ)
2

Contour contains one order-two pole.

I = −i

∮
C0

2z dz

(2az + 1 + z2)
2

= −i

∮
C0

2z dz(
z + a−

√
a2 − 1

)2 (
z + a+

√
a2 − 1

)2
z+0 = −a+

√
a2 − 1

z−0 = −a−
√

a2 − 1

g (z) =
2z�����(

z − z+0
)2

�����(
z − z+0

)2 (
z − z−0

)2
g(1) (z) =

−2
(
z + z−0

)(
z − z−0

)3
g(1)

(
z+0
)
=

a

2 (a2 − 1)
3/2

I = 2πi

(
−ia

2 (a2 − 1)
3/2

)
=

πa

(a2 − 1)
3/2



18 CHAPTER 1. COMPLEX ANALYSIS

5.6 Two-Contour Trick

The infinite complex plane (or a fraction of it) need
not be enclosed by a semicircular contour. Rectan-
gles are just as valid, which are an ideal application
of the two-contour trick. This entails noticing when
the integral of f (z) on two enclosing contours C1 and
C2 is the same up to a complex factor.

To illustrate, the integral

I =

∫ ∞

−∞

eax dx

1 + ex

with 0 > a > 1 may be rewritten

I =

∫
C1

eaz dz

1 + ez
,

where contour C1 is the real number line. Next, in-
troduce a second contour C2 that is shifted upward
into the imaginary numbers but still parallel to the
real line such that

z = x+ 2πi .

Integrating ‘backwards’ along C2, we have

−I e2iπa =

∫
C2

eaz dz

1 + ez
.

Of course, any contributions to the integral at x =
±∞ are zero, so we combine C1 and C2 to close the
integration contour:

I
(
1− e2iπa

)
=

∮
C

eaz dz

1 + ez

To finish the calculation above, we note the pole
at z0 = iπ, and then

g (z) =
(z − iπ) eaz

1 + ez
.

However, g (z0) leads to 0/0, thus L’hopital’s rule is
needed, leading to

g (z0) =
eiπa

eiπ
.

Finally,

I
(
1− e2iπa

)
= 2πi

eiπa

eiπ
,

and

I =
π

sin (πa)
.

Example 15

Use a pizza slice contour bounded by the positive
real line and z = r e2πi/n (with vanishing crust at
infinity) to evaluate

I =

∫ ∞

0

dx

1 + xn
.

Contour contains one pole.

I
(
1− e2πi/n

)
=

∮
C

dz

1 + zn

zn0 = −1 → z0 = (−1)
−n

= eiπ/n

g (z) =

(
z − eiπ/n

)
1 + zn

g (z0) ∝
0

0
→ Need L’hopital.

g (z0) = −eiπ/n

n

I
(
1− e2πi/n

)
= −2πi

eiπ/n

n

I =
π/n

sin (π/n)

5.7 Regularization

Principal Value

Consider the principal value integral

I = P

∫ ∞

−∞

f (x) dx

x− x0
,

where by shifting x → z, we assume that f (z) is an-
alytic except for a finite number of poles, and that
|f | → 0 on the upper (or lower) infinite semicircle in
the complex plane.

Since the pole x0 lies on the real axis, the in-
tegration contour cuts directly through x0. This is
handled by regularization of the denominator, which
entails introducing a small factor δ > 0 as

I = P

∫ ∞

−∞

f (x) dx

x− x0

= lim
δ→0

∫ ∞

−∞

(x− x0) f (x) dx

(x− x0)
2
+ δ2

= lim
δ→0

∮
C

(z − x0) f (z) dz

(z − x0)
2
+ δ2

.

After a little complex algebra, find

I = lim
δ→0

∮
C

f (z) dz

z − x0 + iδ

+ lim
δ→0

∮
C

iδ
f (z) dz

(z − x0 − iδ) (z − x0 + iδ)
,

which indicates one simple pole z0 = x0+iδ inside the
upper-half plane. The first integral in fact excludes
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the pole, so x0 is skipped in subsequent residue cal-
culations. (Use the δ-term as a reminder to skip x0.)
The second integral is solved by standard residue cal-
culus, i.e., let g (z) = f (z) / (z − x0 + iδ), resulting
in πif (x0).

Pulling the results together, we write

I+ = πif (x0) + lim
δ→0

∮
C

f (z) dz

z − x0 + iδ
,

where if we started with δ < 0 instead, the integration
contour would flip to the lower-half plane, resulting
in

I− = −πif (x0) + lim
δ→0

∮
C

f (z) dz

z − x0 − iδ
.

In tighter notation (regardless of path or the sign
of δ), one may write

I = P

∫ ∞

−∞

f (x) dx

x− x0
= P

∮
C

f (z) dz

z − x0
,

reminding us to include x0 inside integration contour,
but take the residue with a factor of 1/2.

