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Appendix

Hypersphere

Consider a d-dimensional space mapped by orthogonal coordinates xj. Defining a radius R
such that

d∑
i=1

x2
i < R2 ,

the resulting manifold is a d-dimensional sphere.

Volume

A hyperspherical volume can be separated into a radial component and an angular component
as

Vd =

∫
∑d

i=1 x
2
i<R

2

dx1, ...dxd =

∫ R

0

rd−1 dr

∫
dΩd−1 =

Rd

d

∫
dΩd−1 .

To proceed, recall the classic Gaussian integral identity

√
π =

∫ ∞
0

e−x
2

dx ,

and multiply d copies together to write(√
π
)d

=

∫ ∞
−∞

e−x
2
1 dx1 ·

∫ ∞
−∞

e−x
2
2 dx2 · · ·

∫ ∞
−∞

e−x
2
d dxd =

∫ ∞
0

rd−1e−r
2

dr

∫
dΩd−1 .

From the study of gamma functions, we pick out the identity∫ ∞
0

rd−1e−r
2

dr =
Γ (d/2)

2

to find ∫
dΩd−1 =

2 (
√
π)

d

Γ (d/2)
,

and the volume thus far reads

Vd =
Rd

d

2 (
√
π)

d

Γ (d/2)
.

Recalling two more gamma function identities

Γ (d/2)

2
=

Γ (d/2 + 1)

d
Γ (z) = (z − 1)!

the volume of the hypersphere resolves to:

Vd =
Rdπd/2

(d/2)!
(1)
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Testing equation (1) for d = 1, d = 2, d = 3, d = 4, we find:

V1 =
R
√
π

(1/2)!
= 2R V2 = πR2

V3 =
R3π
√
π

(3/2)!
=

4πR3

3
V4 =

R4π2

2

Surface Area

The surface area of the hypersphere can be derived from the volume by noticing that in
any number of dimensions, an R-derivative of a spherical volume equals the surface area
according to

Ad−1 =
dVd
dR

.

Substituting equation (1), the surface area is

Ad−1 =
d

R
Vd . (2)

To get an equation with matching indexes, it’s easy to show:

Ad =
d+ 1

R
Vd+1 Ad = Vd

2
√
π (d/2)!

(d/2− 1/2)!

Testing equation (2) for d = 1, d = 2, d = 3, d = 4, we find:

A0 = 2 A1 = 2πR

A2 = 4πR2 A3 = 2R3π2

1 Introduction

Statistical mechanics studies the behavior of matter and energy when the number of parts in
a system is very large. It begins by admitting that any attempt to keep a ledger of the posi-
tion and momentum of every particle in a system, even on a computer, becomes intractable
beyond certain limits (big and small), and also redundant to a simpler statistical analy-
sis. A formal statistical analysis of physics delivers all of the familiar results of elementary
thermodynamics, along with many new insights into classical and quantum systems.

We gain traction by making a broad connection that the classical entropy of a system
has something to do with the ‘order’ or ‘organization’ of the parts constituting that system.

Entropy

Recall from elementary thermodynamics that Carnot successfully identified an entirely re-
versible thermodynamic cycle composed of isothermal an adiabatic processes. In one cycle
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of a so-called Carnot engine, all instances of heat energy Q transferred to the system divided
by the temperature T at each instance, sums to zero:∑

Carnot cycle

Q

T
= 0

Traversing an open path or an irreversible path in PV -space will give a non-zero result on
the right, identified as the entropy: ∑ Q

T
= ∆S

In the differential limit, the sum becomes an integral of over small increments dQ/T :

∆S =

∫
dQ

T

The next exhibit comes from analyzing free expansion of ideal gas from an initial volume
into confined vacuum. For initial volume Vi of gas that expands freely into a final volume
Vf , the entropy change simplifies to:

∆S = NK ln

(
Vf
Vi

)
= K ln

(
V N
f

V N
i

)

Note that all information about the system is contained in the natural log term, which in
this case is a dimensionless ratio of volumes - that is, just a number.

Configurations

A system of one particle confined to a volume only large enough to contain that particle has
no options for change, and we say there is only one available configuration in the system. If
the system volume is doubled, there are suddenly two available configurations - the particle
can occupy either half of the available volume. It clearly follows that the number of con-
figurations available to a single-particle system scales with the volume of the system. Start
adding more particles, and the number of configurations grows rapidly. The total number of
configurations available to a system is called the combinatoric multiplicity, denoted Ω (Greek
Omega).

Distinguishability

An important consideration is whether any two members in a system are distinguishable or
indistinguishable. For instance, the number of configurations of two identical letters XX is
precisely one - it would be physically redundant to swap the order of each X and claim a
second configuration. However, if given the distinguishable pair X1X2, then it is not futile
to swap each member, giving X2X1 as the second configuration.

The multiplicity of a system having two particles occupying any of N available volume
units is easy to write. The first particle has all N ‘choices’ of empty volume units, so we
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begin with Ω1 = N . The second particle can’t choose from all N volume units, but instead
N − 1, indicating Ω2 = N − 1.

If the particles are distinguishable, the total multiplicity is simply the product of Ω1 and
Ω2:

Ωdist. = Ω1Ω2 = N (N − 1)

For particles that are identical though, it follows that Ωdist. over-counts the multiplicity by
a factor of 2. The total multiplicity is then:

Ωindist. =
N (N − 1)

2

Extensive and Intensive Variables

Recall from elementary thermodynamics that a system exhibits two classes of variables -
extensive and intensive. Extensive quantities, such as mass, volume, and energy, scale when
resizing the system. By contrast, intensive quantities, such as density and temperature,
don’t scale by resizing the system.

In a class of its own, the multiplicity is super-extensive, meaning it grows by multiplica-
tion. In order to ‘knock down’ the multiplicity into an everyday extensive quantity, the most
natural maneuver is to take the logarithm of Ω, so that multiplication becomes addition:

ΩT = Ω1Ω2

ln ΩT = ln Ω1 + ln Ω2

Recasting Entropy

Our walk-through of combinatorics suggests an information-based definition of entropy for
two reasons. (i) For an ideal gas expanding freely into vacuum, we found that entropy is
equal to the Boltzmann constant K times the natural log of some number that has to do with
configurations. (ii) The natural log of the multiplicity is an extensive quantity. It follows
that entropy shall be defined generally as K times the natural log of the multiplicity:

S = K ln Ω (3)

2 Microcanonical Ensemble

A physical system with fixed energy, volume, and number of particles is a microcanonical
ensemble.

2.1 Microstates and Macrostates

Consider any system of any size undergoing (almost) any kind of dynamics. At any instant
in time, we imagine an instantaneous ‘snapshot’ of the whole system, and write the position
and momentum of every particle (to the limit ∆x∆p ≥ h̄) involved. Such a (potentially
enormous) body of information is called a microstate.
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It requires little to imagine that microstates in a dynamic system are changing contin-
uously. However, when we ‘zoom back out’, the ‘global’ characteristics of the system typi-
cally undergo change more slowly, despite the vast internal meandering through microstates.
System-wide quantities of the system are called macrostates.

One immediate corollary of the microstate vs. macrostate dichotomy is that many (some-
times infinite) microstates could give rise to the same macrostate. A probabilistic insight
indicates that the macrostate physically observed in a system is the one corresponding to
the greatest number of microstates.

2.2 Ergodic Hypothesis

A fundamental assumption of microcanonical ensemble theory is the ergodic hypothesis,
stating that the time-average x of an observable is equivalent to the ensemble average 〈x〉
of the observable. We demonstrate this by considering a simple harmonic oscillator of mass
m having position q (t) and momentum p (t) at fixed energy E obeying the (Hamiltonian)
differential equation

H (q, p) =
p2

2m
+
mω2

2
q2 ,

solved by:

q (t) = A cos (ωt) p (t) = −mωA sin (ωt) A =

√
2E

mω2

We easily calculate the time-average of the mean-square position q (t)2 using the definition

q2 = lim
T→∞

1

T

∫ T

0

q (t)2 dt ,

which comes out to

q2 = lim
T→∞

A2

T

∫ T

0

cos (2ωt) + 1

2
dt =

A2

2
=

E

mω2
.

