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Chapter 1

Central Forces

1 Planetary Motion

Early Progress

The ‘modern’ understanding of planetary motion ar-
guably began with Johannes Kepler (1571 - 1630),
whose career predates the invention of calculus and
Newton’s laws of motion by decades. Already famil-
iar with the Heliocentric model of the solar system,
Kepler studied meticulously-recorded charts of night
sky measurements recorded by Tycho Brahe (1546 -
1601).

Paying attention to the positions of observable
planets in the night sky, Kepler astonishingly figured
out that planetary orbits were elliptical in shape with
the sun at a focus. This became known as Kepler’s
first law, which survives to this day among two other
laws written by Kepler.

Aware of Kepler’s first law, Newton proposed the
existence of a law of mutual Earth-sun attraction that
gives rise to elliptical planetary orbits. In the modern
vector notation, he began with something like

F⃗ = F (r) r̂ ,

and the quest was to find whatever F (r) is.
Using the calculus of his own invention, Newton

found the answer to be a unified force depending on
the masses involved and the inverse square of the dis-
tance separating them. We know this as Newton’s
law of universal gravitation.

The plan here is to develop the equations of plan-
etary motion using a similar approach, at least in
spirit, to Newton.

Shell Theorem

One assumption we’ll make early on, which happens
to be true, and will be proven with triple integration,
is any object can be considered as a point mass located

at the object’s center of mass. For instance, if we need
to calculate the gravitational attraction between two
asteroids, the shape of each does not matter. Only
the center-to-center distance and the mass of each
body is important.

Newton’s Second Law

The one-dimensional version of Newton’s second law

m
d2

dt2
x (t) = − d

dx
U (x)

generalizes to more dimensions where the force and
acceleration become vectors:

m
d2r⃗

dt2
= m

dv⃗

dt
= ma⃗ = F⃗

I avoided saying exactly how −dU/dx becomes F⃗ .
Note that in one dimension,

F = −dU
dx

is true by definition, but the three dimensional ver-
sion of this requires a vector derivative operator. The
exact details aren’t needed in order to proceed.

Newton’s Third Law

The classic phrase, for every action, there is an equal
an opposite reaction, is Newton’s third law. It means
that the force from object 1 onto object 2 is exactly
opposite of the force from object 2 onto object 1. This
is concisely stated via vectors:

F⃗12 = −F⃗21

1.1 Two-Body Problem

Consider two bodies in space, one of mass m1 at po-
sition r⃗1 (t), and the other of mass m2 at position
r⃗2 (t). The force imposed onto body 1 by body 2 is
given by

m1
d2

dt2
r⃗1 (t) = m1

d

dt
v⃗1 (t) = F⃗12 ,

and the force imposed onto particle 2 by particle 1 is
given by

m2
d2

dt2
r⃗2 (t) = m2

d

dt
v⃗2 (t) = F⃗21 .

This setup is called the two-body problem.
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4 CHAPTER 1. CENTRAL FORCES

Center of Mass

In the two-body system, the center of mass is defined
as a point in space R⃗ (t) such that

R⃗ (t) =
m1r⃗1 (t) +m2r⃗2 (t)

m1 +m2
.

The time derivative of the center of mass gives a
quantity called the center of velocity :

V⃗ (t) =
d

dt
R⃗ (t) =

m1v⃗1 (t) +m2v⃗2 (t)

m1 +m2
.

Taking the time derivative of the center of velocity
gives something interesting:

d2

dt2
R⃗ (t) =

m1 (dv⃗1 (t) /dt) +m2 (dv⃗2 (t) /dt)

m1 +m2

=
F⃗12 + F⃗21

m1 +m2
=
F⃗12 − F⃗12

m1 +m2
= 0

Evidently, the second derivative of the center of
mass is precisely zero because F⃗12 = −F⃗21, regardless
of how the forces act. This means that two bodies,
while free to move individually, are not accelerating
anywhere as a group. Moreover, this result proves
that the center of velocity V⃗ is a constant V⃗0.

Relative Displacement

If the distance separating the two bodies is r, define
a vector

r⃗ (t) = r⃗1 (t)− r⃗2 (t)

with |r⃗| = r, capturing the relative displacement be-
tween the two.

Listing this with the center of mass R⃗ (t), we have
a system of two equations that can be solved for r⃗1 (t),
r⃗2 (t) separately: (We know everything is a function
of t by now, so drop the extra notation.)

r⃗1 = R⃗+
m2

m1 +m2
r⃗

r⃗2 = R⃗− m1

m1 +m2
r⃗

Reduced Mass

From the equations above, multiply through by m1,
m2, respectively, and take two time derivatives:

m1
d2r⃗1
dt2

= m1
�
�
�d2R⃗

dt2
+

m1m2

m1 +m2

d2r⃗

dt2

m2
d2r⃗2
dt2

= m2
�
�
�d2R⃗

dt2
− m1m2

m1 +m2

d2r⃗

dt2

These results say the same thing, as the left sides are
F⃗12, F⃗21, respectively, and the right sides differ by
the proper negative sign.

Evidently, we have

F⃗12 =
m1m2

m1 +m2

d2r⃗

dt2
.

That is, there is only one force equation to worry
about, and thus one position to worry about if we
work with the relative displacement vector r⃗ rather
than two explicit position vectors r⃗1,2.

The price we pay is the mass term became a mess.
This group of symbols is called the reduced mass:

m∗ =
m1m2

m1 +m2

Representing the effective mass of the total system
as m∗, the two-body problem is summarized in one
equation:

F⃗12 = m∗
d2r⃗

dt2
= m∗a⃗

A handy identity involving the reduced mass,
somewhat reminiscent of resistors in parallel, goes as:

1

m∗
=

1

m1
+

1

m2

Linear Momentum

The linear momentum p⃗ = m∗v⃗ is not constant in the
two-body system. To see this, take a derivative and
simplify using Newton’s third law:

dp⃗

dt
= m∗

(
dv⃗1
dt

− dv⃗2
dt

)
= m∗

(
F⃗12

m1
− F⃗21

m2

)
dp⃗

dt
= F⃗12

1.2 Angular Momentum

Alongside the notion of forces, we’ll need to put the
ideas of angular momentum to use. In particular, we
can show that the angular momentum of the two-
body system is constant, and find what it is.

By definition, the angular momentum L⃗ of the
two-body system reads

L⃗ = m∗r⃗ × v⃗ ,

where r⃗ is the relative displacement vector, and v⃗ is
its time derivative. Now calculate the time derivative
of L⃗:

d

dt
L⃗ = m∗

d

dt
(r⃗ × v⃗)

= m∗

(
v⃗ × v⃗ + r⃗ × dv⃗

dt

)
= r⃗ × F⃗
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For the remaining cross product to vanish, we go
back to Newton’s original assumption that

F⃗ = F (r) r̂ ,

which means the force vector and the displacement
vector are parallel. Using this, we see that the deriva-
tive of L⃗ resolves to zero.

Without knowing the exact motion of the two-
body system, we can still write a formula for the an-
gular momentum. For some r (t), θ (t), we have, in
polar coordinates:

r⃗ = r r̂

v⃗ =
dr

dt
r̂ + r

dθ

dt
θ̂

Remembering r̂ × r̂ is zero, we then have

L⃗ = m∗r
2 dθ

dt

(
r̂ × θ̂

)
.

The angular momentum is a constant vector that
points perpendicular to the plane of motion. We take
its magnitude

L = m∗r
2 dθ

dt

as a constant of motion in the two-body system.
It’s easy to show that the position vector and the

angular momentum vector are always perpendicular.
Starting with the definition of L⃗, project r⃗ into both
sides:

r⃗ · L⃗ = m∗r⃗ · (r⃗ × v⃗) ,

and then make use of the triple product:

r⃗ · L⃗ = m∗v⃗ · (r⃗ × r⃗) = 0

1.3 Inverse-Square Acceleration

We’ve made it this far without knowing the mag-
nitude gravitational force F (r), although we have
harmlessly assumed that gravity acts in a straight
line. Here we will derive the proper gravitational
force by using Kepler’s first law as a starting point.

In detail, Kepler noticed that the orbit of any
planet around the sun takes an elliptical form de-
scribed by

r (θ) =
r0

1 + e cos (θ)
,

where e is the eccentricity of the orbit, and r0 is a
positive characteristic length. Notice that r (θ) as
written places the origin (the sun) at the right focus
of the ellipse. Reverse the sign on the cosine term for
the sun at the left focus.

To really get started, take the time derivative of
the (constant) angular momentum of the two-body
system:

0 =
dL

dt
= m∗r

(
2
dr

dt

dθ

dt
+ r

d2θ

dt2

)
Perhaps you recognize the parenthesized term as be-
ing identically the θ̂-component of the acceleration
vector in polar coordinates. In terms of L, the accel-
eration vector is

a⃗ =

(
d2r

dt2
− L2

m2
∗r

3

)
r̂ +

1

m∗r�
�
��

(
dL

dt

)
θ̂ .

