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Chapter 1

Complex Algebra

1 History of Complex Numbers

The story of complex numbers begins more than a
century before calculus, in a time when mathemati-
cians were still puzzling through what we would now
consider high school algebra.

The issue of solving depressed cubic equations

x3 + bx = c

was especially prescient in mid-1500s Italy, and even-
tually a pair of mathematicians would derive the del

Ferro-Tartaglia formula
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allowing a single solution to the depressed cubic to
be attained.

While equation the above works for a certain class
of depressed cubic problems, it is still peculiar in the
sense that negative numbers may end up embedded
under the radical symbols. Staying within the rules of
algebra, the un-treatable quantity always boils down
to

√
−1, making x0 impossible to simplify as such.

Aware of this, mathematician Rafael Bombelli
had the ‘wild thought’ to work with factors of

√
−1

anyway. This means to suppose the ‘ugliness’ of the
cube-root terms in x0 could be split away from the
well-behaved part such that
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for two unknown coefficients U and V . Then, when
we assemble x0 again, the V -terms cancel,

x0 = U +����√
−1 V + U −����√

−1 V = 2U ,

which is guaranteed to come out to a ‘clean’ number.
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Real, Imaginary, Complex

To avoid using terms like ‘clean’ numbers, it is gen-
erally meant that numbers containing no factors of√
−1 are called real. Any real number multiplied by√
−1 is imaginary number. The sum of a real number

and an imaginary number is a complex number.

Imaginary Component

Synonyms for the ‘real part’ and ‘imaginary’ part of
a complex number, respectively are the components
of the number.

The present task is to solve for the previously-
defined components U , V in terms of the coefficients
b, c. Do this by raising each of side of the above to
the third power to find

c
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availing the connection:
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(
3U2 − V 2

)
Pursing Bombelli’s method, we end up with a pair

of two equations with two unknowns (neither contain√
−1). Faced with this, Bombelli had a second wild

thought: perhaps U and V need to be positive inte-
gers (we won’t dwell much on this detail). Solving
for U , V completes the recipe for cooking the first
solution x0.

With x0 in hand, the term x−x0 can be factored
out of the depressed cubic equation, yielding the form

x3 + bx− c = (x− x0)

(
x2 + x0x+

c

x0

)
.

Since the remaining term is quadratic in x, there are
at most two more solutions x1,2 to the equation that
can be found with the quadratic formula on:

x2 + x0x+
c

x0
= 0

Worked Example

Putting these ideas to work, suppose we need to find
all solutions to

x3 − 30x− 36 = 0 .

Identifying b = −30 and c = 36, the del Ferro-
Tartaglia formula tells us

x0 =
3

√
18 +

√
−1 26 +

3

√
18−

√
−1 26 .

By Bombelli’s reasoning, we seek integer solutions to
U , V such that

18 = U
(
U2 − 3V 2

)
26 = V

(
3U2 − V 2

)
.

The prime factorization of 18 is 2× 3× 3, suggesting
that U = 3, and thus V = 1. Suddenly we’ve got a
solution:

x0 = 2U = 6

This is quite a remarkable achievement, since by writ-
ing

3

√
18 +

√
−1 26 +

3

√
18−

√
−1 26 = 6 ,

we see undeniably that, regardless of how one may
feel about

√
−1, it is useful for problem solving.

Problem 1

With x0 = 6 as a known solution to

x3 − 30x− 36 = 0 ,

show that the other two solutions are

x1 = 3 +
√
3

x2 = 3−
√
3 .

2 Complex Numbers

2.1 Definition

Complex Numbers

Formally, let the complex number z exist as as an
ordered pair of two (real) numbers called components
a, b such that

z = (a, b) . (1.1)

Complex Conjugate

For every complex number z, there exists the complex
conjugate, also a complex number, denoted z or z∗,
by flipping the sign on b:

z = z∗ = (a,−b) . (1.2)
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Relationship to Real Numbers

A subtlety worth highlighting is that the complex
number z = (a, 0) is the same as the scalar z = a:

(a, 0) ↔ a (1.3)

Problem 1
Check that the complex conjugate of the complex

conjugate recovers the complex number:

z = z (1.4)

2.2 Complex Arithmetic

Scalar Multiplication

Complex numbers can be ‘scaled’ by real numbers
called scalars:

λz = (λa, λb) (1.5)

Complex Addition

For two complex numbers z1 = (a1, b1), z2 = (a1, b1),
their sum is

z1 + z2 = (a1 + a2, b1 + b2) . (1.6)

Complex Multiplication

For two complex numbers z1 = (a1, b1), z2 = (a1, b1),
their product is simultaneously defined by a commu-
tation relation and a conjugate relation:

z1 · z2 = z2 · z1 (1.7)

z1 · z2 = z1 · z2 (1.8)

Conspicuously absent from the list of axioms is
an explicit formula for complex multiplication. For
completeness, the formula for complex multiplication
reads

z1 · z2 = (a1a2 − b1b2, a1b2 + a2b1) , (1.9)

but this is does not need to be axiomatic unless you’re
in a hurry. Instead, we’ll soon derive Equation (1.9)
from the equations preceding it.