We next calculate the ensemble average 〈q2〉 using

〈
q2
〉

=

∫
q2 ρ (q, p) dq dp∫
ρ (q, p) dq dp

,

where the density
ρ (q, p) ∝ δ (H (q, p)− E)

is a Dirac delta function that obeys∫
δ (φ (y)) dy =

1

φ′ (y0)
.
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Starting with the denominator, find:∫
ρ (q, p) dq dp =

∫
δ (H (q, p)− E) dq dp

=

∫
1(
�2|p|
�2m

)∣∣∣∣
p2

2m
+mω2

2
q2−E=0

dq =

∫
±

m dq√
2m (E −mω2q2/2)

= 2

∫
p dt

|p|
=

2

ω

∫
ω dt =

2

ω

∫ π

0

dθ

=
2π

ω

Moving on to the numerator, the calculation is similar until the last step:∫
q2 ρ (q, p) dq dp =

2

ω

∫
q2 ω dt =

2A2

ω

∫
cos2 (ωt) ω dt

=
2A2

ω

∫ π

0

cos2 (θ) dθ =
2A2

ω

π

2
=
πA2

ω

Finally, the ensemble average 〈q2〉 comes to

〈
q2
〉

=
πA2

ω

ω

2π
=
A2

2
=

E

mω2
,

matching the time-average.

2.3 Two Microcanonical Systems in Contact

Consider a microcanonical system A having multiplicity ΩA, internal energy UA, and entropy
SA = K ln ΩA, and also a second system B characterized by ΩB, UB, and SB = K ln ΩB.

When placed in ‘contact’, systems A and B are allowed to exchange internal energy while
maintaining a constant total UC = UA + UB, with corresponding differential dUA = −dUB.
(The volume and number of particles in each subsystem must remain the same.) The entropy
is extensive and obeys SC = SA +SB, and meanwhile the multiplicity is super-extensive and
follows ΩC = ΩAΩB.

As each system achieves thermal equilibrium, the energies UA and UB are not fixed, but
instead hover around average values ŪA and ŪB. The temperature of each system finds of a
common value TC = TA = TB, which is defined from elementary thermodynamics in terms
of S and U :

TA =

(
∂SA
∂UA

)−1

VA,NA,ŪA

TB =

(
∂SB
∂UB

)−1

VB ,NB ,ŪB

To proceed, let us choose a choose a dependent variable (from system A for simplicity),
and frame the total entropy as

SC (UA) = K ln (ΩC (UA)) .
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By Taylor-expanding in the neighborhood UA ≈ ŪA, the entropy becomes

SC (UA) ≈ SC
(
Ūa
)

+

(
∂SC
∂UA

)
ŪA

(
UA − ŪA

)
+

1

2!

(
∂2SC
∂U2

A

)
ŪA

(
UA − ŪA

)2
+ · · · ,

where we stop expanding after at least second order, because the first-order coefficient is
identically zero: (

∂SC
∂UA

)
ŪA

=
∂SA
∂UA

+
∂SB
∂UA

=
∂SA
∂UA

− ∂SB
∂UB

=
1

TA
− 1

TB
= 0

The second-order coefficient can be reinterpreted by brute force, giving(
∂2SC
∂U2

A

)
ŪA

=
∂

∂UA

(
∂SC
∂UA

)
=

∂

∂UA

(
1

TA
− 1

TB

)
= − 1

T 2
A

∂TA
∂UA

− 1

T 2
B

∂TB
∂UB

,

which contains the definition of the heat capacity at constant volume for each subsystem
near equilibrium. Condensing the second-order coefficient into a variable −Kσ−2

A , we have(
∂2SC
∂U2

A

)
ŪA

= − 1

T 2

(
1

(CV )A
+

1

(CV )B

)
=
−K
σ2
A

.

In terms of σ2
A, the total entropy near equilibrium reads:

SC (UA) ≈ SC
(
ŪA
)
− K

2σ2
A

(
UA − ŪA

)2
(4)

The total multiplicity ΩC of the combined system is given by inverting the definition
SC = K ln ΩC , or

ΩC ≈ eSC(ŪA)/K e−(UA−ŪA)
2
/2σ2

A ,

which is Gaussian in the UA-variable. As normalized, the above becomes a probability
density

p (UA) =

(
1

2πσ2
A

)1/2

e−(UA−ŪA)
2
/2σ2

A .

Using Gaussian integrals, it’s easy to show:∫
all UA

p (UA) dUA = 1

〈UA〉 = ŪA〈
U2
A

〉
= Ū2

A + σ2
A

Problem 1
From elementary thermodynamics, we know the ideal gas has internal energy U =

3NKT/2. For connected systems A and B of total energy U , (i) use the equilibrium con-
dition to write UA in terms of U , NA, and NB. (ii) Solve for σA explicitly and show that
σA/UA scales with N−1/2.
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Solution 1

TA = TB
2UA

3NAK
=

2 (U − UA)

3NBK
UA = U

NA

N

1

σ2
A

=
3NA

2U2
A

+
3NB

2 (U − UA)2 =
3

2

N2

U2

(
1

NA

+
1

NB

)
=

3

2U2

N3

NANB

σA
UA

=

√
3

2

U
√
NANB

N
√
N

N

UNA

=

√
3

2

√
NA

NB

1√
N
∝ 1√

N

2.4 Paramagnetism I

Magnetic Materials

A simple application of microcanonical ensemble theory is paramagnetism. Magnetism is
a phenomenon caused by circulating electric currents in matter or vacuum. Most solids
generally fall into one of three categories: paramagnetic, diamagnetic, or ferromagnetic.

Ferromagnetic materials have the strongest coupling to magnetic phenomena, and are
most familiar to everyday experience. Inside a ferromagnetic material, atoms are arranged
into macroscopic domains, wherein electrons orbit their respective nuclei such that the an-
gular momentum vector of each electron points the same way. A strong permanent magnet
consists of many domains, where any given cluster of domains has a net magnetic moment
that is strong in a direction we decide to call ‘north’.

Paramagnetic materials exhibit weak affinity to magnetism, and do not carry permanent
magnetic fields. A paramagnetic material responds attractively to an external magnetic field,
wherein electrons inside the material align their axis of orbit in order to increase the total
magnetic field near the paramagnet. It follows that a paramagnetic material is attracted to
an external field and moves toward it.

A diamagnetic material acts in the opposite manner as a paramagnet - it tries to oppose
an external magnetic field and is repelled from it. These phenomena only occur when
the temperature of the material is low enough, otherwise thermal noise prevents domain
alignment.

Paramagnet in External Field

Consider a large-N paramagnetic material of fixed volume made of non-interacting spin 1/2

particles, each having magnetic moment ~µ = 2µB ~S, where µB is the Bohr magneton and
~S is the spin of a given particle. When an external magnetic field ~B = +Bẑ is applied, a
number N↑ particles tend to align their spin axis along the external field’s direction, where a
minority N↓ of particles go against the field. (At low temperatures or in strong fields, none
of the spin vectors support an angle with respect to ẑ.) The paramagnet in turn acts as a
two-state system with total internal energy U = −N↑µB + N↓µB among its N = N↑ + N↓
particles.
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As a two-state system, the multiplicity Ω in terms of U and N reads

Ω (U,N) =
N !