We need the polar form of the ellipse to calculate
d2r/dt2. For this, we find, after simplifying,

dr

dt
=
dθ

dt

d

dθ

(
r0

1 + e cos (θ)

)
=

L

m∗r0
e sin (θ) ,

and keep going to the second derivative:

d2r

dt2
=

L2

m2
∗r

2r0
e cos (θ) =

L2

m2
∗r

2

(
1

r
− 1

r0

)
The full acceleration vector then reads

a⃗ =
L2

m2
∗r

2

(
�
��1

r
− 1

r0
−

�
��1

r

)
r̂ ,

which simplifies nicely:

a⃗ =
−L2

m2
∗r0

r̂

r2

This finally reveals the nature of F (r). The r-
dependence is present as −1/r2, hence the name
inverse-square acceleration.

Going back to the equations that led to the re-
duced mass, i.e.

m1
d2r⃗1
dt2

= m∗
d2r⃗

dt2

m2
d2r⃗2
dt2

= −m∗
d2r⃗

dt2
,

we can solve for the absolute acceleration of each
body:

a⃗1 =
m∗

m1
a⃗

a⃗2 =
−m∗

m2
a⃗

Eliminate a⃗ between the two equations to recover
Newton’s third law:

m1 a⃗1 +m2 a⃗2 = 0
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1.4 Universal Gravitation

Enough ground work has been done to push toward
Newton’s universal law of gravitation.

Recall the absolute acceleration of each body a⃗1,
a⃗2, and replace the reduced massm∗ and acceleration
a⃗ with expanded forms:

a⃗1 =

(
m2

m1 +m2

)
−L2

m2
∗r0

r̂

r2

a⃗2 =

(
−m1

m1 +m2

)
−L2

m2
∗r0

r̂

r2

Multiply each equation through by m1, m2, re-
spectively to turn accelerations into forces:

F⃗12 =

(
m1m2

m1 +m2

)
−L2

m2
∗r0

r̂

r2

F⃗21 =

(
−m1m2

m1 +m2

)
−L2

m2
∗r0

r̂

r2

Newton decided to introduce a new proportion-
ality constant G, named after ‘gravity’, to wrangle
all of the constants inherent to the two-body, system
such that

G =

(
1

m1 +m2

)
L2

m2
∗r0

.

Of course, both force equations are saying the
same thing due to Newton’s third law, thus we write
Newton’s law of universal gravitation:

F⃗12 = −G m1m2

r2
r̂

Note that the force vector bears the 12-subscript and
not the other way around. The subscript is often
omitted because the unit vector r̂ has an implied 12-
subscript that goes back to the definition of r⃗.

While this calculation was set up in the context
of planetary motion, note that the gravitational force
is in fact universal, which is to say that every pair of
particles in the universe obeys the same law.

Problem 1
Show that

G =
L2

m∗m1m2r0
.

1.5 Equations of Motion

With the law of universal gravitation on hand, we
should be able to run the analysis in reverse by start-
ing with F⃗12 and finishing with the shape of the el-
lipse, along with all other allowed possibilities.

Acceleration

Use

L = m∗r
2 dθ

dt

to eliminate 1/r2 in the force vector:

F⃗12 = −Gm1m2
m∗

L

dθ

dt
r̂

Also replace F⃗12 to keep simplifying

m1 a⃗1 = m∗ a⃗ = −Gm1m2
m∗

L

dθ

dt
r̂ ,

and solve for the relative acceleration:

a⃗ = −Gm1m2

L

dθ

dt
r̂

Velocity

To proceed, replace the acceleration vector as the
derivative of the relative velocity by a⃗ = dv⃗/dt. Also

replace r̂ via −r̂ = dθ̂/dθ to get

dv⃗

dt
= G

m1m2

L

dθ

dt

dθ̂

dθ
,

simplifying with the chain rule to:

dv⃗ = G
m1m2

L
dθ̂

Integrate both sides of the above to get a vector
equation for the velocity

v⃗ (t) = G
m1m2

L
θ̂ (t) + v⃗0 ,

where v⃗0 is the integration constant. Letting θ = 0
correspond with the positive x-axis, it must be that
v⃗0 = v0 ŷ.

Position

To goal is get hold of a position equation r (θ). To get
closer, calculate the full angular momentum vector:

L⃗ = m∗r⃗ × v⃗

= m∗r⃗ ×
(
G
m1m2

L
θ̂ + v0 ŷ

)
= m∗G

m1m2

L
r
(
r̂ × θ̂

)
+m∗v0r (r̂ × ŷ)

To handle the cross products, note that∣∣∣r̂ × θ̂
∣∣∣ = 1

|r̂ × ŷ| = |cos (θ)| ,
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and we can work with just magnitudes:

L = m∗G
m1m2

L
r +m∗v0r cos (θ)

To simplify, use

G =
L2

m∗m1m2r0
,

and work to isolate r, arriving at

r0 = r
(
1 + r0

m∗v0
L

cos (θ)
)
,

and finally get

r (θ) =
r0

1 + (m∗r0v0/L) cos (θ)
.

With r (θ) known, the position vector is straight-
forwardly written:

r⃗ = r (θ) r̂

Eccentricity

Comparing the above to the general form of a conic
section in polar coordinates, we pick out the eccen-
tricity to be

e =
m∗r0v0
L

.

Circular orbits arise from the special case v0 = 0. An-
other special case is e = 1 for a parabolic trajectory.
For all e < 1, the orbit is strictly an ellipse. For e > 1,
the path (also technically an orbit) is hyperbolic.

This surely nails the case shut for Kepler’s first
law. All results reinforce the fact that planetary or-
bits occur on ellipses with the sun at a focus.

The eccentricity can be expressed by a variety of
combinations of terms. For a version without L, one
can find

e =

√
r0 v0√

G (m1 +m2)
,

or, if you need to get rid of r0:

e =
v0L

Gm1m2

In terms of the eccentricity, the equations of mo-
tion can be simplified. For the position, we simply
have

r (θ) =
r0

1 + e cos (θ)
.

For the velocity and acceleration, shuffle the con-
stants around to establish

Gm1m2

L
=
v0
e
,

which is only defined for non-circular orbits. With
this, we have:

v⃗ = v0

(
θ̂

e
+ ŷ

)

a⃗ =
−v0
e

dθ

dt
r̂

1.6 Runge-Lorenz Vector

The two-body problem exhibits conservation of an-
gular momentum via the constant vector L⃗. There
is, in fact, another constant vector of motion lurking
about called the Runge-Lorenz vector

Z⃗ = v⃗ × L⃗−Gm1m2 r̂ .

Constant of Motion

Take a time derivative to prove Z⃗ is constant:

d

dt
Z⃗ =

d

dt

(
v⃗ × L⃗

)
−Gm1m2

dr̂

dt

=
dv⃗

dt
× L⃗+ v⃗ ×

�
�
�dL⃗

dt
−Gm1m2

dr̂

dt

Keep simplifying with

dv⃗

dt
=

1

m∗
F⃗ = −Gm1m2

m∗r2
r̂ ,

and also with L⃗ = m∗r⃗ × v⃗, so we have

d

dt
Z⃗ = Gm1m2

(
− r̂ × (r⃗ × v⃗)

r2
− dr̂

dt

)
.

Replace v⃗ with its polar expression and note that

r⃗ × v⃗ = r⃗ ×
(
dr

dt
r̂ + r

dθ

dt
θ̂

)
= r2

dθ

dt

(
r̂ × θ̂

)
,

and furthermore, using the BAC-CAB formula:

r̂ × (r⃗ × v⃗) = r2
dθ

dt
r̂ ×

(
r̂ × θ̂

)
= −r2 dθ

dt
θ̂

Summarizing, we find

d

dt
Z⃗ = Gm1m2

(
dθ

dt
θ̂ − dr̂

dt

)
= 0

as proposed.
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Perigee

With Z⃗ known to be constant, we’re free to evaluate
it at any point along the trajectory. Choose a point
r⃗p = rp x̂ that has v⃗p · r⃗p = 0, called a perigee:

Z⃗ = v⃗p × L⃗−Gm1m2 x̂

= v⃗p × (m∗rp x̂× v⃗p)−Gm1m2 x̂

=
(
m∗rpv

2
p −Gm1m2

)
x̂

At the perigee, the velocity vp is momentarily
equal to rp dθ/dt, which we’ll call

vp = rp ωp .

In the same notation, the angular momentum is

L = m∗r
2
pωp = m∗rpvp ,

and the vector Z⃗ becomes

Z⃗ =

(
L2

m∗rp
−Gm1m2

)
x̂ .

