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1 Introduction

In 1937, Lothar Collatz pointed out a pattern that
has been bugging mathematicians and hobbyists ever
since. Start with any integer n > 1. If n is even,
change n to n/2. If n is odd, change n to 3n+1. Re-
peat this until n changes to 1. The so-called Collatz
conjecture states that any integer n > 1 will eventu-
ally reduce down to 1. So far so good, but where’s
the proof?

Any acceptable proof the Collatz conjecture has
remained elusive to the most accomplished mathe-
maticians. This problem, while gaining a slew of
nicknames along the way, namely (but not limited
to) the 3n + 1 problem, the hailstone sequence, the
hailstone numbers, and the wondrous numbers, has

nonetheless been been ‘proved’ by a number of opti-
mists. We will make no attempt to wrap our heads
around the any proofs here, or to debunk any crack-
pot analysis. Rather, the plan is to further deepen
the mystery by involving complex numbers.

1.1 Collatz Function

The Collatz conjecture can be contained in a rather
ugly equation:

f (x) =

{
x/2 x even

3x+ 1 x odd
(1)

Note that there is no ‘escape condition’ for equation
(1), thus the infinite cycle 1− 4− 2− 1− 4− 2− · · ·
awaits any integer that satisfies the conjecture. A
more utilitarian version of the above would contain
a way to escape from such a cycle when x = 1 first
occurs.

1.2 Continuous Collatz Function

In order to study the Collatz conjecture on the com-
plex plane, it makes sense to generalize f (x) into a
new function c (z) that is (i) smooth and differen-
tiable, and (ii) reducible to f (x) for real integers. In
the most general case then, we can write

c (z) =
(z
2

)
geven (z) + (3z + 1) godd (z) , (2)

where the functions geven (z), godd (z) obey:

geven (z) =

{
1 z even

0 z odd

godd (z) =

{
0 z even

1 z odd
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Common literature1 on the subject suggests try-
ing

geven (z) = cos2
(πz

2

)
godd (z) = sin2

(πz
2

)
,

and inserting these into equation (2) gives, after sim-
plifying,

c (z) =
7z + 2

4
− 5z + 2

4
cos (πz) . (3)

One can easily check that equation (3) satisfies equa-
tion (2) by checking a few real integers. Moreover,
c1 (z) is a smooth and differentiable function, which
translates to ‘much more appealing to mathemati-
cians than f (x)’.

It is instructive to go through a second derivation
of equation (3) by choosing2 geven (z), godd (z) such
that

geven (z) =
(−1)

z
+ 1

2

godd (z) = − (−1)
z − 1

2
.

As required, one function ‘turns off’ as the other
‘turns on’ for any given real integer z. For non inte-
ger z, the above become complex numbers, and may
be reconciled via Euler’s formula

(−1)
z
= eiπz = cos (πz) + i sin (πz) .

We see the term cos (πz) does the heavy lifting, as
the imaginary term sin (πz) is precisely zero for real
integer z and can be omitted.

The provisional formula for c (z) so far reads

c (z) =
z

2

(
cos (πz) + 1

2

)
+ (3z + 1)

(
1− cos (πz)

2

)
,

and simplifying this leads to equation (3). Interest-
ingly, note that either g-function can be raised to
an integer power without overstaying its welcome in
c (z). For integers qe, qo, this means

c (z) =
z

2

(
cos (πz) + 1

2

)qe

+ (4)

(3z + 1)

(
1− cos (πz)

2

)q0

is another valid Collatz function.

1.3 Time Analysis

Convergence Time

If we take a real integer z and recursively apply
z → c (z), the number of iterations required to reach
z = 1 is the convergence time of z. For instance,
starting with z = 3 we would have the sequence
3 − 10 − 5 − 16 − 8 − 4 − 2 − 1, having convergence
time t = 7. The special case z = 1 has convergence
time t = 0. Certain numbers, especially odd integers,
can have unexpectedly long convergence times. One
example is z = 27, requiring t = 111 iterations to
converge.

Following are the convergence times of the first
forty positive integers (increasing left to right):

0 1 7 2 5
8 16 3 19 6
14 9 9 17 17
4 12 20 20 7
7 15 15 10 23
10 111 18 18 18
106 5 26 13 13
21 21 21 34 8

Escape Time

While it seems that all integers probably satisfy the
Collatz conjecture, we still need to account for what
happens when z is a decimal, a complex number, or
something else that fails to satisfy the conjecture. It
will turn out that most of the complex plane must be
treated this way, and the converging cases are more
rare than common.

When either (i) the magnitude of z exceeds some
hard-coded maximum, or (ii) the number of iterations
exceeds a cutoff number, then z has reached an es-
cape time. In the former case, z is striding toward
infinity, and the escape time indicates ‘how quickly’
this occurs. In the latter case, z is wandering around
the complex plane with no apparent destiny. These
are considered to converge infinitely slowly.