N↑!N↓!
=

N !(
N
2
− U

2µB

)
!
(
N
2

+ U
2µB

)
!
. (5)

Proceeding carefully, let x = U/2µB and apply Stirling’s approximation

n! ≈
(n
e

)n√
2πn

to arrive at

Ω (x,N) ≈
NN
√
N/2π(

N2

4
− x2

)N/2 (N
2
− x
)−x (N

2
+ x
)x√N2

2
− x2

,

which is more easily handled if we take the natural log:

ln Ω (U,N) ≈ N lnN +
1

2
ln

(
N

2π

)
−(

N + 1

2

)
ln

(
N2

4
− x2

)
+ x

(
ln

(
N

2
− x
)
− ln

(
N

2
+ x

))
(6)

Let us place a mental bookmark at equation (6), and proceed for now by Taylor-expanding
inside the ln-terms, using the approximation that N � x. In doing so, we find

ln

(
N

2
± x
)
≈ ln

(
N

2

)
± 2x

N

ln

(
N2

4
− x2

)
≈ 2 ln

(
N

2

)
−
(

2x

N

)2

,

and the multiplicity boils down to (ignoring the last very small term)

ln Ω (U,N) ≈ N ln 2 + ln

√
2

πN
− 2x2

N
+

�
�
�2x2

N2
.

While already in the ln Ω domain, multiply by the Boltzmann constant to write the
entropy of the two-state paramagnet

S = K

(
N ln 2 +

1

2
ln

(
2

πN

)
− U2

2Nµ2B2

)
, (7)

which decreases as more spins align. The corresponding multiplicity is

Ω (U,N) = 2N
√

2

πN
e−2(U/2µB)2/N . (8)

Note that by dividing out the total multiplicity (total number of microstates) 2N , Ω becomes
a Gaussian probability density in the dimensionless quantity U/2µB:

p (U/2µB,N) =

√
2

πN
e−2(U/2µB)2/N
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Having fixed volume and number of particles, the formula 1/T = (∂S/∂U)V,N gives the
temperature as

KT = −N
U
µ2B2 ,

which has a minus sign to balance out the overall negativity of U . This relation is handy
near U = 0, but completely ignores the boundary cases U = ±NµB.

To refine the calculation, we must return to equation (6) but proceed without using
Taylor expansion. Instead of writing a massively ugly formula for the entropy, go straight to
the temperature calculation by taking a derivative with respect to x = U/2µB, which yields

∂S

∂x
= K

(
�

�
�
��x

N2

4
− x2

+ ln

(
N
2
− x

N
2

+ x

))
,

where the first term has been ignored due to the factor of N−2. This is equivalent to leaving
out the

√
2πN -like terms in Stirling’s approximation. Adjusting for U instead of x, we find

KT =
2µB

ln
(
NµB−U
NµB+U

) , (9)

which equals zero at the boundaries U = ±NµB.

Negative Temperature

Curiously, a two-state paramagnet can have negative temperature if conditions are right. If
the system is prepared so that most spins oppose the external magnetic field, the temperature
is indeed negative, however not colder than absolute zero. The temperature undergoes a
major discontinuity as the energy passes through U = 0, at which point the temperature
is ambiguously either/and T = −∞ or T = ∞. If the energy is a small positive number
U ≈ µB, the temperature is around −∞ (spins alternate up and down). If the energy
is instead negative with U ≈ −µB, the temperature is approximately ∞. This is not so
far-fetched, because a paramagnet that can still manage U = 0 despite the external B-field
should be quite hot!

Two-State Partition Function (Preview)

Reverting to our N↑, N↓ notation, the ratio inside the logarithm in equation (9) is equivalent
to the ratio N↑/N↓. Solving for this, we get

N↑
N↓

= e2µB/KT ,

where using N = N↑ +N↓, we find

N↑
N

=
eµB/KT

eµB/KT + e−µB/KT
N↓
N

=
e−µB/KT

eµB/KT + e−µB/KT
.

By introducing new nomenclature, the above relations can be unified to foreshadow our
study of Boltzmann statistics. Each ratio N↑,↓/N can be interpreted as the probability g↑,↓
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of finding a random particle in the up- or down-state, and the energy of any one particle
shall be denoted ε such that ε (N↑) = −µB and ε (N↓) = µB. The above pair of equations
reduces to

g (ε) =
1

Z
e−ε/KT ε (N↑,↓) = ∓µB ,

where the exponential term is called a Boltzmann factor, and Z is called the partition func-
tion, defined as the sum over all possible Boltzmann factors.

2.5 Einstein Solid

Using quantum mechanics, an accurate and precise description of matter is ‘easy’ enough to
attain for simple systems such as isolated atoms, simple harmonic oscillators, and perfect
crystals. Choosing how to model a system is a careful game, because we want to capture
the physically interesting phenomena, while filtering out details that won’t factor into the
investigation.

In a model called the Einstein solid, matter is assumed to consist of N non-interacting
quantum harmonic oscillators, with each oscillator having energy

εi (ni) = h̄ω

(
ni +

1

2

)
ni = 0, 1, 2, . . . ,

where ω is the angular vibration frequency, and ni is the quantum excitation level of the ith
oscillator, having allowed values 0, 1, 2, etc. The Einstein solid model allows us to ignore
nucleons, electrons, spin, momentum, and so on.

Internal Energy

The total energy E of an Einstein solid is the sum

E =
N∑
i=1

εi (ni) = h̄ω
N∑
i=1

(
ni +

1

2

)
,

which is not zero when all excitation numbers ni are zero. The ground-state quantity

E0 =
1

2
Nh̄ω

is called the zero-point energy, and is thermodynamically unaccessible. An oscillator cannot
lose or modify its zero-point energy without destroying the system (it will always be there), so
we ignore it in the same way we ignore the rest mass-energy mc2 in many other calculations.
The internal energy of an Einstein solid subtracts off the zero-point energy, and is given by:

U = E − E0 = h̄ω

N∑
i=1

ni (10)
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Multiplicity

Begin with a ground-state Einstein solid with zero internal energy. If we add some integer
number u of energy units h̄ω to the system, the internal energy of the solid jumps to U = uh̄ω.
The particular distribution of energy units among individual oscillators is not defined, which
means we much track all possible configurations available to she system, captured by the
multiplicity Ω (U,N).

To proceed, we shall depict the boundary between two oscillators as a vertical slash ( |
), and one energy unit h̄ω as a dot ( • ). Taking a system with N = 4 as an example, we
depict the unique ground state by four empty spaces (three slashes) and no dots:

U = 0 ||| Ω(0, 4) = 1

If we add one energy unit to the system, we find exactly four ways to arrange the dot between
various slashes

•||| | • || || • | |||• ,
so we conclude there are four configurations available, or Ω (1, 4) = 4. That is, any one of
the four oscillators has nj = 1 while ni 6=j = 0. Adding a second energy unit to the system,
the internal energy becomes U = 2h̄ω, and there are ten configurations to arrange two dots
among the slashes

• • ||| • | • || • || • | • ||| • | • •||
| • | • | | • || • || • •| || • | • ||| • • ,

so we write Ω (2, 4) = 10, and we could continue this way for any number of oscillators
containing any number of energy units.

In the pictorial representation of the Einstein solid, there are N−1 slashes and u = U/h̄ω
dots, or N − 1 + u total symbols. Framing the problem this way, we may borrow directly
from two-state analysis to write the multiplicity (think of dots and slashes as heads and tails
on a coin). Of the N − 1 + u symbols, u of them contribute to the internal energy. The
multiplicity is exactly:

Ω (u,N) =
(N − 1 + u)!

u! (N − 1)!
(11)

To anticipate calculations that follow, we may as well eliminate the factorial terms using
Stirling’s approximation

ln (n!) ≈ n lnn− n+ ln
√

2πn ,

so the multiplicity becomes

ln Ω (u,N) = (N − 1) ln

(
1 +

u

N − 1

)
+ u ln

(
1 +

N − 1

u

)
+

1

2
ln

(
N − 1 + u

2πu (N − 1)

)
.