We can keep simplifying. Replace L2 with the
expression involving G:

Z⃗ = Gm1m2

(
r0
rp

− 1

)
x̂ .

The ratio r0/rp can be calculated by setting θ = 0 in
the polar equation r (θ) for a conic section:

rp =
r0

1 + (r0m∗v0/L)
=

r0
1 + e

Finally, the simplest form for Z⃗ is:

Z⃗ = Gm1m2 e x̂

What Z⃗ tells us, apart from containing all infor-
mation about the trajectory, is that all gravitational
trajectories contain at least one perigee, defining the
x-axis of the coordinate system about which the mo-
tion is symmetric.

Apogee

The perigee is also known as the nearest distance at-
tained between the two bodies. For an elliptical orbit
or hyperbolic orbit, the perigee is given by θ = 0:

rperigee =
r0

1 + e

For elliptical orbits, there is also the notion of
apogee, which is the furthest distance attained be-
tween the two bodies. Set θ = π to find

rapogee =
r0

1− e

Problem 2
Take derivatives of

r (θ) =
r0

1 + e cos (θ)

to verify the locations of the perigee and apogee.

Problem 3
Show that:

e =

∣∣∣∣rp − ra
rp + ra

∣∣∣∣
Conic Trajectory

The Runge-Lorenz vector

Z⃗ = v⃗ × L⃗−Gm1m2 r̂ ,

together with its particular expression

Z⃗ = Gm1m2 e x̂

can be used together to quickly recover the polar
equation for conic sections by projecting the position
vector across the equation and simplifying:

r⃗ · Z⃗ = r⃗ ·
(
v⃗ × L⃗

)
−Gm1m2 r⃗ · r̂

rZ cos (θ) = L⃗ · (r⃗ × v⃗)−Gm1m2r

Gm1m2re cos (θ) =
L2

m∗
−Gm1m2r

Now solve for r (θ) and simplify more:

r (θ) =

(
L2

Gm1m2m∗

)
1

1 + e cos (θ)

=
r0

1 + e cos (θ)

Relation to Ellipse

An ellipse is classified by two perpendicular lengths
we know as the semi-major and semi-minor axes, de-
noted a, b, respectively. By studying the ellipse, it’s
straightforward to show that

a =
r0

1− e2
,

along with

b =
r0√
1− e2

,

so that
b

a
=
√
1− e2

and

r0 =
b2

a
.
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The a-equation can be derived by taking the dif-
ference between r (0) and r (π), i.e. the distance be-
tween the perigee and apogee. This pair of points
defines the distance 2a.

The b-equation can be derived by finding r∗, θ∗
that correspond to y = b, the highest point on the
ellipse:

0 =
d

dθ
(y (θ)) =

d

dθ
(r (θ) sin (θ))

∣∣∣∣
r∗,θ∗

=

(
r0 e sin

2 (θ)

(1 + e cos (θ))
2 +

r0 cos (θ)

1 + e cos (θ)

)∣∣∣∣
r∗,θ∗

=
r2∗
r0

(e+ cos (θ∗))

Evidently, we have

cos (θ∗) = −e .

Taking this with

b = r∗ sin (θ∗)

r∗ =
√
e2a2 + b2

is enough to finish the job. Note that similar rela-
tionships can be drawn for hyperbolic orbits.

Problem 4

Show that r⃗ · v⃗ = 0 is true only at the apogee and
perigee.

Dimensionless Runge-Lorenz

The Runge-Lorenz vector can be made into a dimen-
sionless vector ϵ⃗ by dividing Gm1m2 across the whole
equation

ϵ⃗ =
v⃗ × L⃗

Gm1m2
− r̂ ,

where by the properties of Z⃗, we also know

ϵ⃗ = e x̂ .

With this setup, write

r̂ + e x̂ =
v⃗ × L⃗

Gm1m2
,

and then project r⃗ into each side to recover the equa-
tion of a conic section:

r (1 + e cos (θ)) =
r⃗ ·
(
v⃗ × L⃗

)
Gm1m2

= r0

1.7 Kepler’s Laws

We spent a good effort developing the nature of grav-
itational orbits, and it would be difficult to imag-
ine doing this without all of the modern advantages,
particularly calculus and vectors. Somehow, Kepler
was able to find enough pattern in sixteenth-century
astronomical data to work out three correct laws of
planetary motion. The data itself was recorded by as-
tronomer Tycho Brahe over a span of at least thirty
years.

Law of Ellipses (1609)

The orbit of each planet is an ellipse, with the sun at
a focus.

This law we know very well by now, as did New-
ton. For the sun at the right focus (reverse the sign
for the left focus), a planetary orbit looks like

r (t) =
r0

1 + e cos (θ (t))
,

where e is the eccentricity.

Law of Equal Areas (1609)

A line drawn between the sun and the planet sweeps
out equal areas in equal times.

This is an amazing thing to notice from looking at
charts of numbers. It turns out that this law is actu-
ally stating the conservation of angular momentum,
although Kepler wouldn’t have known so.

To derive the law in familiar language, recall the
setup for the area integral in polar coordinates, par-
ticularly

A =
1

2

∫ θ1

θ0

r2 dθ .

In differential form, this same notion reads

dA =
1

2
r2dθ .

Or, by the chain rule, we can also write

dA

dt
=

1

2
r2
dθ

dt
.

Notice, though, that r2dθ/dt is also present in the
angular momentum

L = m∗r
2 dθ

dt
,

which can only mean

dA

dt
=

L

2m∗
,
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thus dA/dt is constant. This is the literal mathemat-
ical statement of ‘equal areas swept in equal times’.

Problem 5
For a body moving on a path r = f (θ) obeying

Kepler’s second law, show that the acceleration is:

a⃗ =
L2

m∗r3

(
f ′′ (θ)

f (θ)
− 2

(
f ′ (θ)

f (θ)

)2

− 1

)
r̂

Harmonic Law (1618)

The square of the period of a planet is directly pro-
portional to the cube of the semi-major axis of the
orbit.

Years after his first two discoveries, Kepler dis-
cerned yet another relationship for linking the time
scale of the orbit to its length scale. While Kepler
only knew of the proportionality between the period
T and the semi-major axis a, we can do better by
finding the associated constant.

Integrate the area equation for a full period of the
orbit:

A =
1

2

∫ 2π

0

r2 dθ =
L

2m∗

∫ T

0

dt =
L

2m∗
T

The area is simply πab, so we find

T = πab
2m∗

L
.

Replace b using b = a
√
1− e2, and eliminate L

using

G =
L2

m∗m1m2r0
.

To deal with the r0 term, recall a = r0/
(
1− e2

)
and

reason that

T =
2πa3/2√

G (m1 +m2)
.

1.8 Energy Considerations

With some fine details of planetary motion finished,
it’s worth pointing out that the notion of ‘energy’
was not used at all. To develop some of this now,
recall that in one dimension, the force relates to the
potential energy by

F = − d

dx
U (x) .

Planetary motion, on the other hand, requires
three dimensions to express the force, or two dimen-
sions if we already know the plane of the motion. This
is why the force is a vector:

F⃗ = −Gm1m2

r2
r̂

Notice, though, that the force is dependent on one
spacial quantity, the length, which to say the force is
effectively one-dimensional.

Gravitational Potential Energy

Since the gravitational force acts in strictly the radial
direction, it stands to reason that the gravitational
potential energy U (r) relates to the force by:

F⃗ (r⃗) = − d

dr
(U (r)) r̂

This is just like the one-dimensional Newton’s law
F = −dU/dx, except the force is a vector, balanced
by r̂ on the right.

To solve for U (r), project r̂ into both sides of the
above to get

Gm1m2

r2
=

d

dr
(U (r)) ,

solved by:

U (r) = −Gm1m2

r
This is the total gravitational potential energy stored
between the two masses m1, m2.

For a more formal definition, turn Newton’s sec-
ond law into a definite integral in the variable dr⃗ to
get ∫ r1

r0

F⃗ (r) · dr⃗ = −
∫ r1

r0

d

dr
U (r) r̂ · dr⃗ ,

where the integral on the right is redundant to the
derivative, leaving U (r) evaluated at the endpoints:∫ r1

r0

F⃗ (r) · dr⃗ = − (U (r1)− U (r0))

Set r0 to infinity to recover the previous form.

Kinetic Energy

Containing two objects in total, the kinetic energy
energy T of the two-body system is

T =
1

2
m1v

2
1 +

1

2
m2v

2
2 .

What we need, however, is to express the kinetic en-
ergy in terms of the relative velocity

v⃗ = v⃗1 − v⃗2 .