2.3 Properties of Addition

Isolating Complex Components

Given a complex number z = (a, b) and its complex
conjugate z = (a,−b), take their sum and difference,
respectively, to write a pair of relations that ‘solve
for’ a, b:

(a, 0) =
z + z

2
(1.10)

(0, b) =
z − z

2
(1.11)

Note that a and b in isolation are each real numbers.
As they appear in z = (a, b), a is the so-called ‘real
part’, and b is the ‘imaginary part’.

Commutation and Conjugation

Two relationships readily verifiable from the axioms
are the respective commutation and conjugation re-
lations for addition:

z1 + z2 = z2 + z1 (1.12)

z1 + z2 = z1 + z2 (1.13)

Problem 2

Verify Equations (1.12) and (1.13) using any of
the axioms.

2.4 Properties of Multiplication

Finally we encounter the first piece of hard work,
which is to derive the formula for complex multipli-
cation. Most texts simply take (1.9) as an axiom to
avoid a slightly dry derivation, and you are welcome
to do so now as well.

Derivation

As a starting point, propose the product z1 · z2 to
result in a new complex number comprised of every
order-two combination of a1,2, b1,2

z1 · z2 = (a1, b1) · (a2, b2) = (q, r) ,

where

q = α a1a2 + β a1b2 + γ a2b1 + δ b1b2

r = α̃ a1a2 + β̃ a1b2 + γ̃ a2b1 + δ̃ b1b2 ,

and each Greek index α, β, etc. (eight in total) re-
solves to 1, 0, or −1. We shall nail these down in
several steps:

Impose the conjugation relation (1.8), causing all
b-terms to flip sign. The q-term must remain the
same under this change, but the r-term must flip sign.
This can only hold if

α̃ = β = γ = δ̃ = 0 ,

so we now have:

q = α a1a2 + δ b1b2

r = β̃ a1b2 + γ̃ a2b1 ,
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Impose the commutation relation (1.7), causing
all 1- and 2-subscripts to swap. The q-equation re-
mains unchanged, but the r equation demands

β̃ = γ̃ ̸= 0 .

Swap all a- and b-symbols. Doing so should com-
pletely change the results, however the r-equation is
invariant with respect to the swap. It follows that α
and δ in the q-equation must disagree in sign:

α = −δ ̸= 0

Boiling everything down:

q = α (a1a2 − b1b2)

r = β̃ (a1b2 + a2b1)

Let b2 = 0. The corresponding product becomes

z1 · z2 =
(
α a1a2, β̃ a2b1

)
= a2

(
α a1, β̃ b1

)
,

which looks much like the scalar multiplication λz1
with λ = a2. For the sake of keeping complex multi-
plication consistent with scalar multiplication, let us
finally set

α = β̃ = 1 ,

finishing the derivation.

Associative Property

Complex numbers zj = (aj , bj) with j = 1, 2, 3 obey
the associative property

(z1 · z2) · z3 = z1 · (z2 · z3) , (1.14)

shown by brute force:

(z1 · z2) · z3 = (a1a2 − b1b2, a1b2 + b1a2) · (a3, b3)
= (a1a2a3 − b1b2a3 − a1b2b3 − b1a2b3,

a1a2b3 − b1b2b3 + a1b2a3 + b1a2a3)

= (a1 (a2a3 − b2b3)− b1 (b2a3 + a2b3) ,

a1 (a2b3 + b2a3) + b1 (b2b3 − a2a3))

= (a1, b1) · (a2a3 − b2b3, a2b2 + b2a3)

= z1 · (z2 · z3)

Distributive Property

Complex numbers zj = (aj , bj) with j = 1, 2, 3 also
obey the distributive property :

z1 · (z2 + z3) = (z1 · z2) + (z2 · z3) , (1.15)

also shown by brute force:

z1 · (z2 + z3) = (a1, b1) · (a2 + a3, b2 + b3)

= (a1a2 + a1a3 − b1b2 − b1b3,

a1b2 + a1b3 + a2b1 + a3b1)

= (a1a2 − b1b2, a1b2 + a2b1)+

(a1a3 − b1b3, a1b3 + a3b1)

= (z1 · z2) + (z1 · z3)

2.5 Complex Magnitude

The quantity
|z| =

√
z · z (1.16)

is called the magnitude of z, and is always a non-
negative real number:

|z| =
√
z · z =

√
(a, b) · (a,−b)

=
√

(a2 + b2, 0) =
√
a2 + b2

This result foreshadows some kind of geometric in-
terpretation of complex numbers in the sense that |z|
is the hypotenuse of a right triangle with sides a, b.