In the large-N limit, the final term will be negligible compared to the first two. Of course,
N − 1 may also be replaced by N . Assuming further that u � N , the natural log of the
multiplicity is approximately

ln Ω (u,N) ≈ N (1 + ln (u/N)) ,

implying

Ω (u,N) ≈
(ue
N

)N
.
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Thermodynamic Properties

With the natural log of the the multiplicity on hand, multiply by the Boltzmann constant
to write the entropy of an N -particle Einstein solid

S = K

(
N ln

(
1 +

u

N

)
+ u ln

(
1 +

N

u

))
, (12)

where the internal energy is U = uh̄ω.
Having fixed volume and number of particles, the formula 1/T = (∂S/∂U)V,N gives the

temperature as

KT =
h̄ω

ln (1 +Nh̄ω/U)
.

In the u � N limit, this resolves to a formula for the average energy per element in the
solid:

KT =
U

N

In light of the equipartition theorem, the left side is the sum of two factors KT/2, as the
harmonic oscillator has two degrees of freedom. In the limit that u cannot be assumed to be
much greater than N , we may still solve for U/N to derive the Planck result for the average
energy per oscillator

U

N
=

h̄ω

exp (h̄ω/KT )− 1
,

reproducing the u� N case for high temperatures.
Solving for the internal energy U in terms of T comes out to

U =
Nh̄ω

eh̄ω/KT − 1
.

A temperature derivative of U gives the heat capacity at constant volume:

CV =
dU

dT
=

N (h̄ω)2 eh̄ω/KT

KT 2 (eh̄ω/KT − 1)
2

Combined Solids

Consider a combined Einstein solid composed of two equal-volume subsystems A and B such
that

N = NA +NB UA =
U

2
+Q UB =

U

2
−Q ,

where U is the total internal energy N is the total number of particles, and Q is a small
energy imbalance between the two systems, defined as q counts of h̄ω. Taking the trivial
case q = 0, the entropy of each Sj (uj, Nj, q) of subsystem reads

SA

(
u

2
,
N

2
, 0

)
= SB

(
u

2
,
N

2
, 0

)
=
S (u,N, 0)

2
,

14



which is half of the total entropy, indicating the multiplicity to be

Ω (u,N, 0) = Ω

(
u

2
,
N

2
, 0

)2

.

The next job is to develop the nontrivial case Ω (u,N, q) for relatively small q. Begin by
splitting the multiplicity inspired from equation (12) to account for subsystems A and B,

Ω (u,N, q) =(
1 +

u/2 + q

N/2

)N/2(
1 +

u/2− q
N/2

)N/2(
1 +

N/2

u/2 + q

)u/2+q (
1 +

N/2

u/2− q

)u/2−q
,

simplifying to, in the small-q limit:

Ω (u,N, q) = Ω (u,N, 0) e−2Nq2/u2 (13)

Dividing away the Ω- term and introducing a new normalization constant A (u,N), the
multiplicity becomes a Gaussian distribution in the q-variable:

p (u,N, q) = A (u,N) e−2Nq2/u2 ,

where the normalization constant is determined by

1 = A (u,N)

∫ ∞
−∞

e−2Nq2/u2 dq → A (u,N) =

√
2N

πu2
.

This allows calculations of 〈q〉, 〈q2〉, and the peak width (or standard deviation or vari-
ance):

〈q〉 = A (u,N)

∫ ∞
−∞

q e−2Nq2/u2 dq = 0

〈
q2
〉

= A (u,N)

∫ ∞
−∞

q2 e−2Nq2/u2 dq =
u2

4N

σq =

√
〈q2〉 − 〈q〉2 =

u

2
√
N

To express everything in terms of the dimensionless quantities uA and uB, start by writing

uA =
u

2
+ q uB =

u

2
− q

u2
A =

u2

4
− uq + q2 u2

B =
u2

4
− uq + q2 ,

and use the ‘sum of the averages’ rule on each quantity (noting that u is already an average),
accounting for the results above:

〈uk〉 =
u

2
±

�
�〈q〉 =

u

2〈
u2
k

〉
=
u2

4
±�

��u 〈q〉+
〈
q2
〉

=
u2

4
+

u2

4N
σuA = σuB = σq

15



2.6 Quantum Ideal Gas

The ideal gas is defined as a collection of non-interacting particles occupying a container,
which happens to be a generalization of a well-studied ‘confined quantum particle’ system
(the infinite well). Consider a one-dimensional ‘box’ of length L occupied by a single particle
of mass m. The walls at x = 0 and x = L are impenetrable. The behavior of the particle is
determined by the Schrodinger equation, namely

ih̄
∂

∂t
ψ (x, t) =

[
−h̄2

2m

∂2

∂x2
+ V (x, t)

]
ψ (x, t) ,

where ψ is the wavefunction of the particle, and V is the potential energy of the particle,
which is zero inside the box.

The confined-particle solution to the Schrodinger equation is

ψ (x, t) =

√
2

L
e−iεt/h̄ sin (kx) ,

where the particle’s energy ε and wavenumber k = p/h̄ are related by ε = h̄2k2/2m. Explic-
itly, these are:

ε =
n2h2

8mL2
k =

nπ

L

The number n is any positive nonzero integer. (Exclude the negative k-branch as we are
dealing with standing-wave solutions.)

Generalizing the container to be three dimensional by L → L3, it’s readily shown that
the particle’s energy becomes

ε =
h2

8mL2

(
n2
x + n2

y + n2
z

)
.

Increasing the number of particles from one to N , the total internal energy U becomes the
sum

U =
N∑
j=1

εj ,

which motivates inquiry into the total excitation number among all particles, which we define
as a ‘dimensionless energy’ quantity:

(N∗)2 =
N∑
j=1

(
n2
x + n2

y + n2
z

)
=

8mL2U

h2

Multiplicity

The number of microstates Ω that correspond to an ideal gas of given energy U with fixed
volume L3 = V and number of particles N must begin as the integral over all possible
position and momentum states as:

Ω =
1

N !

∫
dxi, ...dx3N

∫
dpi, ...dp3N

h3N
(14)
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The factor of 1/N ! has been inserted to account for the indistinguishably of ideal gas particles,
and Planck’s constant h = 2πh̄ is present for normalization purposes. This is simply a
generalization of the N = 1 case, where the number of microstates available to a single
particle is the product of ‘space bins’ and ‘momentum bins’, simplified by the Heisenberg
uncertainty relation

Ω1 =
Lx
∆x

Lp
∆p
≈ LxLp

h
.

The position integral is easy to evaluate, as we simply get N multiples of the volume V
of the gas, or

∫
dxi, ...dx3N = V N . The momentum integral is less obvious. First recast the

dpi factors in terms of the integers ni, and write

Ω =
1

N !

V N

h3N

(
h̄π

L

)3N ∫
dni, ...dn3N .

The remaining integral is the surface area of a hypersphere having 3N − 1 dimensions and
radius N∗. Consulting the Appendix, find that such an integral resolves to:∫

dni, ...dn3N =
2π3N/2 (N∗)3N−1

(3N/2− 1)!

The anticipated multiplicity of the ideal gas of energy U and fixed volume V and particle
number N � 1 reads

Ω (U) =
V N

h3N

2π3N/2

N ! (3N/2)!
(2mU)3N/2 (15)

Problem 2
A container of volume V is filled with one mole of ideal gas. Calculate the probability

that a region with volume V/1000 will be completely void of particles.