Working out the algebra for this is left as an exercise,
but the effort results in

T =
1

2
m∗v

2 +
1

2
(m1 +m2)V

2
0 ,

where V0 is the (constant) center of velocity of the
whole system. It’s harmless to set this term to zero.
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Conservation of Energy

The total energy of the two-body system is the sum
of the kinetic and the potential contributions:

E = T + U =
1

2
m∗v

2 − Gm1m2

r

As it turns out, the energy of the system is constant.
To prove this, begin with Newton’s second law

F⃗ = −Gm1m2

r2
r̂ ,

and project the velocity vector into each side:

v⃗ · F⃗ = −Gm1m2

r2
(v⃗ · r̂)

Replace F⃗ on the left and v⃗ on the right

m∗

(
v⃗ · dv⃗

dt

)
= −Gm1m2

r2

(
dr

dt
r̂ + r

dθ

dt
θ̂

)
· r̂ ,

which simplifies to

1

2
m∗

d

dt
(v⃗ · v⃗) = −Gm1m2

r2
dr

dt
.

(Note we didn’t really need the polar expression for
the velocity. The r-component of the velocity is al-
ways dr/dt.) The right side can be undone with the
chain rule:

d

dt

(
1

2
m∗v

2

)
=

d

dt

(
Gm1m2

r

)
Finally, we have found

d

dt
(T + U) = 0 ,

as expected.

Apocalypse Problem

Problem 6
If a planet were suddenly stopped in its orbit, sup-

posed circular, show that it would fall into the sun in
a time which is

√
2/8 times the period of the planet’s

revolution.
Answer: Begin with the total energy of the system

−Gm1m2

a
=

1

2
m∗

(
dr

dt

)2

− Gm1m2

r (t)
,

where a is the radius of the orbit. Solve for dr/dt to
get

dr

dt
=

√
2G (m1 +m2)

a

√
a

r
− 1 ,

which can be separated into two equal integrals:∫ 0

a

dr√
a/r − 1

=

√
2G (m1 +m2)

a

∫ t∗

0

dt ,

where t∗ is the answer we’re after.
To solve the r-integral, choose the peculiar sub-

stitution

r = a cos2 (θ)

dr = −2a cos (θ) sin (θ) dθ ,

and the above reduces to

2a

∫ π

π/2

cos2 (θ) dθ = t∗

√
2G (m1 +m2)

a
.

The remaining θ-integral resolves to π/4. Solving
for t∗ gives

t∗ =

√
2

8

(
2πa3/2√

G (m1 +m2)

)
=

√
2

8
T ,

as stated. This is about 0.1768 years, or just over two
months, supposing there are twelve months per year
on that planet.

Inverse Cube Attraction

Problem 7
A particle released from rest a distance D from

the origin is attracted by the force

F = −mk
2

x3
.

Show that the time required to fall to the origin is
D2/k. Hint:

v =
dx

dt
= k

√
1

x2
− 1

D2

1.9 Solid Sphere

We’ve taken on assumption (correctly) the shell the-
orem, which says a gravitational body with finite size
can be treated as a point located at its center of mass.

With the shell theorem, we can calculate the grav-
itational force inside a uniform sphere of mass M
and radius R at any distance r < R from the center.
A uniform sphere has the same density throughout,
which we’ll call λ:

λ =
M

4πR3/3
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Force Inside Solid Sphere

At a distance r < R from the center, according to
the theorem, all of the sphere’s mass that is located
further from the center than r can be ignored. Only
the sphere’s mass obeying r < R contributes to the
force at distance r. This portion is called the enclosed
mass. The enclosed mass is written m (r), given by

m (r) = λ
4

3
πr3 .

If the test particle has mass m0, the magnitude of
the force on the test particle is

F (r) = −Gm0m (r)

r2
= −Gm0Mr

R3
.

Due to the r3 factor that enters the numerator, the
usual r−2 factor is replaced by r. The gravitational
force inside a sphere grows linearly with distance un-
til r = R.

As a vector, the force inside the solid sphere reads

F⃗ (r) = −Gm0M

R3
r⃗ .

Energy Inside Solid Sphere

The gravitational potential energy inside a solid
sphere is not U ∝ −1/r. To find the proper answer,
first define

lim
r→∞

U (r) = 0

which assumes there is no energy when infinitely far
from the solid sphere, assumed centered at the origin.

Starting from infinity, let a test particle of mass
m0 approach the solid sphere, eventually penetrat-
ing the its surface, stopping at r1. The energy spent
during approach is broken into two integrals:

U (r1) = −
∫ R

∞
F⃗out · dr⃗ −

∫ r1

R

F⃗in · dr⃗ ,

where F⃗out, F⃗int are the forces felt by m0 outside and
inside the sphere, respectively.

Carrying out the integrals and simplifying, one
finds

U (r1) =
Gm0M

2

(
r21 − 3R2

R3

)
.

Note that the special point r1 = R corresponds to be-
ing on the sphere’s surface, and the potential energy
takes a familiar form

U (R) = −Gm0M

R
.

Self Energy

The self energy of a solid object is the energy required
to assemble the object from parts initially at infinity.
Since the gravitational force is attractive, we can ex-
pect the self energy due to gravity to be negative.

Demonstrating on a uniform solid sphere of radius
R and mas M , write

dU = −Gm
r
dm ,

where dU is the energy added when a particle of mass
dm is added to the existing sphere of massm = m (r).
The particle settles at radius r, and each particle does
so until r = R.

Since the sphere has uniform density λ, we further
write

dU = −Gmλv
r

λdv ,

where v = v (r) is the volume of the sphere. Turning
the crank gives:

dU = −Gλ2 4πr
3/3

r
4πr2dr

U = −G (4πλ)
2 1

3

∫ R

0

r4 dr

U = −3

5

GM2

R

Variable Density

If the gravitational force inside a solid phere is in-
dependent of position, determine the density λ (r) of
the sphere.

While there exist more rigorous ways to solve this
problem, assume the density takes the form

λ (r) = Arn ,

where n is an integer and A is a unit-balancing con-
stant. With this, all mass contained with a radius
r < R is given by

m (r) = A
4π

3
r3+n .

Then, the magnitude of the force on the particle is

F = −4πGm0

3
r1+n .

If the force is to be independent of r, we must
have n = −1, or λ (r) = A/r.
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1.10 Gravity Near Earth

Students of classical physics find out early that the
force due to gravity near Earth’s surface is a vector
pointing straight down

F⃗g = −mg ŷ ,

with corresponding potential energy

U (y) = mgy ,

where y is the height above the surface (or a location
near it), and g is the local gravitation constant:

g =
9.8 m

s2

On the other hand, we just went through all the
pains of showing that the gravitational force is

F⃗ (r⃗) = −Gm1m2

r2
r̂

with potential energy

U (r) = −Gm1m2

r
.

Clearly, these two pictures must be reconciled. To
do so, let r be replaced by the quantity R+ y, where
R is a constant distance we’ll take to be the radius
of the Earth, and y is the effective height, approxi-
mately from sea level. What we assume throughout
is that y ≪ R.

Without loss of generality, we can assume all dis-
placements are one dimensional and thus r̂ = ŷ. This
identifies m1 for the mass of the Earth, and m2 for
the mass of a test projectile.

With these restrictions, the force and energy be-
come:

F⃗ (y) = − Gm1m2

(R+ y)
2 ŷ

U (y) = −Gm1m2

(R+ y)

Next apply binomial expansion to each denomi-
nator, particularly:

(R+ y)
−2 ≈ 1

R2
− 2y

R3
+

3y2

R4
− · · ·

(R+ y)
−1 ≈ 1

R
− y

R2
+
y2

R3
− · · ·

To first order, the above equations become

F⃗ (y) ≈ −Gm1m2

R2

(
1− 2y

R

)
ŷ

U (y) ≈ −Gm1m2

R

(
1− y

R

)
.

We want the force equation to be constant, thus we
see the quantity 2y/R must be negligible so the effec-
tive force at the surface is

F⃗g = −Gm1m2

R2
ŷ .

The acceleration term is identically g:

g =
GmEarth

R2
Earth

.

For the potential energy, we have

U (y) = U0 +mgy ,

where U0 is the potential energy at y = 0, often de-
fined to be zero, and the unscripted mass m is that
of a test particle (not the Earth).

Note that the first-order potential term is main-
tained despite y/R being a very small number. The
reason for this not only to recover the form mgy, but
also that the first derivative must equal a constant,
which is what we asked of the force.

Problem 8

A person’s weight is F0 at sea level. To first order
in y, what is the person’s weight 4km above sea level?
Answer: F4 km = F0 (1− 2 (4 km) /R)

Escape Velocity

In a two-body system with gravity being the
only force present, suppose we imparted an initial
carefully-chosen escape velocity ve along the line be-
tween the bodies such that the kinetic energy goes to
zero as the separation becomes infinite.

As a two-body problem, we can apply conserva-
tion of energy to write

1

2
m∗v

2
0 −

Gm1m2

d
=

1

2
m∗v

2 − Gm1m2

r
= 0 ,

where d is the initial separation between the bodies.
The total energy is zero by definition.