2 Collatz Set

The Collatz set is comprised of numbers z0 in the
complex plane that reach a convergence time in a fi-
nite number of z → c (z) applications, where c (z) is
the continuous Collatz function (2) or a generaliza-
tion thereof. Points characterized by an escape time
are outside of the set.

1‘Collatz conjecture’. Wikipedia. December 22 2022.
https://en.wikipedia.org/wiki/Collatz/conjecture

2Xander. ‘The Collatz Fractal’. Rhapsody in Numbers. January 12 2012.
https://yozh.org/2012/01/12/the_collatz_fractal/
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2.1 Discrete Plot

Plotting Set Members

For visualizing the Collatz set, we can start by assign-
ing a distinct value - namely color - to each conver-
gence time. Any complex numbers z0 that converge
in the same number t steps get the same color, and
different numbers z′ with different convergence times
t′ get a different color, and so on. While the partic-
ular choice of colors does not quite matter, it helps
to have a diversity of shades with noticeable contrast
between boundaries.

Going right to some results, Figure 1 shows a heat
map of convergence times over the complex plane
centered at x = 15. On the positive real axis are
the (randomly chosen) shades assigned to the con-
vergence time for the integer at that position.

Plotting Set Non-Members

To represent points outside the Collatz set, we choose
a two-color gradient to indicate escape time. In-
puts that escape slower than others are shaded black,
whereas points that jump right of the picture are
white-shifted toward beige. Figure 1 shows such a
gradient hugging the real axis. Note that the verti-
cal stripe (white) in the Figure corresponds to inputs
z = (1, y), and these inputs automatically satisfy the
Collatz conjecture without iteration. The origin is
centered one notch leftward of the vertical stripe.

The last category corresponds to complex inputs
that fail to converge and diverge, eventually exceed-
ing the cutoff number. These are assigned a flat color
(green). As you may imagine, the negative integers
fit this description.

2.2 Continuous Plot

With an idea of how the Collatz set appears for in-
tegers, now we construct the set over the continuous
complex plane. Shown in Figure 2 is the continuous
analog to Figure 1, and some stark differences are vis-
ible. Most notably (i) the integers with a convergence
time seem to be gone, (ii) the gradient has a ‘spiky’
appearance, undoubtedly due to the cosine term in
c (z), and (iii) inputs near the origin seemingly don’t
converge.

3 Collatz Fractal

The barely-visible boundary separating members of
the Collatz set from non-members is called the Col-
latz fractal. Shown in Figure 3 shows a detailed view
of the Collatz fractal generated using equation (3)

near the origin. Note that the subtle vertical line at
x = 1 is not magnified by zooming in - this line has
zero thickness and renders as one pixel at best.

3.1 Self Similarity

Part of the definition of ‘fractal’ is the property of
self-similarity, which means a piece of the set re-
flects the whole set. This means, for instance, that
we can center near any ‘green blob’ and magnify,
and the resulting image should contain elements from
Figure 3. The Collatz fractal surely demonstrates
this, as shown in Figures 4, 5. The former Figure,
zoomed in at the point z = (2.01, 0.368), shows a
near-ninety degree rotation base fractal. Choosing
another point on which to center and zoom, particu-
larly z = (2.04, 0.415), we produce the latter Figure,
containing a varied view of the base fractal.

Figure 4: Self-similarity of the Collatz set. Centered
at (2.01, 0.368). (Zoom: 32)

Figure 5: Self-similarity of the Collatz set. Centered
at (2.04, 0.415). (Zoom: 256)
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Figure 1: Collatz set over complex integer inputs. Vertical stripe corresponds to x = 1. (Center: z = 15,
Zoom: 0.125)

Figure 2: Collatz set over complex continuous inputs. Vertical stripe corresponds to x = 1. (Center: z = 15,
Zoom: 0.125)

Figure 3: Collatz set over complex continuous inputs centered on z = 0 in a window of width ≈ 5. The
boundary of the green regions is the Collatz fractal. (Zoom: 1)
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4 Collatz Gems

The positive integers, which are the testing ammu-
nition for the Collatz conjecture on the real line,
bear minuscule representation in Collatz fractal as
depicted in Figure 3. The integers are surely in the
set, but are the integers represented by infinitesimal
points now? The answer is a resounding ‘no’, and we
must zoom in a bit to appreciate what happens on
and near the integers.