Solution 2

P =
Ω
(
U, V 999

1000
, N
)

Ω (U, V,N)
=

(
999

1000

)6×1023

≈ 0

Entropy

With the multiplicity in hand, take the natural logarithm and multiply by the Boltzmann
constant K to attain the entropy of the ideal gas. (Of course, use Stirling’s approximation
to handle the factorials.) After doing so, we find

S = NK

(
ln

(
V

N

(
4πmU

3Nh2

)3/2
)

+
5

2

)
, (16)

a result known as the Sackur-Tetrode equation.
As a historical note, the pioneers of statistical mechanics hadn’t developed the insight to

slip the factor of 1/N ! into the multiplicity. The entropy they were calculating was wrong,
namely the factor of 5/2 incorrectly appeared as 3/2, a mistake remembered as the Gibbs
paradox.
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State Variables

From elementary thermodynamics, take the so-called first thermodynamic identity

dU = TdS − PdV + µdN

to derive three relations:(
∂S

∂U

)
V,N

=
1

T

(
∂S

∂V

)
U,N

=
P

T

(
∂S

∂N

)
U,V

= −µ
T

The first two relations are trivial to evaluate after inserting equation (16), recovering well-
known results for the ideal gas

U =
3

2
NKT PV = NKT .

The chemical potential also simplifies:

µ = −KT ln

(
S

N
− 5

2

)
= −KT ln

[
V

N

(
4πm��U

3Nh2

3

2
NKT

)3/2
]

= −KT ln

(
V

Nλ3
0

)
,

where λ0 is known as the thermal de Broglie wavelength, namely

λ0 =
h√

2πmKT
. (17)

Accounting for dilute (non-ideal) solutions, we tack on a constant µ0 to the chemical
potential to write

µ = µ0 −KT ln

(
V

Nλ3
0

)
,

or as a function of pressure,

µ = µ0 +KT ln

(
P

P0

)
,

where P0 = KT/λ3
0.

Other Dimensions

The ideal gas multiplicity equation (15) can be condensed via

Ω (U, V,N) =
(
L3
)N

U3N/2f (N) ,

where generalizing the number of dimensions from 3 to α, we get

Ω (U, V,N) = LαNUαN/2f (N) .

Proceeding in analog to the three-dimensional case, the state variables for a gas occupying
α dimensions are related by

U =
α

2
NKT PLα = NKT .
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Problem 3
Consider a three-dimensional ideal gas consisting of N3 particles occupying a volume L3

that can exchange energy (but not matter) with a two-dimensional ideal gas consisting of
N2 particles on a surface of area L2. Let the total energy U of the system equal the sum
U3 +U2, the energies of the individual subsystems. Find (i) the total number of microstates
of the system as a function of E2, and find (ii) the equilibrium value of U2 and U3 = U −U2.

Solution 3

Ω =
(√

U − U2

)3N3
(√

U2

)2N2

f (L,N2, N3)(
∂S

∂U2

)
L2,N

= 0 → Ū2 =
N2U

N2 + 3N3/2
, Ū3 =

3N3U/2

N2 + 3N3/2

3 Canonical Ensemble

A physical system with fixed volume and number of particles in an environment of temper-
ature T is a canonical ensemble. (The internal energy is not fixed.)

3.1 Helmholtz Free Energy Minimum

For two canonical systems A and B that combine to a composite system C, the total multi-
plicity in terms of UA reads

ΩC (UA) = ΩA (UA) ΩB (U − UA) .

Taking the log of both sides gives

ln ΩC (UA) = ln ΩA (UA) + ln ΩB (U − UA) .

Evaluating to first order near UA ≈ 0, we find

ln ΩC (UA) ≈ ln ΩA (UA)− UA
∂ ln ΩB

∂UB
,

and multiplying through by K converts the above to an entropy equation

SC (UA) ≈ SA (UA)− UA
(
∂SB
∂UB

)
V,N,UB≈U

,

where the derivative term is identically equal to 1/T . So far then, we have

−TSC (UA) ≈ UA − TSA (UA) .

From elementary thermodynamics, note the right side is simply the Helmholtz free energy of
system A, and happens to be the quantity that such a system seeks to minimize. Therefore
we deduce

A = −KT ln ΩC (UA)

is a formula for the Helmholtz free energy.
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3.2 Boltzmann Factor and Partition Function

Returning to the first-order relation

ln ΩC (UA) ≈ ln ΩA (UA)− UA
∂ ln ΩB

∂UB
,

re-use the identity ∂ ln ΩB/∂UB = 1/KT and raise both sides as a power of e as follows:

eln ΩC(UA) ≈ eln ΩA(UA) e−UA/KT

ΩC (UA) ≈ ΩA (UA) e−UA/KT

ΩC (UA) ∝ e−UA/KT

Remarkably, the multiplicity is proportional to exp (−UA/KT ), a term known as the
Boltzmann factor. Introducing a normalization constant Z, it follows that the probability of
the system having energy state Uj is

Pr (Uj) =
1

Z
e−Uj/KT .

The normalization constant Z is called the (canonical) partition function, given by

Z =
∑

all states j

e−Uj/KT .

If more than one microstate corresponds to the same energy Uj, then the sum may be recast
over all energies by introducing a degeneracy factor as

Z =
∑

all energies

g (Uj) e
−Uj/KT ,

where g (Uj) is a dimensionless number that counts the number of states for a given energy.
Supposing UA lives on a continuous energy spectrum instead of a discrete one, the sum

becomes an integral according to

Z =

∫
all energies

g (U) e−U/KT dU .

Recasting over position- and momentum-space, and generalizing to r dimensions, the parti-
tion function is

Z =
1

hr

∫ ∫
e−H(x,p)/KT drx drp ,

where H (x, p) is the Hamiltonian of the system.

3.3 Non-interacting Particles

Consider a system of two particles A and B having internal energy U = UA (sA) + UB (sB),
where sA,B denotes the state of particle A, B respectively.
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Distinguishable Particles

If particle A is somehow different than particle B, they are a distinguishable pair. The
combined partition function Zindist. must involve the sum over all states sA, sB such that:

Zindist. =
∑
sA

∑
sB

e−(UA(sA)+UB(sB))/KT

=
∑
sA

e−UA(sA)/KT
∑
sB

e−UB(sB)/KT

= ZAZB

Evidently the combined partition function is the product ZAZB, which easy generalizes to
N particles:

Zindist. =
∏

k=1,...,N

Zk

Indistinguishable Particles

Particles that are identical have a curious implication for physical systems: there is no dis-
cernible way to know if distinguishable particles trade places. From combinatorial arguments,
it follows that the partition function for indistinguishable particles must be

Zdist. =
1

N !

∏
k=1,...,N

Zk .

3.4 Observables

We found that the probability of finding a system in energy state Uj is given by

Pr (Uj) =
1

Z
e−Uj/KT ,

which normalizes to unity as

1 =
∑
j

Pr (Uj) =
1

Z

∑
j

e−Uj/KT .

Further insight from probability and statistics tells us that any observable macrostate Q can
be calculated from

〈Q〉 =
∑
j

Q̂ Pr (k) =
1

Z

∑
j

Q̂ e−Uj/KT ,

where 〈Q〉 is the ensemble average (brackets usually omitted), and Q̂ is the corresponding
operator.

The internal energy U and entropy S of a canonical system are easy to write as statistical
observables by exploiting the chain rule:

U =
1

Z

∑
j

Uj e
−Uj/KT = − 1

Z

∂

∂ (KT )−1

∑
j

e−U/KT = − ∂

∂ (KT )−1 lnZ
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S = −K
∑
j

ln (Pr (j)) Pr (j) =
U

T
+K lnZ

Solving for U − TS, we identify a new formula for the Helmholtz free energy:

A = −KT lnZ

From elementary thermodynamics, recall that the pressure of a canonical system can be
calculated from the Helmholtz free energy:

P = −
(
∂A

∂V

)
T,N

=
1

Z

∑
j

(
−∂Uj
∂V

)
T,N

e−Uj/KT = 〈P 〉

Fluctuations

In many scenarios, an the internal energy is sharply-peaked around its average value 〈U〉,
where we approximate the profile to be Gaussian:

Pr (U) = Ã e−(U−〈U〉)2/2σ2

Meanwhile, the continuous probability in terms of the Boltzmann factor is

Pr (U) = g (U) e−U/KT .