From the energy statement, we can easily solve
for the escape velocity from a starting separation d:

ve =

√
2Gm1m2

m∗d
=

√
2G (m1 +m2)

d

For the case of a small body escaping Earth, the
above becomes

ve ≈
√
2gREarth .
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Hole Through Earth

An object of mass m is dropped through a straight
tube connecting two points on Earth’s surface. Ne-
glecting rotational effects and friction, what happens
to the object?

Unless the hole is drilled through the center,
which we will not assume, the gravitational force on
the object resolves into two components - one compo-
nent parallel to the tube, the other component per-
pendicular. The equilibrium position of the object is
in the center of the tube where the parallel compo-
nent of the force is zero.

Let x⃗ be the parallel displacement form equilib-
rium, and let r⃗ be the position vector from the center.
The force on the object parallel to the tube is:

Fx = F⃗ (r) · x̂ = −GMm

R3
(r⃗ · x⃗) ,

or

m
d2x

dt2
= −GMm

R3
x = −gm

R
x .

The above is the differential equation

d2x

dt2
= −ω2x

for a simple harmonic oscillator solved by

x (t) = A cos (ωt+ ϕ) ,

where A is the length of the tube and ϕ chooses the
initial position of the object. The angular frequency
ω is given by

ω =

√
g

R
.

1.11 Energy and Orbit

Parabolic Orbit

Suppose now that a two-body system has zero total
energy

E = 0 .

but the motion is not strictly along the line connect-
ing the two bodies. In this special case, the system
is always at escape velocity. This does not mean the
escape velocity is constant. The distance d is playing
the role of r in the ve equation.

To develop this, recall that the velocity for a
parabolic orbit can be written

v⃗ = v0

(
θ̂ + ŷ

)
,

which means

v2 = v⃗ · v⃗ = 2v20
r0
r
.

Using the escape velocity in place of v allows us to
write

2G (m1 +m2)

r
= 2v20

r0
r
,

or

v20 =
G (m1 +m2)

r0
.

Elliptical Orbit

Elliptical orbits are called bound orbits, and have neg-
ative total energy:

E < 0

Interestingly, if we take a parabolic orbit with E = 0
and subtract a little energy from the total (by some
external means), then the parabola becomes an el-
lipse by having the second focus come in from infin-
ity.

We ought to be able to prove the total energy is
negative for an elliptical orbit. Start with the total
energy

E =
1

2
m∗v

2 − Gm1m2

r
,

and substitute v2 using

v⃗ =
v0
e

(
θ̂ + e ŷ

)
,

which excludes the case of circles. Proceeding care-
fully, find

v2 =
v20
e2

(
2r0
r

− 1 + e2
)

=
2Gm1m2

m∗r
− Gm1m2

m∗r0

(
1− e2

)
,

so the kinetic term is

Ekin =
Gm1m2

r
− Gm1m2

2r0

(
1− e2

)
.

The total energy sums the potential plus the ki-
netic, which happens to contain equal and opposite
1/r-like terms, leaving just the constant:

E =
−Gm1m2

2r0

(
1− e2

)
=

−Gm1m2

2a
,

in terms of v0,

E = −1

2
m∗v

2
0

(
1− e2

e2

)
.
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Hyperbolic Orbit

Hyperbolic orbits are called unbound orbits, and have
positive total energy:

E > 0

The analysis of this situation follows exactly like the
elliptical case. For the total energy, you can see e > 1
simply flips the sign to make

E =
Gm1m2

2a
=

1

2
m∗v

2
0

(
e2 − 1

e2

)
.

Circular Orbit

For circular orbits, we need to go back to the velocity
equation

v⃗ =
Gm1m2

L
θ̂ ,

which has no v0-term.

The angular momentum is

L = m∗R
2 dθ

dt
= m∗a

2 2π

T
,

where T is the period of the orbit and R is the radius.
Simplifying gives

L = m∗
√
G (m1 +m2)R ,

and then the square of the velocity is:

v2 =
G (m1 +m2)

R

The time derivative of v⃗ gives a familiar equation
for the acceleration

a⃗ = −Gm1m2

L

dθ

dt
r̂ ,

which for circular orbits simplifies to

a⃗ =
−v2

R
r̂ ,

as expected for circular motion in general.

The energy of a circular orbit is

E =
1

2

Gm1m2

R
− Gm1m2

R
=

−Gm1m2

2R
,

thus the kinetic energy is half the potential energy,
and the total is negative.

Eccentricity and Orbit

Begin with the Runge-Lorenz vector and replace L⃗
using its definition:

Z⃗ = v⃗ × (m∗r⃗ × v⃗)−Gm1m2 r̂ ,

and square the whole equation:

Z⃗ · Z⃗ = |v⃗ × (m∗r⃗ × v̂)|2

− 2Gm1m2 v⃗ × (m∗r⃗ × v̂) · r̂ +G2m2
1m

2
2

For the first term on the right, notice v⃗ is perpen-
dicular to r⃗ × v⃗, so

|v⃗ × (m∗r⃗ × v̂)| = m∗rv
2 |sin (ϕ)| ,

where ϕ is the angle between r⃗ and v⃗.
For the second term, the scalar triple product can

be rewritten

v⃗ × (m∗r⃗ × v̂) · r̂ = m∗ (r⃗ × v⃗) · (r̂ × v⃗) .

The remaining vectors are parallel and the whole
quantity simplifies to

v⃗ × (m∗r⃗ × v̂) · r̂ = m∗rv
2 sin2 (ϕ) .

Rewriting Z⃗ · Z⃗ with this in mind, we have

Z2 =
(
m∗rv

2
)2

sin2 (ϕ)

− 2Gm1m2m∗rv
2 sin2 (ϕ) +G2m2

1m
2
2 ,

or
Z2

G2m2
1m

2
2

= 1 + sin2 (ϕ)
(
q2 − 2q

)
,

where

q =
m∗rv

2

Gm1m2
.

simplifying this further gives

Z2

G2m2
1m

2
2

= cos2 (ϕ) + sin2 (ϕ) (1− q)
2

Finally, note that the left size is actually the
square of the eccentricity, giving, after restoring q:

e2 = cos2 (ϕ) + sin2 (ϕ)

(
1− rv2

G (m1 +m2)

)2

This is an enlightening result. For ϕ = 0 the motion
is purely radial and uninteresting. For all other cases,
we see the combination of variables being suspiciously
like to the escape velocity. Swapping this in gives

e2 = cos2 (ϕ) + sin2 (ϕ)

(
1− 2v2

v2e

)2

We see if v = ve, then the eccentricity is pre-
cisely one, which is consistent with what we know of
parabolic orbits. Similarly we see the cases v < ve
and v > ve give e < 1 and e > 1 respectively, which
is the signature of elliptic and hyperbolic orbits. A
circular orbit has ϕ = π/2.
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1.12 Shell Theorem

Newton’s law of gravitation tells us that every parti-
cle in the universe is trying to pull every other particle
toward itself with a force proportional to the masses
involved and inversely proportional to the square of
the separation, and this is duly used to calculate the
force onto planets, moons, satellites, and so on.

Using triple integration and spherical coordinates,
something Newton didn’t have, we finally address
an assumption made early in gravitational analysis,
namely why we’re allowed to represent voluminous
objects as single points located at the center of mass.
This is called the shell theorem, and entails two im-
portant proofs.

Outside a Sphere

Consider a solid sphere of radius R, total mass M ,
and uniform density λ. Also let there be a test par-
ticle of mass m somewhere in space. Without loss of
generality, place the test particle on the z-axis at the
point D⃗ = D ẑ. The length D is the distance from
the test particle to the center of the sphere.

In order to ‘properly’ calculate the gravitational
attraction between the test mass and the sphere, a
volume integral over there entire sphere must be cal-
culated. Choose any element of volume dV inside the
sphere at location r⃗, which is located distance r from
the center, at an angle θ from the z-axis.

Let vector q⃗ denote the line connecting D⃗ to r⃗
such that

r⃗ + q⃗ = D ẑ ,

and also let α be the angle between ẑ and q̂. From
the law of cosines, we can say:

q2 = r2 +D2 − 2rD cos (θ)

r2 = q2 +D2 − 2qD cos (α)

The total force on the test particle is the vector F⃗ .
However, due to the ϕ-symmetry of this picture, only
the z-component of the force will have a net effect on
the particle. All xy-components cancel equally and
oppositely:

F =

∫
D
dF⃗ · ẑ =

∫ ∫ ∫
volume

dF cos (α)

The differential force is

dF =
−Gm
q2

dm ,

where dm is the mass of the differential volume el-
ement influencing the test particle. The mass term

can be replaced using the density

dm

dV
=

M

4πR3/3
= λ ,

where it is appropriate to replace dV with the volume
element in spherical coordinates.