2.6 Complex Division

The last standard arithmetic operation is complex di-
vision, which seems inoperable at face value:

d =
z1
z2

=
(a1, b1)

(a2, b2)

To make a useful complex number from this, multiply
the top and bottom by z2:

d =
(a1, b1)

(a2, b2)

(a2,−b2)

(a2,−b2)
=

z1 · z2
|z2|2

(1.17)

Explicitly, the above means:

d =
1

a22 + b22
(a1a2 + b1b2,−a1b2 + a2b1) (1.18)

Problem 3
Prove that the complex division operation obeys

its own conjugate relation:

z1/z2 = z1/z2 (1.19)

2.7 Generalized Complex Arithmetic

If we seek to write a tighter set of axioms, one could
start with the general equations

z1 ⋆ z2 = z2 ⋆ z1

z1 ⋆ z2 = z1 ⋆ z2
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for a generalized operator ⋆. As we’ve seen, the multi-
plication operator results from seeking all order-two
combinations of a1,2, b1,2. By the same token, the
addition operator results from seeking all order-one
combinations of a1,2, b1,2.

Problem 4
Derive the addition operation (1.6) using only

Equations (1.12) and (1.13).

2.8 Imaginary Unit

Having established the notion of complex multiplica-
tion, now consider the product:

(0, 1) · (0, 1) = (0− 1 · 1, 0) = −1

The left side has two instances of (0, 1), which ought
to mean: √

(0, 1) · (0, 1) = (0, 1)

Suddenly though, without ever asking, we have an
answer for the meaning of

√
−1. Apply the square

root operation across the whole equation to find

(0, 1) =
√
−1 ,

known as the imaginary unit. Often, the fundamental
unit is denoted as i, meaning

i2 = −1 .

Problem 5
Let z1 be any complex number. Find all other

complex numbers z2 that satisfy z1 · z2 = 0.

Problem 6
Let z1 be any complex number. Find all other

complex numbers z2 that satisfy z1 · z2 = z1.

3 Complex Plane

3.1 Complex Numbers as Operators

For a complex number z = (a, b), consider the ‘iden-
tity’ statement

(1, 0) · (a, b) = (a, b) . (1.20)

Equation (1.20) is the ‘least invasive’ operation in
which z1 can particpate, which is to merely multiply
by one.

Seeking a corresponding identity for (0, 1), we
find, by complex multiplication,

(0, 1) · (a, b) = (−b, a) . (1.21)

The ‘operator’ (0, 1) swaps a with b and introduces
a negative sign as shown. This amounts to another
hint that the real and imaginary components of z are
somehow ‘orthogonal’, meaning there could be some
geometric interpretation of complex numbers.

Going on this hunch, let us think of (1, 0) and
(0, 1) as ‘basis vectors’, and write a linear combina-
tion with two undetermined coefficients α, β:

α (1, 0) + β (0, 1) = (α, 0) + (0, β) = (α, β)

Almost obviously, such an operation is nothing more
than a complex number (α, β). Trying this ‘operator’
on a different complex number z = (a, b), we simply
have

(α, β) · (a, b) = (αa− βb, αb+ βa) , (1.22)

or more concisely,

(α, β) · z = z′ = (a′, b′) .

3.2 Rotation Operator

Let us find an operator (just a complex number)
zϕ = (αϕ, βϕ) that acts on z = (a, b) such that
the components change but the magnitude does not.
From Equation (1.22), we write

|z′| =
√
(a′)

2
+ (b′)

2

=

√
(αϕ a− βϕ b)

2
+ (βϕ a+ αϕ b)

2
,

simplifying nicely to

|z′| = |z|
√
α2
ϕ + β2

ϕ . (1.23)

In the special case that zϕ has α2
ϕ + β2

ϕ = 1, then
zϕ qualifies as a rotation operator. The locus of αϕ,
βϕ describes a ‘complex unit circle’, begging the pa-
rameterization

αϕ = cos (ϕ) (1.24)

βϕ = sin (ϕ) , (1.25)

where ϕ is a real continuous parameter. As a sanity
check, one can see that ϕ = 0, ϕ = π/2 correspond to
the respective operators (1, 0), (0, 1). Let us therefore
take the complex rotation operator to be the complex
number

zϕ = (cos (ϕ) , sin (ϕ)) . (1.26)
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3.3 Radius and Phase