4.1 Anatomy of a Gem

Shown in Figures 6, 7 are two images of the Col-
latz ‘gem’ (a word we’ll keep) located at z = 1. The
boundary of the gem is part of the Collatz fractal, and
the interior is colored according to the convergence
time of the point tested. Note the subtle presence of
the infinitesimal line z = (1, y) streaking down the
center of each image. Outside of the gem is an infini-
tude of self-similarity of the fractal, as evident by the
green speckles scattered about.

From what we know of the discrete Collatz set,
the integer z = 1 should be associated with the same
shade of orange that occupies the vertical stripe in
Figure 1. In the Collatz gem, we have to magnify
profoundly to verify this as shown in Figures 8, 9.
Many narrow bands of color are passed on the way
there.

Figure 6: Collatz gem at z = 1. (Zoom: 128)

Figure 7: Collatz gem at z = 1. (Zoom: 1024)

Figure 8: Collatz gem at z = 1. (Zoom: 4194304)

Figure 9: Collatz gem at z = 1. (Zoom: 536870912)

4.2 Collatz Gems z > 1

Collatz gems occur at (seemingly) all integer posi-
tions z > 1, and can be studied in similar fashion to
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the z = 1 case. The color of the gem varies through-
out its shape, but the shade pinpointed on the exact
integer always corresponds to the discrete case. A
gem’s interior shading near the boundaries accentu-
ates the Collatz fractal occurring there. Interestingly
too, the gem is never (or rarely) centered on the in-
teger value itself. Figures 10-15 survey the Collatz
gems from z = 2 to z = 7.

Figure 10: Collatz gem at z = 2. (Zoom: 32)

Figure 11: Collatz gem at z = 3. (Zoom: 512)

Figure 12: Collatz gem at z = 4. (Zoom: 32)

Figure 13: Collatz gem at z = 5. (Zoom: 256)

Figure 14: Collatz gem at z = 6. (Zoom: 128)
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Figure 15: Collatz gem at z = 7. (Zoom: 1024)

4.3 Pathological Gem z = 27

The number 27 is arguably the most quirky input
one can send to the Collatz function. As mentioned,
it takes 111 iterations to finally converge, begging the
question of whether the Collatz gem at z = 27 tells
a related story. Recursing on values near c (27) and
looking up the corresponding gem, we get the rather
uninteresting shape shown in Figure 16. It is of uni-
form shade with index 111 corresponding to the con-
vergence time. The boundary is still a Collatz fractal,
but the overall appearance is unlike other gems.

Let us chase the progression of 27 through the
Collatz pipeline, i.e. c (27) = 82, and then c (82) =
41, etc., and view the corresponding gems. For the
82-case we produce Figure 17. The shading is again
flat and few features are discernible. This pattern
continues to the next integer in the sequence, i.e. 41,
as shown in Figure 18.

Going the other direction, we can check power-of-
two multiples of 27 and see the same ‘flat color’ effect.
For instance, trying z = 27×25 = 864 leads to Figure
16, and the interior gem shading is still flat. Finally
when we try z = 27 × 210 = 27648 and magnify like
crazy, we see the alternating color bands in a typical
Collatz gem shown in Figure 21. The view had to be
centered slightly off-integer to capture the image.

Figure 16: Collatz gem at z = 27. (Zoom: 4096)

Figure 17: Collatz gem at z = 82. (Zoom: 1024)

Figure 18: Collatz gem at z = 41. (Zoom: 4096)
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Figure 19: Collatz gem at z = 864. (Zoom: 2048)

Figure 20: Collatz gem at z = 27648. (Zoom:
131072)

Figure 21: Collatz gem at z = 27648. (Zoom:
2097152, Off-centered)

4.4 Non-Integer Members

The Collatz set, and any gem that helps fill it, is not
limited to the postitive real axis. We find interesting
structure at decimal z and at negative points on the
real axis as shown in Figures 22, 23. We see another
Collatz gem in the former case, as evident by the
alternating bands of color representing convergence
time. In the ladder case we find with a clover-like
glyph, yet another face of the Collatz fractal.

Figure 22: Collatz gem. Center: z = (0.61082, 0).
(Zoom: 256)

Figure 23: Collatz set. Center: z ≈ (−1.2656, 0).
(Zoom: 8192)

4.5 Further Study

All views of the Collatz fractal shown above, along
with all embeded gems, have been generated using
equation (3), an order-one generalization of equation
(4). The study could be repeated using equation (4)
using any set of integers qe, qo, which will undoubt-
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edly have some bearing on the appearnce of the frac-
tal and it’s gems.

Shown in Figures 24, 25 are simplified views of
the familiar ‘order-one’ Collatz fractal, followed by a
pure order-two representation. The qualitative views
are different in each, and the gem at z = 2 is visible
in the latter case.

Figure 24: Simplified view of order-one Collatz frac-
tal.

Figure 25: Simplified view of order-two Collatz frac-
tal.
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