The force integral now is

F = −Gmλ
∫ 2π

0

∫ π

0

∫ R

0

cos (α)

q2
r2 sin (θ) dr dθ dϕ ,

which, after substituting and simplifying a bit, be-
comes:

F = −Gmλ 2π

2D

∫ π

0

∫ R

0(
1

q
+
D2 − r2

q3

)
r2 sin (θ) dr dθ

Perform implicit differentiation on the q2 equation
to find, remembering r and θ are independent,

q dq = rD sin (θ) dθ ,

and rewrite the integral with the intent of integrating
over r last. Make sure you know why the limits are
now changed:

F = −Gmλ π

D2

∫ R

0

∫ (D+r)

(D−r)(
1 +

D2 − r2

q2

)
r dq dr

The whole q-integral treats r as a constant and
resolves to 4r, so

F = −Gmλ π

D2

∫ R

0

4r2 dr ,

and the r-integral is elementary. Simplifying every-
thing gives

F = −Gm
(

3M

4πR3

)
π

D2

4

3
R3 =

−GMm

D2
.

Conveniently, the force acts as if all of its mass
were concentrated at the center. This result is also
true in general, where the notion of ‘center’ means
center of mass, not necessarily the center of the vol-
ume.
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Inside a Shell

Another interesting question that arises in the course
of studying gravity is, what does it feel like inside a
hollow uniform shell? To pursue this question, sup-
pose we have a thin spherical shell of radius R and
thickness 2a that is much less than R, and the test
particle is inside anywhere within the shell.

This setup borrows all of the geometry from the
previous setup, except this time we have D < R,
which is the important part. Setting up the same
integral and doing the same simplifications, we can
jump to

F = −Gmλ π

D2

∫ R+a

R−a

∫ (D+r)

(r−D)(
1 +

D2 − r2

q2

)
r dq dr .

Most notably, the lower integration in the q-integral
is swapped to accommodate D < R. This causes the
q-integral to resolve to zero, and we find

F = 0

inside the shell.

2 Central Potential

The whole apparatus for studying planetary motion
can be grown from the gravitational potential energy

U (r) = −Gm1m2

r

of a two-body system. The plan now is to develop
the theory while assuming as little as possible about
U (r).

Two-Body Analysis

As a two-body system, we still deal with the center
of mass

R⃗ (t) =
m1r⃗1 (t) +m2r⃗2 (t)

m1 +m2
,

whose time detivative is the center of velocity V⃗ (t).

Two time derivatives of R⃗ (t) yields the center of ac-
celeration, which is always zero by Newton’s third
law:

d2

dt2
R⃗ (t) = 0

In terms of R⃗, the absolute position of each body
is

r⃗1 = R⃗+
m2

m1 +m2
r⃗

r⃗2 = R⃗− m1

m1 +m2
r⃗ ,

and we define the relative displacement

r⃗ (t) = r⃗1 (t)− r⃗2 (t)

to deal with one variable instead of two. The time
derivative of the relative displacement is the relative
velocity v⃗ (t).

In terms of r⃗ (t), Newton’s second law takes spe-
cial form

F⃗12 = m∗
d2r⃗

dt2
,

where

m∗ =
m1m2

m1 +m2

is the reduced mass.

Energy Conservation

The total energy in the two-body system is the sum
of a kinetic term and a potential term. For the kinetic
energy we have

T =
1

2
m∗v

2 +
1

2
(m1 +m2)V

2
0 ,

where we take V0 = 0 without loss of generality. For
the potential energy we’re stuck with just U (r).

For the total energy, we write

E = T + U =
1

2
m∗v

2 + U (r) .

Take a single time derivative to find E to be constant

dE

dt
=

1

2
m∗

d

dt

(
v2
)
+
d

dt
U (r)

=
1

2
m∗2v⃗ ·

dv⃗

dt
+ v⃗ · d

dr⃗
(U (r))

= v⃗ ·
(
m∗

dv⃗

dt
+

d

dr⃗
(U (r))

)
,

because the parenthesized term is identically New-
ton’s second law and resolves to zero.

Angular Momentum

The angular momentum

L⃗ = m∗r⃗ × v⃗

doesn’t depend on U (r) at all, thus we recycle the
constant of motion from planetary motion analysis:

L = m∗r
2ω ,

where ω = dθ/dt. Since L is constant, we know the
motion to be planar.
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Polar Coordinates

In the polar coordiante system, the relative position,
veclocity, and acceleration vectors read

r⃗ = r r̂

v⃗ =
dr

dt
r̂ + rω θ̂

a⃗ =

(
d2r

dt2
− rω2

)
r̂ +

(
r
dω

dt
+ 2

dr

dt
ω

)
θ̂ .

The θ̂-term in the acceleration is proportional to
dL/dt and vanishes entirely, leaving a purely radial
acceleration vector

a⃗ =

(
d2r

dt2
− L2

m2
∗r

3

)
r̂ .

2.1 Effective Potential

In terms of the angular momentum L, the velocity
vector can be written

v⃗ =
dr

dt
r̂ +

L

m∗r
θ̂ ,

meaning

v2 =

(
dr

dt

)2

+
L2

m2
∗r

2
.

Feed this v2 into the energy conservation statement:

E =
1

2
m∗

(
dr

dt

)2

+
L2

2m∗r2
+ U (r)

The latter two terms constitute the effective po-
tential energy

Ueff (r) = U (r) +
L2

2m∗r2
,

also known as the centrifugal potential energy, the
gradient of which is the centrifugal force.

In terms of the effective potential, the total en-
ergy goes back down to two terms, one with time
dependence and one with spatial dependence:

E =
1

2
m∗

(
dr

dt

)2

+ Ueff (r)

Problem 9
For the elliptical orbit of a planet, show for a given

radius r0 that:

|Ueff (r0)| =
−Gm1m2

2r0

2.2 One-Dimensional Systems

In terms of the effective potential energy, the total
energy is reduced to a one-dimensional system in the
variable r. Taking this literally, let us study the
generic one-dimensional system

E =
1

2
m

(
dx

dt

)2

+ U (x)

to remove complications from planar motion.
Solving the above for the velocity, one writes

dx

dt
= ±

√
2

m
(E − U (x))

to establish the euation of motion

t = ±
√
m

2

∫ xf

xi

dx√
E − U (x)

.

Time-Reversal Symmetry

The ± symbol in the equation of motion indicates
time-reversal symmetry of the problem. Typically in
one-dimensional systems, the solution to the equa-
tion of motion exhibits such symmetry, a stronger
constraint than what we have. Supposing x (t) is a
solution to the equation of motion, time-reversal sym-
metry implies that x1 (t) = x (t0 − t) is also a solu-
tion that differs from original x (t) by an integration
constant.

For most configurations, there exists at least one
turning point t∗ at which the velocity goes to zero.
We exploit time-reversal symmetry to write an exact
time-reversed-and-shifted equation

x1 (t) = x (2t∗ − t) .

Next, we note from function- and derivative matching
that

x1 (t∗) = x (t∗)

d

dt
x1 (x (t∗)) = − d

dt
x (x (t∗)) = 0 ,

and so on for higher derivatives. We may then drop
the 1-subscript to get

x (t) = x (2t∗ − t) .

Shifting the above by t∗, the symmetric equation

x (t∗ + t) = x (t∗ − t)

emerges. In one dimension, the essence of time-
reversal symmetry means that equations of motion
are symmetric about turning points t∗.
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Trapped Particle

Potential energy functions U (x) that exhibit at least
one local minimum can ‘trap’ a particle into an oscil-
latory pattern. Supposing xi and xf correspond to
turning points in the motion, the oscillatory period
is given by

T =
√
2m

∫ xf

xi

dx√
E − U (x)

.

The quantity E − U (x) is always positive except at
the turning points, at which the speed of the particle
is instantaneously zero.

Harmonic Oscillations

In the vicinity of a local energy minimum at x∗, the
first- and second-derivatives of U (x∗) are

d

dx
U (x∗) = 0

d2

dx2
U (x∗) = λ > 0 ,

which allows U (x) to be approximated by Taylor se-
ries:

U (x) ≈ U (x∗) +
1

2
λ (x− x∗)

2

Applying Newton’s second law, the corresponding
equation of motion is

d2

dx2
x (t) = − λ

m
(x− x∗) ,

whose solution is known as the harmonic oscillator

x (t) = x∗ +A sin

(√
λ

m
t− ϕ0

)
.

The amplitude of oscillation is A, and the initial
phase is contained in ϕ0.

Unstable Equilibrium

An equilibrium point x∗ exists at any local maximum
of U (x), however motion around such a point is un-
stable (non-oscillatory). To show this, reverse the
sign on λ to arrive at the differential equation

d2

dx2
x (t) =

λ

m
(x− x∗) ,

generally solved by

x (t) = x∗ +Aeλt +Be−λt .