Example 16
Evaluate:

I =

∫ ∞

−∞

sinx

x
dx

This is a straightforward principal value integral:

I = Im

(
πi ei·0 +

���
����

lim
δ→0

∮
C

eiz dz

z + iδ

)
= π

Example 17
Evaluate each of:

I = P

∫ ∞

−∞

cos kx

(x− x0) (x2 + 2)
dx

J = P

∫ ∞

−∞

sin kx

(x− x0) (x2 + 2)
dx

K = P

∮
C

eikz

(z − x0) (z2 + 2)
dz

= iπ
eikx0

x2
0 + 2

+ 2πi

(
e−k

√
2(√

2i− x0

) (
2
√
2i
))

=

(
−π

x2
0 + 2

(
sin kx0 +

x0 e
−
√
2k

√
2

))

+ i

(
π

x2
0 + 2

(
cos kx0 − e−

√
2k
))

= I + iJ

Dispersion Relations

One special case for f (z) occurs when the upper-half
plane contains no singularities, making the contour
integral the I+-equation resolve to zero. By decom-
posing f into real and imaginary components u and v,
respectively, we derive the Kramers-Kroing relations:

u (x0) =
1

π
P

∫ ∞

−∞

v (x)

x− x0
dx

v (x0) =
−1

π
P

∫ ∞

−∞

u (x)

x− x0
dx

5.8 Branch Cuts

Non-Integer Powers and Logarithms

Complex numbers involving exponents and loga-
rithms follow plainly from Euler’s formula:

za = ra eaiθ

ln z = ln r + iθ

Of course, the periodicity of θ leads to certain
functions behaving non-smoothly as the line defined
by θ = 0 is crossed. For instance, the value of the
logarithm

ln z (r, 0) = ln r

ln z (r, 2π) = ln r + 2πi

at two equal points in the complex plane can disagree
with itself by (at least) 2πi.

For another example, the square root z1/2 =
r1/2 eiθ/2 is also multi-valued, as

z1/2 (r, 0) = r1/2

z1/2 (r, 2π) = −r1/2 .

All of this is troublesome for contour integrals, so
the line on which f (z) is ill-behaved, called a branch
cut, must be stepped around. To proceed generally
we denote an initial phase θ0 that defines a branch
cut z = r eiθ0 , and then define

θ0 + 2πN ≤ θ < θ0 + 2π (N + 1)

for an integer N , called the branch, that indexes mul-
tiples of 2π.

Example 18
Use

z̄
∂

∂z̄
=

1

2

(
r
∂

∂r
+ i

∂

∂θ

)
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to show that the complex power and logarithm func-
tions are analytic everywhere except for the branch
θ0.

z̄
∂

∂z̄
(za) =

a

2
eiaθ (ra − ra) = 0

z̄
∂

∂z̄
(ln z) =

(r
r
+ i2

)
= 0

Products with Powers

We next consider the integral

I =

∫ ∞

0

f (x)xa dx ,

where f (x) is well-behaved and non-singular on the
real line, and the presence of xa demands a branch
but on θ0 = 0.

To proceed we move the integral to the complex
plane and go along three contours: (i) C+, corre-
sponding to z = x + iδ just above the real line, (ii)
CR, a nearly-full trip around the complex plane with
R → ∞, and (iii) C−, coming from infinity back zero
just below the real line with z = x− iδ.

Only the C± contours contribute to the integral,
so in the limit δ → 0 we have:

I =

∫
C+

f (z) za dz

−e2iπa I =

∫
C−

f (z) za dz

Solving for I, the final answer pops out:∫ ∞

0

f (x)xa dx =
1

1− e2iπa

∮
C

f (z) za dz

Note that the integration contour surrounds the
whole complex plane minus the branch cut. Don’t
forget to include all poles in residue calculations.

Example 19
Evaluate:

I =

∫ ∞

0

xa dx

(1 + x)
2

Contour contains one order-two pole.∮
C

za dz

(1 + z)
2 = 2πi

∑
p

Res
[
f
(
z
(p)
0

)]

g (z) =
za����(1 + z)

2

����(1 + z)
2

g(1) (z) = a za−1

g(−1) (z) = a 1a−1 eiπa e−iπ = −a eiπa

I =
−2πia eiπa

1− e2iπa
=

πa

sin (πa)

Positive Real Domain

The general problem

I =

∫ ∞

0

f (x) dx

exploits a branch cut spectacularly. We begin by con-
sidering a different integral

Ĩ =

∫ ∞

0

f (x) ln (x) dx

on the same contours C+ and C− used above, on the
branch 0 ≤ θ < 2π. This gives us∫

C+

f (z) ln (z) dz = Ĩ∫
C−

f (z) za dz = −Ĩ − 2πi

∫ ∞

0

f (x) dx ,

which sum together to perfectly cancel Ĩ, provided
the usual assumptions that allow the integral with
R → ∞ to vanish. Solving for the original I, we find:∫ ∞

0

f (x) dx =
i

2π

∫
C

f (z) ln (z) dz

Example 20
Evaluate:

I =

∫ ∞

0

dx

(x+ 2) (x+ 1)
2

Contour contains two poles.

I =
i

2π
· 2πi

(
d

dz

ln z

z + 2

∣∣∣∣
z=−1

+
ln z

(z + 1)
2

∣∣∣∣
z=−2

)
= 1− ln 2
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