The rotation operator allows us to interpret complex
numbers in a curious way. Given the real number r,
any complex number z with magnitude

|z| = r (1.27)

is the product

z = rzϕ = (r cos (ϕ) , r sin (ϕ)) = (a, b) . (1.28)

Borrowing terminology from polar coordinates, the
magnitude of a complex number is equivalent to the
radius, and the angle parameter is called the phase.
In terms of these, the components of a complex num-
ber read

a = r cos (ϕ) (1.29)

b = r sin (ϕ) , (1.30)

easily inverted:

r = |z| =
√
a2 + b2 (1.31)

ϕ = arctan

(
b

a

)
(1.32)

As a matter of terminology, recall that the a- and
b- components of z are the real and imaginary parts,
i.e.

a = Re (z)

b = Im (z) .

The phase angle ϕ is often denoted Arg (z), or ‘argu-
ment of z’. All together, an equivalent statement of
(1.32) reads

Arg (z) = arctan

(
Im (z)

Re (z)

)
. (1.33)

3.4 Real and Imaginary Axes

The r, ϕ interpretation of complex numbers leads to
an almost-identical mathematical apparatus needed
for plane polar coordinates. Complex numbers oc-
cupy a space that is analogous to the Cartesian xy-
plane, except the x-axis is replaced by the real axis,
and the y-axis is replaced by the imaginary axis. In
this connection we speak freely of the complex plane:

−2 −1 1 2 3 4 5

−1

1

2

3

4

z = (a, b)

Re(z)

Im(z)

Any ‘location’ on the Im (z) = 0 line is a purely
real number z = (a, 0) = a, whereas anywhere on the
Re (z) = 0 is a purely imaginary number z = (0, b).
Any off-axis location is a complex number z = (a, b).

3.5 Number as Location

Thinking for a moment about classical arithmetic,
it’s convenient to represent any real number, such as
x = 2, on a number line:

−3 −2 −1 0 1 2 3

Any operation performed on x, such as multiply-
ing by three, can be represented as a spatial displace-
ment on the line:

0 2 4 6 8

In fact, all of the ‘well-behaved’ operations that
one could possibly perform on x will land somewhere
on the number line.

The first hint that the number line is some-
how incomplete arises when we ask, much like the
renaissance-era mathematicians asked, ‘what hap-
pens when we take the square root of a negative num-
ber?’ While this issue was a sign for most to turn
around, recall that Bombelli, in a moment of ‘wild
thought’ had the idea to separate the real component
from the imaginary component. He understood that
numbers like

x2 = −9

x =
√
−9 =

√
−1×

√
9 = 3

√
−1

must be represented off of the number line, even with-
out foreknowledge of the complex plane. Since we do
know about the the complex plane though, the core
of Bombelli’s insight can now be visualized without
ambiguity:
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−10 −8 −6 −4 −2 2 4

−i2

−i1

i1

i2

i3

i4

R

I

3.6 Complex Numbers and Vectors

Since there is much talk of two-component objects
and their relationship to a plane, it’s worthwhile to
ask how closely complex numbers resemble vectors.
Begin this inquiry by considering two complex num-
bers z1, z2, and solve (1.29)-(1.30) for the respective
trigonometry terms:

cos (ϕ1) =
a1
|z1|

sin (ϕ1) =
b1
|z1|

cos (ϕ2) =
a2
|z2|

sin (ϕ2) =
b2
|z2|

Multiply the cos-terms and the sin-terms respectively

cos (ϕ1) cos (ϕ2) =
a1a2

|z1| |z2|

sin (ϕ1) sin (ϕ2) =
b1b2

|z1| |z2|
,

and combine the results:

cos (ϕ1 − ϕ2) =
a1a2 + b1b2
|z1| |z2|

(1.34)

Had z1 and z2 been vectors z1 and z2, the quan-
tity a1a2 + b1b2 stands out as the dot product z1 · z2.
Evidently, we have

z1 · z2 = |z1| |z2| cos (ϕ1 − ϕ2) . (1.35)

Note that the quantity a1a2+b1b2 can be written yet
another way, namely

a1a2 + b1b2 =
1

2
(z1 · z2 + z1 · z2) , (1.36)

allowing a tight relationship to be written:

z1 · z2 =
1

2
(z1 · z2 + z1 · z2) (1.37)

Problem 1
Write equations analogous to (1.34), (1.35), and

(1.36) to derive the cross product analog to (1.37):

z1 × z2 =
1

2
(z1 · z2 − z1 · z2) (1.38)

Problem 2
Derive:

z1 · z2 = (z1 · z2, z1 × z2) (1.39)

Problem 3
Using vectors as an analogy, derive the triangle

inequality for complex numbers:

||z1| − || z2| ≤ |z1 + z2| ≤ |z1|+ |z2| (1.40)

3.7 Embedded Complex Numbers

As a matter of curiosity, one may wonder if it makes
sense to work with ‘embedded complex numbers’ such
as

((a, b) , c) (a, (b, c)) .