That is, the particle is pulled away from x∗ and rides
U (x) downhill.

2.3 Planar Orbits

Returning to the case of planar orbits, we can extrap-
olate all one-dimensional results to two dimensions by
replacing x→ r and acounting for θ (t) as a dynamic
variable.

Equations of Motion

In terms of the total energy E, the time evolution of
the two-body system is given by

t (r) = ±
√
m∗

2

∫ rf

ri

dr√
E − Ueff (r)

.

An equation for θ (t) is attained by integrating the
angular momentum L = m∗r

2ω to write

θ (t) = θ0 +
L

m∗

∫ t

0

dt′

(r (t′))
2 .

Switching to the r domain, the above is also written

θ (r) = ± L√
2m∗

∫ rf

ri

dr/r2√
E − Ueff (r)

.

Apogee and Perigee

Supposing there exits a time t∗ at which the radius
r reaches a turning point (i.e. dr/dt = 0), the cor-
responding point (r∗, θ∗) in the plane is called the
apogee if r is at a maximum, and the perigee if r is
at a minimum.

Solutions to the θ-equation occur in four explicit
branches:

Apogee, θ > θ∗

θ = θ0 +
L√
2m∗

∫ r

r∗

dr/r2√
E − Ueff (r)

Apogee, θ < θ∗

θ = θ0 −
L√
2m∗

∫ r

r∗

dr/r2√
E − Ueff (r)

Perigee, θ > θ∗

θ = θ0 +
L√
2m∗

∫ r∗

r

dr/r2√
E − Ueff (r)

Perigee, θ < θ∗

θ = θ0 −
L√
2m∗

∫ r∗

r

dr/r2√
E − Ueff (r)

Evident in the above is the time-refersal symmetry
about θ∗, namely

r (θ∗ − θ) = r (θ∗ + θ) .
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Bounded Orbits

When the potential energy U (x) contains a local
minimum, a particle with a sufficiently low energy
may become ‘trapped’ in the so-called potential well.
Looking at the evolution of θ between two extreme
points (perigee to apogee or vice-versa), we have

θ =
L√
2m∗

∫ ra

rp

dr/r2√
E − Ueff (r)

,

which is some number that is not generally a ratio-
nal fraction of π. That is, we find that orbits are
bounded aren’t necessarily repeated shapes, but may
have a any (or an infinite) number of apogees and
perigees. We will soon find there are two exceptions
to this, where if the energy U has certain dependence
on r, closed orbits are possible.

Circular Orbit

The circular orbit is characterized by dr/dt = 0, or
equivalently r (t) = r0. The equation of motion for
θ (t) becomes trivial

θ (t) = θ0 +
Lt

m∗r20
,

and the time T0 required for θ (t) − θ0 = 2π corre-
sponds to the period of the circular orbit:

T0 =
2πm∗r

2
0

L

As for the energy of a circular orbit, we have

E =
��

����1

2
m∗

(
dr

dt

)2

+
L2

2m∗r2
+ U (r) ,

which remains constant. Taking an r-derivative at r0
yields

0 = − L2

m∗r30
+

d

dr
(U (r))

∣∣∣∣
r0

,

or, in shorthand:

U ′ (r0) =
L2

m∗r30

Eliminate L from the above to write

U ′ (r0) = m∗r0ω
2 =

m∗v
2
0

r0
,

which is precisely the force ‘felt’ by an object con-
strained to uniform circular motion. (The force vec-
tor itself points to the center.)

We can eliminate L once more to express the pe-
riod T of the circular orbit in terms of U ′ (r0):

T0 = 2π

√
m∗r0
U ′ (r0)

Problem 10
Check that the circular orbit is described by

d

dr
(Ueff (r))

∣∣∣∣
r0

= 0 .

Problem 11
Show that Kepler’s law of equal areas hold for any

central force, including straight-line motion.

3 Power Law Potential

Finally we must choose a particular form for the po-
tentuaql energy U (r), thus we’ll pose a central power
law potential

U (r) = − Λ

rα
,

where Λ is an arbitrary constant (positive or nega-
tive), and α = 2 reproduces the case for planetary
motion. In the general case, we use

Ueff (r) = − Λ

rα
+

L2

2m∗r2

for the effective potential energy.

3.1 Circular Orbit

For orbits that are have a nearly-circular radius r0,
we may approximate the effective potential energy
via Taylor expansion in the vicinity r ≈ r0:

Ueff (r) = Ueff (r0) +
d

dr
(Ueff (r))

∣∣∣∣
r0

(r − r0)

+
d2

dr2
(Ueff (r))

∣∣∣∣
r0

(r − r0)
2

2!
+ · · ·

Stability

The first-order derivative term is identically zero by
nature of the circular orbit. The second-order term
must be done by brute force:

d2

dr2
Ueff (r)

∣∣∣∣
r0

=
d

dr

(
Λα

rα+1
− L2

m∗r3

) ∣∣∣∣
r0

= −Λα (α+ 1)

rα+2
0

+
3L2

m∗r40

Now, from the first-order equation we learn

Λα

rα+1
0

=
L2

m∗r30
,
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where eliminating L2 in the second-order term now
gives

d2

dr2
Ueff (r)

∣∣∣∣
r0

= −Λα (α+ 1)

rα+2
0

+
3Λα

rα+2
0

=
Λα (2− α)

rα+2
0

=
L2

m∗r40
(2− α) .

We can also write the angluar frequency ω0 in terms
of the angular momentum via

ω0 =
L

m∗r20
,

and thus

d2

dr2
Ueff (r)

∣∣∣∣
r0

= m∗ω
2
0 (2− α)

Rewriting the Taylor expansion, we how have

Ueff (r) ≈ Ueff (r0) +m∗ω
2
0 (2− α)

(r − r0)
2

2!
.

For all α > 2, near-circular orbits are unstable,
meaning particles with high enough energy will slip
away to r → ∞, whereas particles with sufficiently
low energy or sufficiently low radius will inevitably
collapse to r = 0. For α < 2, the system corre-
sponds to a one-dimensional harmonic oscillator in
r, thus near-circular orbits are stable. The angular
frequency in the r-variable is given by

ωr = ω0

√
2− α ,

implying that periodic closed orbits occur when√
2− α is a rational number. Conveniently we’ll

see that the Coulomb and gravitational potentials
(α = 1), along with the harmonic oscillator (α = −2)
each produce closed orbits not limited to circles. The
next closed orbit corresponds to α = −7.

Period

In terms of ω0, we can write the period T0 of a cir-
cular orbit. Start with the definition ωT = 2π, we
have

T0 =
2π

ω0
=

2πm∗r
2
0

L

Harmonic Potential

The harmonic potential is defined by

U (r) = Λr2 .

As a central force, all motion is confined to a plane
and thus we separate into components as

U (r) = Λ
(
x2 + y2

)
.

Using Fx = −∂U/∂x and similar for the y-
compoenent, the above implies a pair of independent
one-dimensional differential equations

d2

dt2
x (t) = −ω2x (t)

d2

dt2
y (t) = −ω2y (t) ,

where ω =
√

2Λ/m∗.
General solutions to the above are trigonometric,

namely

x (t) = Ax cos (ωt− ϕx)

y (t) = Ay cos (ωt− ϕy) ,

where Ax,y and ϕx,y are determined from initial con-
ditions.

We can do away with the ϕx-term by placing the
particle at Ax at t = 0 and defining the x-axis to
pass through that point. Then, the y-component of
the position must be zero, telling us ϕy = π/2. Fi-
nally, we find a closed equation for elliptical orbits
with the origin at the center:

x (t) = Ax cos (ωt)

y (t) = Ay sin (ωt)

The envelops of positions draws an ellipse:

x2

A2
x

+
y2

A2
y

= 1

3.2 Dimensionless Variables

For a power law potentual U (r) = −Λ/rα, we can
find a circular orbit characterized by r = r0 that min-
imizes Ueff (r) at r0. The period of such an orbit is
T0.

Let us now replace quantities of radius, energy,
and time units with dimensionless variables by the
following substitutions:

ρ (t) =
r (t)

r0

E =
E

|Ueff (r0)|

τ =
t

T0
=

Lt

2πm∗r20

We bring Λ into the mix by recalling

L2

m∗r20
=

Λα

rα0
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for circular orbits, and it further follows that

|Ueff (r0)| =
L2

2m∗r20

∣∣∣∣2− α

α

∣∣∣∣ .
Problem 12

For a planet on an elliptical orbit with semi-major
axis a, use

E =
−Gm1m2

2a

to show that the eccentricity is given by

e =
√
1 + E .

Problem 13
For a planet on an elliptical orbit with semi-major

axis a and semi-minor axis b, show that

b

a
=

√
−E .