Equating these and taking the logarithm we find

ln g (U)− U

KT
= ln Ã− (U − 〈U〉)2

2σ2
.

Taking a single partial derivative with respect to U , and then evaluating at U → 〈U〉,
the above gives

1

KT
=

∂

∂U
ln g (U)

∣∣
U→〈U〉 .

The second-order derivative is more interesting. Carrying this out, we find

− 1

KT 2

∂T

∂U
=

��������������
∂

∂U

(
∂

∂U
ln g (U)

∣∣
U→〈U〉

)
− 1

σ2
,

where ∂T/∂U is the inverse of the heat capacity at constant volume, letting us conclude

σ =
√
KT 2CV .

For example, an ideal gas at about 300◦ C has KT ≈ (1/40) eV (electron-volts). The
fluctuation width σ evaluates to about 2× 1010 eV , making σ/U ≈ 10−12.

3.5 Derivations

Several tools from elementary thermodynamics that were quietly placed on the shelf without
derivation are finally accounted for here.

22



Equipartition Theorem

In familiar form, the equipartition theorem tells us that the average internal energy per
particle in a system is equal to f multiples of KT/2, where f is the number of quadratic
degrees of freedom. If the Hamiltonian contains a non-quadratic potential term, the factor
of 2 generalizes to match the power of the potential.

To begin, consider a system of N particles subject to the Hamiltonian

H (x, p) = H0 (p) + bxm .

As an integral in one-dimensional position- and momentum phase space, the partition func-
tion for a single particle is

Z1 =
1

h

∫
e−bx

m/KT dx

∫
e−H0(p)/KT ,

where the integral involving H0 (p) is condensed as some unknown (and unneeded) function
f (T, V ). Letting z = bxm/KT such that dz = mbxm−1 dx/KT , we have

Z1 = f (T, V )
1

m

(
KT

b

)1/m ∫ ∞
0

z1/m−1 e−z dz

= f (T, V )
1

m

(
KT

b

)1/m

Γ

(
1

m

)
,

where a gamma function identity has replaced the final integral. Generalizing to N particles,
we write

Z = f̃ (T, V,N)

(
Γ (1/m)

m

)N (
KT

b

)N/m
,

where f̃ (T, V,N) implies an optional factor of 1/N !, depending on whether particles are
distinguishable.

Noting that the equipartition theorem deals with internal energy only, the kinetic term
H0 (p) need not be specified, nor must we evaluate a gamma function. Only the term
including b matters, thus we use the formula for U (Z) above, giving

U = − ∂

∂ (KT )−1 lnZ =
N

m
KT ,

and we finish the proof by taking the ratio U/N :

U

N
=
KT

m

Maxwell Speed Distribution

The ideal gas model alone has little to say about the distribution of molecular speeds within
the gas, however one formula was ‘borrowed’ from statistical mechanics that we finally derive
here. T Maxwell speed distribution

D (v) dv =
( m

2πKT

)3/2

4πv2 e−mv
2/2KT dv
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gives the probability of finding an ideal gas particle with speed within the interval [v1, v2]
equals the area under D (v) curve spanning that interval, or

P (v1 < v < v2) =

∫ v2

v1

D (v) dv .

To derive D (v), assume ideal gas is a canonical ensemble, and write the elementary
notion that the probability of a particle having some speed between zero and infinity is one:

1 = A

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

e−U/KT dvx dvy dvz ,

where A is a normalization constant. Since the integrals take place in a three-dimensional
velocity domain, let us convert from Cartesian coordinates to spherical coordinates. By
symmetry, the angular component integrates out to 4π, and the radial part of dvx dvy dvz
becomes v2dv. Finally, note that the energy in an ideal gas is purely kinetic, so we substitute
U = mv2/2 as

1 = A

∫ ∞
0

e−mv
2/2KT4πv2 dv

1 = A · 4π
(

2KT

m

)3/2 ∫ ∞
0

e−x
2

x2 dx

1 = A ·
(

2πKT

m

)3/2

,

where the Gaussian integral identity∫ ∞
0

e−x
2

x2 dx =

√
π

4

has been used. Solving for A and substituting back into the normalization condition gives

1 =

∫ ∞
0

( m

2πKT

)3/2

4πv2 e−mv
2/KT dv ,

indicating the D (v) function was correct.

3.6 Canonical Ideal Gas

Partition Function

We begin by calculating Z1, the partition function of a single particle in three dimensions,
given by

Z1 =
1

h3

∫ ∫
e−H(x,p)/KT d3x d3p ,

where the Hamiltonian is purely kinetic, namelyH (p) = p2/2m. The spatial integral trivially
evaluates to the volume V , and the momentum integral can be transformed to spherical
coordinates to give us

Z1 =
V

h3

∫ ∞
0

e−p
2/2mKT 4πp2 dp ,
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which contains the same integral (up to the constant m) encountered in the Maxwell speed
distribution derivation. So far then

Z1 =
V

h3
(2πmKT )3/2 ,

where generalizing to N particles, we note that ideal gas constituents are indistinguishable.
The ideal gas partition function is

Z =
1

N !
ZN

1 =
1

N !

V N

h3N
(2πmKT )3N/2 =

1

N !

(
V

λ3
0

)N
.

Internal Energy

It’s well-established that the internal energy of the ideal gas obeys U = 3NKT/2, which is
easily verified by calculating U/N according to

U

N
= − ∂

∂ (KT )−1 lnZ1 =
3

2
KT .

Entropy

With the partition function in hand, we calculate the entropy to be

S =
U

T
+K lnZ

=
3

2
NK −�����

K ln (N !)−NK lnN +NK +NK ln

(
V

λ3
0

)
=

5

2
NK +NK ln

(
V

Nλ3
0

)
,

matching the Sackur-Tetrode equation. Note the internal energy U = 3NKT/2 has been
used, along with Stirling’s approximation to handle the factorial.

Helmholtz Free Energy

Using A = U − TS or A = K lnZ, the Helmholtz free energy comes out to

A = −NKT
(

1 + ln

(
V

Nλ3
0

))
.

Equation of State

The proper derivative of A, namely −P = (∂A/∂V )T,N , delivers the ideal gas law:

PV = NKT
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Relativistic Gas

For relativistic speeds, the kinetic energy per particle is no longer given by E = p2/2m, but
instead E = pc.

Problem 4
Consider an ‘ideal’ gas made of N particles that move at relativistic speeds in a three-

dimensional volume V . Find the partition function.

Solution 4

Z1 = 4πV

(
KT

hc

)3 ∫ ∞
0

e−x x2 dx Z =
1

N !

(
8πV

(
KT

hc

)3
)N

Problem 5
Consider an ‘ideal’ gas made of 3N particles that move at relativistic speeds in a one-

dimensional channel L. Find the partition function.

Solution 5

Z =
1

(3N !)

[
2L

(
KT

hc

)]3N

Ideal Gas in Gravity

Problem 6
Consider an ideal gas of N � 1 molecules of mass m at temperature T in a cylinder

of base area B and height L. The molecules are subject to Earth’s gravitational field. (a)
Compute the partition function of this system, and compute the internal energy. Examine
the limits L → ∞ and L � KT/mg. (b) Compute the force acting on the top of the
cylinder. (c) In the limit L→∞, find the average distance of the molecules from the base.
(d) In terms of g = 9.8m/s2 and T = 300K for the atmosphere, and assuming the thickness
of the atmosphere is 10 km, estimate the mass of an air molecule.

Solution 6

Z =
1

N !

[
B

h3

∫ L

0

e−mgz/KT dz

∫
e−p

2/2mKT d3p

]N
=

1

N !