In the same way that equation (1.3) permits the as-
sociation (a, 0) ↔ a, let us extend this by writing

((a, b) , 0) ↔ (a, b) .

Using the above, we find, for the first case:

((a, b) , c) = ((a, b) , 0) + (0, c)

= (a, b) + (0, c)

= (a, b+ c)

Evidently, the ‘embedded’ complex number ((a, b) , c)
flattens down to the ‘ordinary’ complex number
(a, b+ c). Let’s work out the second case in similar
fashion:

(a, (b, c)) = (a, 0) + (0, (b, c))

= (a, 0) + (0, 1) · ((b, c) , 0)
= (a, 0) + (0, 1) · (b, c)
= (a, 0) + (−c, b)

= (a− c, b)

Once again, the embedded complex number flattens
down to a (different) ordinary complex number. For
this reason, it follows that any embedding can be flat-
tened to an ordinary complex number, and the whole
notion is essentially redundant.
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4 Euler’s Formula

Now we derive the most important equation in all of
complex analysis, called Euler’s formula.

4.1 Repeated Rotations

To kick things off, recall how the complex rotation op-
erator (1.26) acts on any complex number z = (a, b)
to produce a new complex number z′ such that

z′ = (cos (ϕ) , sin (ϕ)) · z ,

where the parameter ϕ is an arbitrary real number.
Next, suppose that ϕ is the sum of two arbitrary

angles θ1, θ2, and the above becomes

z′ = (cos (θ1 + θ2) , sin (θ1 + θ2)) · z ,

simplifying nicely to

z′ = (cos (θ1) , sin (θ1)) · (cos (θ2) , sin (θ2)) · z .

Evidently, the effective rotation operator represent-
ing ϕ becomes the product of two rotation operators
representing θ1, θ2.

Generalizing this pattern, suppose instead that ϕ
is the sum of n copies of the same angle θ such that

ϕ = θ1 + θ2 + θ3 + · · · = nθ ,

so a rotation can be written

z′ =

(
cos

(
ϕ

n

)
, sin

(
ϕ

n

))n

· z .

(Don’t let the presence of an exponent throw you off
- this is just shorthand for n− 1 complex multiplica-
tions of the same number.)

Summarizing our progress so far, the rotation op-
erator can be interpreted as a repetition of small ro-
tations:

(cos (ϕ) , sin (ϕ)) =

(
cos

(
ϕ

n

)
, sin

(
ϕ

n

))n

(1.41)

4.2 Infinite Rotations

Given the re-interpred rotation operator (1.41), the
inevitable question is, what happens when n is ex-
tremely large, or perhaps infinitely large? Looking at
the cos- and sin-terms, we’re left to evaluate

cos (ϕ/n)

sin (ϕ/n)

as the argument ϕ/n goes to zero. Borrowing from
‘elementary’ trigonometry and precalculus though,
the relations

lim
n→∞

cos

(
ϕ

n

)
= 1 (1.42)

lim
n→∞

sin

(
ϕ

n

)
=

ϕ

n
(1.43)

apply, letting us write

lim
n→∞

(
cos

(
ϕ

n

)
, sin

(
ϕ

n

))n

= lim
n→∞

(
1,

ϕ

n

)n

.

Summarizing again, we now see that the rotation op-
erator is an infinite repetition of small rotations:

(cos (ϕ) , sin (ϕ)) = lim
n→∞

(
1,

ϕ

n

)n

(1.44)

4.3 Invoking Euler’s Constant

Looking again at the complex number (1, ϕ/n), split
the components via(

1,
ϕ

n

)
= (1, 0) +

(
0,

ϕ

n

)
.

First, note that (1, 0) is equivalent to 1, so the com-
plex notation can be dropped from the first term.
Next, factor n−1 from the second term, and we have(

1,
ϕ

n

)
= 1 +

1

n
(0, ϕ) .