If the orbit is hyperbolic, show instead that

b

a
=

√
E .

Equations of Motion

The equations of motion

t (r) = ±
√
m∗

2

∫ rf

ri

dr√
E − Ueff (r)

θ (r) = ± L√
2m∗

∫ rf

ri

dr/r2√
E − Ueff (r)

must be recast in dimensionless variables.
Staying in the special case Λ > 0, α < 2, proceed

by simplifying the radical term first:

E − Ueff (r) = E +
Λ

rα
− L2

2m∗r2

=
EΛα
2rα0

(
2− α

α

)
+

Λ

rα0 ρ
α
− Λα

2rα0 ρ
2

=

(
Λα

2rα0

)(
(2− α) E/α+ (2/α) /ρα − 1/ρ2

)
Substituing carefully, one finds

τ = ± 1

2π

∫ ρf

ρi

dρ√
(2− α) E/α+ (2/α) /ρα − 1/ρ2

θ = ±
∫ ρf

ρi

dρ/ρ2√
(2− α) E/α+ (2/α) /ρα − 1/ρ2

.

Note that solutions to

0 = (2− α) E/α+ (2/α) /ρα − 1/ρ2

indicate all apogees and perigees in the motion.

3.3 Inverse Square Attraction

The attractive power law potential with Λ > 0 and
α = 1 corresponds to the gravitational force and the
attractive static electric force. Such a potential nat-
urally hosts a circular orbit with:

r0 =
L2

Λm∗

T0 =
2πm∗r

2
0

L

|Ueff| =
L2

2m∗r20
=

Λ2m∗

2L2

Spatial Dynamics

The equations of motion simplify significantly with
α = 1. For the θ-equation, we have

θ = ±
∫ ρf

ρi

dρ/ρ2√
E + 2/ρ− 1/ρ2

.

Let ξ = 1/ρ to find

θ = ±
∫

−dξ√
E − (ξ − 1)

2
+ 1

,

and then let β = ξ − 1 to get

θ = ±
∫

−dβ√
E − β2 + 1

.

Factor
√
1 + E from the denominator and also let

γ = β/
√
1 + E :

θ = ±
∫

−dβ
√
1 + E

√
1− β2/ (1 + E)

= ±
∫

−dγ√
1− γ2

Next, let γ = cos (ψ) to find

θ = ±
∫

sin (ψ) dψ

sin (ψ)
= ±

∫
dψ .

The remaining integral has a trivial solution

θ = θ0 ± ψ ,

and undoing all substitutions gives

θ = θ0 ± arccos

(
1/ρ− 1√
1 + E

)
,

where the integration constant θ0 is an ignorable ro-
tation in the plane. Continue solving for ρ to get the
equation of a conic section:

ρ =
1

1 +
√
1 + E cos (θ)
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Eccentricicty

The combination
√
1 + E is none other than the ec-

centricity of the orbit:

e =
√
1 + E

From what we know of conic sections, recall that
e = 1 makes a parabola, e < 1 makes an ellipse, and
e > 1 makes a hyperbola. In terms of the dimension-
less energy E , this also means:

E = 0 → parabola

E < 0 → ellipse

E > 0 → hyperbola

Conserved Quantities

As a special case of the two-body central potential
system, we’ve aware that the inverse-square attrac-
tion supports conservation of energy E and conserva-
tion of angular momentum L.

Also conserved is the Runge-Lorenz vector

Z⃗ = v⃗ × L⃗− Λ r̂ ,

which fixes the orientation of the total orbit in its
plane of motion. Take a time derivative to quickly
prove Z⃗ is constant:

d

dt
Z⃗ =

dv⃗

dt
× L⃗+

�
�
��

v⃗ × dL⃗

dt
− Λ

dr̂

dt

= − 1

m∗

Λ

r2
r̂ × (r⃗ ×m∗ v⃗)− Λ

d

dt

(
r⃗

r

)
= Λ

(
− (r̂ (r̂ · v⃗)− v⃗ (r̂ · r̂))

r
− v⃗

r
+
r̂

r
(r̂ · v⃗)

)
= 0

Being constant, we’re free to evaluate Z⃗ anywhere
on the orbit. Choosing a perigee at r⃗p = rp x̂ where
v⃗p · r⃗p = 0, we find:

Z⃗ = v⃗p × (r⃗p ×m∗ v⃗p)− Λ r̂p

= m∗ r⃗p (v⃗p · v⃗p)−m∗ v⃗����(v⃗p · r⃗p)− Λ r̂p

=

(
L2

m∗rp
− Λ

)
r̂p = Λ

(
r0
rp

− 1

)
x̂

= Λ

(
1

ρp
− 1

)
x̂ = Λ

(
1 +

√
1 + E − 1

)
x̂

Z⃗ = Λe x̂

Conic Trajectory

Problem 14
Derive the dimensionless Runge-Lorenz vector

equation

r̂ + e x̂ =
v⃗ × L⃗

Λ
,

and then project r⃗ into each side to recover the equa-
tion of a conic section, namely

r =
r0

1 + e cos (θ)
.

Temporal Dynamics

The integral for the dimensionless time τ is straight-
forwardly solved with α = 1. Begin with

τ = ± 1

2π

∫ ρf

ρi

dρ√
E + 2/ρ− 1/ρ2

and assume E ̸= 0. Simplify a bit to get

τ = ±
√
E

2πe

∫ ρf

ρi

ρ dρ√
E
(
ρ
√
E + 1/

√
E
)2
/e2 − 1

.

Let ξ =
√
E
(
ρ
√
E + 1/

√
E
)
/e so that dξ = dρE/e

and

ρ dρ = e

(
ξe− 1

E2

)
dξ ,

giving

τ = ± 1

2πE3/2

∫
(ξe− 1)√
ξ2 − 1

dξ .

So far we’ve been a bit loose with the sign on E .
For E > 0, everything stays as-is. However for E < 0,
we have to propagate E → − |E| through the calcula-
tion. Maintaining both channels, we have:

τE>0 = ± 1

2π |E|3/2

∫
(ξe− 1)√
ξ2 − 1

dξ

τE<0 = ± 1

2π |E|3/2

∫
(ξe− 1)√
1− ξ2

dξ

Let

ξE>0 = cosh (ψ)

ξE<0 = cos (ψ)

and each integral becomes trivial, setting arbitrary
integration constants to zero:

τE>0 = ± 1

2π |E|3/2
(e sinh (ψ)− ψ)

τE<0 = ± 1

2π |E|3/2
(ψ − e sin (ψ))
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The period of an elliptical orbit corresponds to
one full cycle in ψ, i.e. 0 ≤ ψ < 2π. For this we have

τperiod = 2 (τπ − τ0) = |E|−3/2
.

Problem 15

Use

τ =
t

T0
=

Lt

2πm∗r20

and let τ = |E|−3/2
. Solve for t = T to recover Ke-

pler’s third law for elliptical orbits.

Radial Component

Using the ρ-substitution from the above integral,
namely

ρE>0 =
eξ − 1

E

ρE<0 =
eξ − 1

− |E|
,

we get solutions for ρ (ψ):

ρE>0 =
e cosh (ψ)− 1

E

ρE<0 =
1− e cos (ψ)

|E|

The perigee corresponds to ψ = 0. For E < 0, the
apogee is at ψ = π.

Zero-Energy Case

Returning to the equations of motion for τ , θ with
E = 0 and α = 1, we have

τ = ± 1

2π

∫ ρf

ρi

ρ dρ√
2ρ− 1

θ = ±
∫ ρf

ρi

dρ/ρ√
2ρ− 1

,

resolving to, discarding the integration constants:

τ = ± 1

6π

√
2ρ− 1 (ρ+ 1)

θ = ±2 arctan
(√

2ρ− 1
)

3.4 Inverse Square Repulsion

Consider the central potential given by

U =
Λ

r
,

as one finds with the repulsive Coulomb force. This
is the same as the inverse square attractive case with
the modification Λ → −Λ, and the recipe for the
equations of motion is essentially the same. Some
key results are:

ρ =
1

−1 +
√
1 + E cos (θ)

τ = ± 1

2π |E|3/2
(e sinh (ψ) + ψ)

ρ =
1

E
(e cosh (ψ) + 1)


	Central Forces
	Planetary Motion
	Two-Body Problem
	Angular Momentum
	Inverse-Square Acceleration
	Universal Gravitation
	Equations of Motion
	Runge-Lorenz Vector
	Kepler's Laws
	Energy Considerations
	Solid Sphere
	Gravity Near Earth
	Energy and Orbit
	Shell Theorem

	Central Potential
	Effective Potential
	One-Dimensional Systems
	Planar Orbits

	Power Law Potential
	Circular Orbit
	Dimensionless Variables
	Inverse Square Attraction
	Inverse Square Repulsion