(
V

λ3
0

(
1− e−mgL/KT

)
mgL/KT

)N

U = − ∂

∂ (KT )−1 lnZ =
5

2
NKT +

NmgL

1− emgL/KT

Ug→0 =
3

2
NKT UKT�mgL =

3

2
NKT UL→∞ =

5

2
NKT
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Ftop
B

= P = −
(
∂A

∂V

)
T,N

= KT
1

B

∂

∂L
lnZ =

NKT

V

(
mgL/KT

emgL/KT − 1

)
〈z〉 =

∫ L
0
e−mgz/KT z dz∫ L

0
e−mgz/KT dz

∣∣∣∣
L→∞

=
−KT
m

∂

∂g
lnZ1

∣∣∣∣
L→∞

=
KT

mg

m =
KB · 300K

10 km · 9.8m/s2
= 4.23× 10−26 kg

Interacting Particles

Problem 7
Consider a gas of N classical particles whose interactions are a homogeneous function of

the nth degree: V (λ~r1, ..., λ~rN) = λnV (~r1, ..., ~rN). This scale invariance causes the partition
function to be of the form ZN(T, V ) = Tα1f(V Tα2), where f is some unknown function. (a)
Compute α1 and α2. (b) Compute the pressure and the internal energy of such a gas. (c)
Eliminate the dependence on f , and derive an equation of state. Check that it reduces to
PV = NKT for n = 0.

Solution 7

ZN (T, V ) = λ3N

∫ L/λ

0

d3Nx

∫
e(−

∑
i p

2
i /2mKT−λnV/KT) d3Np

= λ3Nλ3Nn/2

∫ L/λ

0

d3Nx

∫
e−λ

n(
∑

i p
2
i /2m+V )/KT d3Np

Tα1f(V Tα2) = λ3N(1+n
2 )ZN

(
Tλ−n, V λ−3

)
= λ3N(1+n

2 )
(
T

λn

)α1

f

(
V λ−3

(
T

λn

)α2
)

= λ3N+3Nn/2−nα1Tα1f
(
V Tα2λ−3−nα2

)
→ α1 = 3N

(
1

n
+

1

2

)
α2 = − 3

n

A = −KT lnZn = −KT (α1 lnT + ln f (V Tα2))

P = −
(
∂A

∂V

)
T,N

= KT
f ′

f
Tα2 = KTα2+1 f

′

f

U = − ∂

∂ (KT )−1 lnZ = KT

(
α1 + α2V

f ′

f
Tα2

)
n

3
U + PV = NKT

(
1 +

n

2

)
Van der Waals Equation

In the Van der Waals model, the volume is replaced by

V → V −Nb ,
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where b is a constant. Also, the Leonard-Jones attraction between particles imparts an
average energy

ε = −aN
V

where a is another constant.
The partition function for a Van der Waals fluid is thus

Z =
1

N !

(
V −Nb
λ3

0

eaN/V KT
)N

,

from which the internal energy U computes to

U = − ∂

∂ (KT )−1 lnZ =
3

2
NKT − aN2

V
,

and the Helmholtz free energy is

A = −NKT
(

1 + ln

(
V −Nb
Nλ3

0

))
− aN2

V
.

The entropy is most easily calculated from A = U − TS, giving

S =
5

2
NK +NK ln

(
V −Nb
Nλ3

0

)
.

Finally, the equation of state is easily calculated by

−P =

(
∂A

∂V

)
T,N

= − NKT

V −Nb
+
aN2

V 2
,

delivering the Van der Waals equation:(
P +

aN2

V 2

)
(V −Nb) = NKT

3.7 Simple Harmonic Oscillator

A simple harmonic oscillator (SHO) is any body bound by an attractive potential

V (x) =
mω2

2
x2 ,

whose motions oscillate sinusoidally about the center x = 0, where m is the mass and ω is
the angular frequency of the oscillator. It follows that solid materials are well-approximated
by a canonical ensemble made of distinguishable oscillators. Since each oscillator is locked
in place, the volume is constant, and the pressure is identically zero.
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Classical SHO

For a system of N harmonic oscillators, the Hamiltonian is

H =
N∑
j=1

(
p2
j

2m
+
mω2x2

j

2

)
,

where xj and pj are the position and momentum of the jth oscillator. The partition function
of a single oscillator involves two Gaussian integrals

Z1 =
1

h

∫ ∞
−∞

e−mω
2x2/2KT dx

∫ ∞
−∞

e−p
2/2mKT dp ,

which simplifies to

Z1 =
1

h

√
2KT

mω2

√
2mKT

(∫ ∞
−∞

e−r
2

dr

)2

=
2π

h

KT

ω
=
KT

h̄ω
.

Generalizing to N distinguishable particles, the partition function for the system is

Z = ZN
1 =

(
KT

h̄ω

)N
.

With the partition function in hand, we may evaluate the internal energy, Helmholtz free
energy, enthalpy, entropy, Gibbs free energy, chemical potential, and grand free energy:

U = − ∂

∂ (KT )−1 lnZ = NKT

A = −KT lnZ = NKT ln

(
h̄ω

KT

)
H = U + PV = U + 0 = NKT

S = −
(
∂A

∂T

)
V,N

=
U − A
T

= NK

(
1− ln

(
h̄ω

KT

))
G = H − TS = NKT ln

(
h̄ω

KT

)
µ =

(
∂A

∂N

)
T,V

=
G

N
= KT ln

(
h̄ω

KT

)
Φ = −PV = U − TS − µN = 0
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Quantum SHO

A quantum mechanical treatment of the simple harmonic oscillator begins with the same
potential V (x) = mω2x2/2, and uses the Schrodinger equation i∂tψ (x, t) = Hψ (x, t) to
determine the energy levels of the system, which turn out to be

εn = h̄ω

(
n+

1

2

)
,

where n is an integer. The Boltzmann factor for a single particle occupying the nth energy
level is exp (−εn/KT ).

The partition function Z1 of the single particle is the sum of Boltzmann factors across
all n as

Z1 =
∞∑
n=0

e−εn/KT = e−h̄ω/2KT
∞∑
n=0

(
e−h̄ω/KT

)n
,

where the sum is a geometric series obeying

∞∑
j=0

xj =
1

1− x
,

allowing a tight expression for Z1:

Z1 =
e−h̄ω/2KT

1− e−h̄ω/KT
=

1

2 sinh (h̄ω/2KT )

For high temperatures, the partition function for a single particle is approximately KT/h̄ω,
matching the classical answer. Generalizing to N distinguishable oscillators, the partition
function is

Z = ZN
1 =

(
2 sinh

(
h̄ω

2KT

))−N
.

For reasons that are especially obvious from Bose-Einstein condensation studies, let us
define the occupation number 〈n〉 as

〈n〉 =
1

eh̄ω/KT − 1

for notational convenience. With the partition function in hand, we may evaluate the internal
energy, Helmholtz free energy, enthalpy, entropy, Gibbs free energy, chemical potential, and
grand free energy:

U = − ∂

∂ (KT )−1 lnZ = Nh̄ω

(
1

2
+ 〈n〉

)
A = −KT lnZ = N

(
h̄ω

2
+KT ln

(
1− e−h̄ω/KT

))
H = U + PV = U + 0 = Nh̄ω

(
1

2
+ 〈n〉

)
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S = −
(
∂A

∂T

)
V,N

=
U − A
T

=
Nh̄ω

T
〈n〉 −NK ln

(
1− e−h̄ω/KT

)
G = H − TS =

Nh̄ω

2
+NK ln

(
1− e−h̄ω/KT

)
µ =

(
∂A

∂N

)
T,V

=
G

N
=
h̄ω

2
+K ln

(
1− e−h̄ω/KT

)
Φ = −PV = U − TS − µN = 0

In the high-temperature limit, each of the above results reduces to the classical limits above.