Plugging this back into (1.44) gives

(cos (ϕ) , sin (ϕ)) = lim
n→∞

(
1 +

1

n
(0, ϕ)

)n

. (1.45)

The right-side of the above should remind us of an-
other notion from precalculus, namely Euler’s con-
stant, defined as:

e = lim
n→∞

(
1 +

1

n

)n

,

or in more useful form,

ex = lim
n→∞

(
1 +

x

n

)n
for any real number x.
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4.4 Euler’s Formula

Euler reasoned that the formula for ex could be mod-
ified (it’s his formula, after all) to receive complex
arguments:

ez = lim
n→∞

(
1 +

z

n

)n
If this is the case, the right side of (1.45) can be writ-
ten as en exponential

lim
n→∞

(
1 +

1

n
(0, ϕ)

)n

= e(0,ϕ) ,

which is amazing, because it means the left side of
(1.45) is an exponential! Putting these results to-
gether, we write

(cos (ϕ) , sin (ϕ)) = e(0,ϕ) , (1.46)

hailed as Euler’s formula. At face value, Euler’s for-
mula is an economical way to write the rotation op-
erator.

It’s worth pausing to write Euler’s formula in
terms of the so-called imaginary unit, which is to as-
sociate

(0, 1) =
√
−1 = i ,

thus the above becomes:

cos (ϕ) + i sin (ϕ) = eiϕ

Setting ϕ = π reveals a remarkable connection be-
tween key players of mathematics:

0 = 1 + eiπ

4.5 Polar Form of Complex Numbers

Let us revisit the radius-and-phase construction of a
complex number. For a complex number z = (a, b),
recall that equations (1.29)-(1.32)

a = r cos (ϕ)

b = r sin (ϕ)

r = |z| =
√
a2 + b2

ϕ = arctan (b/a)

allow us to understand z as a rotation of the real
number r ‘up into’ the complex plane by an angle ϕ:

z = (a, b) = r (cos (ϕ) , sin (ϕ))

With Euler’s formula in hand, we may replace the
trigonometry terms via (1.46), and arrive at the most
elegant expression of a complex number in terms of
radius and phase, the so-called polar form:

z = r e(0,ϕ) (1.47)

Problem 1
Show that:

cos (n arccos (x)) =

n/2∑
k=0

(
n

2k

)
xn−2k

(
x2 − 1

)k
Hint: Let x = cos (θ) and arrive at

cos (nθ) = Re ((cos (θ) + i sin (θ))
n
) .

4.6 Multiplication and Division

Given the polar form (1.47) of complex numbers, the
multiplication formula (1.9) and the division formula
(1.18) can be revised. For two complex numbers
z1 (r1, ϕ1), z2 (r2, ϕ2), we have

z1 · z2 = r1r2 e
(0,ϕ1+ϕ2)

= r1r2 (cos (ϕ1 + ϕ2) , sin (ϕ1 + ϕ2)) (1.48)

for multiplication, and for division:

z1
z2

=
r1
r2

e(0,ϕ1−ϕ2)

=
r1
r2

(cos (ϕ1 − ϕ2) , sin (ϕ1 − ϕ2)) (1.49)

Problem 2
Derive (1.48) and (1.49).

4.7 Trigonometric Functions

Euler’s formula lends to a curious representation of
the standard trigonometric functions. Start with
(1.46) and let ϕ → −ϕ to write

(cos (ϕ) ,− sin (ϕ)) = e(0,−ϕ) ,

and then add both equations (also divide by two) to
isolate the cosine:

(cos (ϕ) , 0) =
1

2

(
e(0,ϕ) + e(0,−ϕ)

)
(1.50)

An analogous procedure isolates the sine:

(0, sin (ϕ)) =
1

2

(
e(0,ϕ) − e(0,−ϕ)

)
(1.51)

Recalling that the complex rotation operator can
be written

zϕ = (cos (ϕ) , sin (ϕ)) ,

note that the above can expressed more tightly in
accordance with (1.10)-(1.11):

(cos (ϕ) , 0) =
zϕ + zϕ

2

(0, sin (ϕ)) =
zϕ − zϕ

2
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4.8 Hyperbolic Functions

Continuing the discussion of trigonometric functions,
isolate the real number ϕ and apply the operator
(0, 1), resulting in (0, ϕ) without question. Next take
the complex number (0, ϕ) and apply the same oper-
ator to find

(0, 1) · (0, ϕ) = −ϕ .

The reason we do this is to start with Euler’s for-
mula (1.46), and multiply each instance of ϕ by the
complex number (0, 1), giving

(cos ((0, ϕ)) , sin ((0, ϕ))) = e−ϕ .

A similar set of steps leads to a version with −ϕ → ϕ,
or

(cos ((0, ϕ)) ,− sin ((0, ϕ))) = eϕ .

Notice the quantity on the right is a real number,
which must mean

(0, sin ((0, ϕ))) = (0, 1) · sin ((0, ϕ))

is also real, thus sin ((0, ϕ)) by itself is imaginary.
The above can be written:

cos ((0, ϕ)) + (0, 1) · sin ((0, ϕ)) = e−ϕ

cos ((0, ϕ))− (0, 1) · sin ((0, ϕ)) = eϕ

Take the sum, and the sin-term cancels, allowing
cos ((0, ϕ)) to be isolated:

cos ((0, ϕ)) =
1

2

(
eϕ + e−ϕ

)
Similarly, take the difference and the cos-term van-
ishes:

− (0, 1) · sin ((0, ϕ)) = 1

2

(
eϕ − e−ϕ

)
It turns out that these ‘complex trigonometry’

terms above have special names, the hyperbolic co-
sine and hyperbolic sine, respectively:

cosh (ϕ) = cos ((0, ϕ)) =
1

2

(
eϕ + e−ϕ

)
(1.52)

sinh (ϕ) = − (0, 1) · sin ((0, ϕ)) = 1

2

(
eϕ − e−ϕ

)
(1.53)

5 Roots and Branches

5.1 Complex Natural Logarithm

Start again with Euler’s polar form (1.47)

z = r e(0,ϕ) ,

and let us dissect this equation apart along a new
seam. Recall that one way to adjust the ‘position’ of
a point in the complex plane is to change the phase
ϕ, but nothing special happens if the phase wanders
outside of [0 : 2π). Euler’s formula has this fact built-
in, as

e(0,ϕ±2πn) = (cos (ϕ± 2πn) , sin (ϕ± 2πn))

= (cos (ϕ) , sin (ϕ))

= e(0,ϕ)

holds for any integer n.
Now things get interesting. The presence of e in

(1.47) beckons trying the natural logarithm ( ln ) on
both sides, resulting in:

ln (z) = ln (r) + (0, ϕ) (1.54)

Unlike e(0,ϕ), the complex natural logarithm does not
‘reset’ at 2π. The phase term (0, ϕ) in (1.54) is not
modified by a trigonometry function, thus ϕ keeps
accumulating value across [0 : 2π). The complex nat-
ural logarithm is unique for every phase.

5.2 Complex Square Root

Consider the square root of z (r, ϕ), which by Euler’s
formula reads

z1/2 =
(
r e(0,ϕ)

)1/2
= r1/2 e(0,ϕ/2) . (1.55)

The square root always seems to cause trouble in
mathematics, and the complex square root is no ex-
ception. Examine two representations of the same
point in the complex plane, for instance (r, ϕ) and
(r, ϕ+ 2π).

Calculating z1/2 for each case gives√
z (r, ϕ) =

√
r e(0,ϕ/2)√

z (r, ϕ+ 2π) = −
√
r e(0,ϕ/2) ,

and we see the phase causes an abrupt sign flip. By
convention, the positive solution is called the princi-
pal root.

5.3 Complex nth Root

Consider the so-called nth root problem

zn = a (1.56)

for integer n, and complex numbers z and a. The
question is, which value(s) of z make this statement
true? The answer is made easy with Euler’s formula
(1.47), where we recast each variable as

z = |z| e(0,ϕ)

a = |a| e(0,θ+2πm) .
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To proceed most generally, a phase factor of 2πm
is slipped into the phase of a, knowing full well this
doesn’t actually change its value, where m is any pos-
itive or negative integer. Rewriting (1.56) gives

|z|n e(0,nϕ) = |a| e(0,θ+2πm) .

Then, the radial and angular components on each side
are equal:

|z|n = |a|
nϕ = θ + 2πm

Solving the above for |z|, ϕ, we have

|z| = |a|1/n (1.57)

ϕ =
θ

n
+

2πm

n
, (1.58)

where

m = 0, 1, 2, . . . , (n− 1) .

Note that in order to stay on one branch, the inte-
ger m is restricted to produce unique solutions for ϕ.
The principal root is in general defined as the solution
with the greatest real component.

5.4 Complex Exponent

The same multi-value problem that arises with the
complex logarithm and complex roots applies to com-
plex exponents. Consider two complex numbers z =
(a, b), w = (c, d). Starting with the polar expression
z = |z| e(0,ϕ), the complex exponent zw calculation is
slightly nontrivial:

zw =
(
|z| e(0,ϕ)

)(c,d)
= eln|z|(c,d) e(−dϕ,0) e(0,cϕ)

zw = exp (c ln |z| − dϕ, d ln |z|+ cϕ) (1.59)

6 Complex Functions

The complex exponential (1.47), complex natural log-
arithm (1.54), along with complex roots and expo-
nents all qualify as complex functions, usually de-
noted w (z) for complex numbers z (x, y). In the
general case, a complex function produces a complex
number

w (z) = (u (x, y) , v (x, y)) , (1.60)

having respective components u (x, y), v (x, y), each
a real function.