Problem 8
Consider a gas of non-interacting particles with internal degrees of freedom. Each

particle has an internal spectrum of energies ε1, ε2, ..., εn with degeneracies g0, g1, ..., gn.
The single-particle partition function can be written as Z1 = (V/λ3

0)Zint, where Zint =∑
n g (εn) e−εn/KT . (a) Without explicitly computing Zint, derive the expressions for the

Helmholtz free energy, the entropy, the internal energy, and the specific heat at constant vol-
ume for a system of N of these particles, considered identical. (b) Derive the expression for
the pressure, the enthalpy, and the specific heat at constant pressure. (c) Assume that the
internal degrees of freedom are those of a quantum simple harmonic oscillator with uniform
degeneracy. Derive an expression for Zint, and then evaluate the specific heat at constant
volume. Discuss its behavior at extreme temperatures in terms of the equipartition theorem.
(d) Instead of a harmonic oscillator model, repeat the previous calculation supposing there
are only two allowed energy levels: ε0 with degeneracy g0 and ε1 with degeneracy g1.

Solution 8

A = −KT lnZ = −NKT ln

(
e

N

V

λ3
Zint

)
S = −

(
∂A

∂T

)
V,N

= −A
T

+
3

2
NK +NKT

∂

∂T
lnZint

CV =

(
∂U

∂T

)
V,N

=
∂

∂T
(A+ TS) =

3

2
NK + 2NKT∂T lnZint +NKT 2∂TT lnZint

P = −
(
∂A

∂V

)
T,N

=
NKT

V

H = U + PV =
5

2
NK +NKT

∂

∂T
lnZint

CP = CV +NK =
5

2
NK + 2NKT∂T lnZint +NKT 2∂TT lnZint

ZQSHO =
1

2 sinh (h̄ω/2KT )

CV (QSHO) =
3

2
NK +NK

(
h̄ω

2K

)2
1

sinh2 (h̄ω/2KT )
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CV (QSHO) (T → 0) =
3

2
NK CV (QSHO) (T →∞) =

5

2
NK

Z2ST = g0e
−βε0 + g1e

−βε1

3.8 Two-State System

The two-state system is immeasurably common in discrete mathematics and quantum me-
chanics. For many-particle systems, a pure quantum mechanical description is cumbersome
to develop, and even worse, excludes the effects of temperature. To solve the many-particle
issue and the temperature issue in a single stroke, a statistical analysis is most useful.

The simplest two-state system is a single particle that has two discrete energy levels
U = ±ε at constant temperature T . The partition function is

Z1 = eε/KT + e−ε/KT = 2 cosh (ε/KT ) .

Introducing a second distinguishable particle with the same possible energy states, the total
system energy can be any of −2ε, 0, or 2ε. The U = 0 state however is not unique, as there
are two ways for ±ε+±ε to sum to zero. In light of this degeneracy, the partition function
for two particles is

Z2 = eε/KT + 2 e0 + e−ε/KT = 22 cosh2 (ε/KT ) = Z2
1 ,

which is no surprise for distinguishable particles. Generalizing to an N -particle two-state
system, the partition function is evidently

Z = 2N coshN (ε/KT ) .

The internal energy (or any of the myriad of free energies) can be derived from Z, which
comes out to

U = − ∂

∂ (KT )−1 lnZ = −Nε tanh (ε/KT ) .

In the high-temperature limit, the energy and temperature relate by

KT = −N
U
ε2 ,

matching the result from our previous study of paramagnetism.

3.9 Paramagnetism II

Using canonical ensemble analysis, we revisit the subject of paramagnetism in the classical
and quantum regimes.
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Classical Paramagnet

Consider a ‘solid’ system of distinguishable noninteracting particles at temperature T that
are subject to a uniform magnetic field ~B = Bẑ. In the classical model, each particle’s
magnetic moment ~µ may be oriented at an arbitrary angle with respect to ẑ. A particle with
classical magnetic moment ~µ in a uniform magnetic field B~z has potential energy

U = −~µ · ~B = −µzBz = −µB cos θ ,

where θ is the angle between ~µ and the z-axis. We are interested in calculating the mag-
netization 〈µz〉 of the material, which is the average z-component of ~µ per particle. With
momentum playing no role in the magnetization, the single-particle partition function is

Z1 =

∫ π

0

eµB cos θ/KT sin θ dθ dφ = 4π
KT

µB
sinh (µB/KT ) ,

which is an integral over a spherical-shell embedded in three-space.
The magnetization 〈µz〉 is the ensemble average of µ cos θ, or

〈µz〉 =

∫ π

0

µ cos θ eµB cos θ/KT sin θ dθ dφ = µ

(
coth (µB/KT )− KT

µB

)
,

a result known as the Langevin function. At high temperatures, the quantity in parenthesis
reduces to µB/3KT , known as the Curie law, which states that the magnetization of a
paramagnetic particle is proportional to B and inversely proportional to T :

〈µz〉 ∝
µ2

K

B

T

The factor in front of B/T is called the Curie constant for a given material.

Quantum Two-State Paramagnet

We worked previously with the quantum-two state paramagnet having two energy levels
ε = ±µB. As a canonical ensemble, the partition function is

Z = 2N cosh (µB/KT ) ,

with total internal energy

U = − ∂

∂ (KT )−1 lnZ = −NµB tanh (µB/KT ) .

By taking the derivative of lnZ with respect to B/KT , we calculate the average magne-
tization 〈u〉 = 〈µz〉. Doing so, we find

〈µz〉 = − 1

N

∂

∂ (B/KT )
lnZ = −µ tanh (µB/KT ) ,

which reduces to the classical value for high temperatures.
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Quantum Many-State Paramagnet

In a paramagnet exposed to an external magnetic field B, each particle’s spin vector has
quantized projections on the z-axis. If a given particle’s total spin has magnitude J , it
follows from standard quantum mechanics that the z-projection of the spin is given by msh̄,
where ms is the spin quantum number ranging from −J to J in integer or half-integer steps.

The Hamiltonian of one particle is

H = −µzB = −γmsB ,

where γ is the gyro-magnetic ratio (a constant) of the particle species. For an isolated
electron, the gyro-magnetic ratio is γ = geµB/h̄, where ge ≈ 2.00 and µB is the Bohr
magneton, given by

µB =
eh̄

2me

,

where me is the electron mass and e is the electron charge.
The partition function is straightforwardly written as the sum of all possible Boltzmann

factors

Z1 =
ms=J∑
ms=−J

(
e−γB/KT

)ms
=

1− e−q(J+1)

1− e−q
+

1− eq(J+1)

1− eq
− 1 ,

where the substitution q = γB/KT has been made and the geometric series identity

1 + q + q2 + q3 + ...+ qn−1 =
1− qn

1− q
has been used. Thus Z1 simplifies to

Z1 =
sinh (γB (J + 1/2) /KT )

sinh (γB/2KT )
.

By computing the observable 〈M〉 ∝ 〈γms〉, it can be shown that the magnetization of a
paramagnet with N particles per unit volume is

〈M〉 = NγJBJ (x) ,

where x = γJB/KT , and the function BJ(x) is called the Brillouin function, which is a
generalization of the Langevin function as follows:

BJ (x) =
2J + 1

2J
coth

(
2J + 1

2J
x

)
− 1

2J
coth

( x
2J

)
If the magnetic field strength B is sufficiently low and the temperature T is sufficiently high,
it can be shown that the Curie constant for any J is

C =
∂ 〈M〉
∂B

=
µ2
B

3K
Ng2

eJ (J + 1) .

The special case J = 1/2 makes the Brillouin function simplify to tanh(x), which in the small-
x limit reduces to x, matching the previously-found result for the two-state paramagnet.

Classical behavior is recovered from the quantum analysis by allowing the spin vector
to occupy the whole continuum of solid angle. This can only by accomplished by setting
J →∞. In this case, the Brillouin function reduces, as expected, to the Langevin function.
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3.10 Problems

Entropic Rubber Band

Zipper Problem
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