6.1 Notion of Inverse

If a given function w (z) can be inverted into an equa-
tion for z (w), then we have

z (w) = (f (u, v) , g (u, v)) . (1.61)

The functions f (u, v), g (u, v) contain all of the gritty
details of actually inverting w.

6.2 Branch Cuts

The peculiar behavior of the complex natural loga-
rithm (1.54) and the complex square root (1.55) sug-
gest that care must be taken when ‘stepping across’
the boundary 0 ↔ 2πn.

In general, discontinuity in w (z) arises anywhere
in the complex plane that involves a sudden an abrupt
jump in phase. Such ‘fault lines’ are curves called
branch cuts.

Complex Natural Logarithm

For the natural logarithm, we choose the branch on
the line ϕ = ±π (not 2π, by convention).

The very small ‘wedge’ centering on ϕ = ±π is
where the phase of ln (z) jumps abruptly, i.e. the
branch cut.

Complex Square Root

The square root function (1.55) has two branches,
characterized by ±Im (

√
z), separated by the branch

cut (−∞, 0). Choosing the positive branch allows us

to unambiguously associate
√
a2 with +a, the princi-

pal root.

6.3 Riemann Surface

The multi-valued nature of certain complex func-
tions cannot be completely represented in a two-
dimensional plot on the complex plane. To deal with
functions exhibiting branching behavior, a third di-
mension representing the phase of w (z) is required.

With the notion of z (w) = (f, g) on hand, gen-
erating three-dimensional plots called Riemann sur-
faces is a standard exercise in plotting. The parame-
ters f , g become analogous to x and y in a standard
plot, and the off-plane direction is often associated
with Im (w), but only by convention. It can be just
as informative to plot Re (w) in the third dimension.
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Im (z) = 0
Re (z) = 0

−2π

ϕ = 0

2π

Figure 1.1: Complex natural logarithm ln (z) = ln (r) + (0, ϕ).

Complex Natural Logarithm

To visualize the complex natural logarithm, start
with w (z) = ln (z), esaily inverted:

z (w) = ew = e(u,v) = (eu cos (v) , eu sin (v))

In this case, it makes sense to choose a polar param-
eterization with r = eu:

X (r, v) = r cos (v)

Y (r, v) = r sin (v)

Z (r, v) = ln (r) + v

The ‘plot variables’ are uppercase symbols X, Y , Z.
Plotting this system with (r > 0, v ∈ [−3π : 3π])

leads to Fig. 1.1. For constant r, the complex loga-
rithm traces out a helix for varying ϕ. The family of
all helices made this way comprise a ‘ramp’ spiraling
around the origin as shown in Fig. 1.1. The resulting
Riemann surface is most generally called a manifold.

It’s also possible to choose just one branch for
two-dimensional plotting. For the complex natural
logarithm, this amounts to cutting the ‘middle’ sheet
from the stack in Fig. 1.1, and flatting it down onto
the complex plane as shown in Figure 1.2. (Color
may vary.)

The bold-shaded lines indicate integer r, ϕ, re-
spectively. Specifically, the circle corresponds to
r = 1 (with r = 2 outside of the plot), and the
straight spokes correspond to

ϕ = 0, 1, 2, 3,−3,−2,−1 ,

listing counterclockwise from ϕ = 0.

Figure 1.2: Complex logarithm on the branch
(−π : π].

Complex Square Root

The Riemann surface recipe also applies to plotting
the square root function w (z) = z1/2. Seeking a form
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Im (z) = 0
Re (z) = 0

−2

Im (
√
z) = 0

2

Figure 1.3: Complex square root z1/2.

like (1.61), we easily write

z (w) = w2 = (u, v) · (u, v) =
(
u2 − v2, 2uv

)
.

Turning this into a three-dimensional system, we
write

X (u, v) = u2 − v2

Y (u, v) = 2uv

Z (u, v) = u ,

while treating u, v as parameters. Plotting this sys-
tem near (u = 0, v = 0) leads to Fig. 1.3. The phase
of z1/2 abruptly jumps at the branch cut ϕ = ±π.

Choosing the principal root and plotting the
square root in the complex plane leads to Figure 1.4.
The bold-shaded lines correspond to positive integer
outputs of z1/2. Below the line Re (z) = 0, the sign
on Im (z) flips, but Re (z) remains positive.

This is quickly tested by letting let n = 2 to find
|z| =

√
|a|, and ϕ0 = θ/2, ϕ1 = θ/2 + π, correspond-

ing to two complex solutions

z0 =
√
|a| e(0,θ/2)

z1 = −
√
|a| e(0,θ/2) .

Figure 1.4: Complex square root on the branch
(−π : π].
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