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1 Fundamentals

1.1 Dimensional Analysis and Quantum Mechanics

The fundamental constants in quantum theory, expressed in terms of Planck’s length (L),
mass (M), and time (T') are the speed of light ¢ (LT 1), Planck’s reduced constant ii = h/27
(M L*T1), the squared electron charge €?/(4meg) (M L3T—2), and the electron mass m (M).

Problem 1
Determine z, y, and z such that A*cYm* has dimensions of length. This is called the
reduced Compton wavelength )., which evaluates to roughly 0.386 x 1072 m.

Problem 2
From the combination A”cY(e?/4mey)?, obtain a dimensionless quantity. To make it
unique, choose y = —1, corresponding to the fine structure constant a. Give the formula for

a and evaluate it numerically.

Problem 3
Determine the Bohr radius ag by dividing the result from part (1) by the result of part
(2). State the numerical value of the Bohr radius in meters.

Solution 1
From dimensional analysis, we have three equations

r+z2=0 2r+y=1 r+y=0,
solved by x = 1 and y = z = —1, telling us that A. = h/mec.

Solution 2
To attain a dimensionless quantity, the same game gives three equations

r+2=0 20 —14+32=0 —z+1—-22=0,
solved by © = —1, z = 1. The fine structure constant is evidently:
e? /4meg 1
= ~ ~ 0.00730
T e T
Solution 3
The Bohr radius evaluates to
Ae h?
ap=""=——— 137 x A\~ 520 x 107" m

a  m(e?/dmeg)



1.2 Finding Linear Combinations

Problem

Let [¢1) and |¢2) be normalized eigenfunctions that correspond to the same eigenvalue.
If (11]1p2) is a real number d, find a normalized linear combination of |¢;) and |¢)) that is
orthogonal to [¢1). Also find a normalized linear combination that is orthogonal to [11)+|t)9).

Solution
Let [x1) = A Y1) + B |¢2) and |x2) = C'|¢1) + D |p2) be the linear combinations we're
looking for, and the task is reduced to finding A, B, C, and D. These are given by, respec-
tively
(xalgn) =0 (xa| ([¢1) + l1h2)) = 0.
Blooming out the algebra, find A + Bd = 0 and C' + D = 0, and by the normalization
requirement (x,|x,) = 1, arrive at:

_ ) — [¥9) N 1) — lba)

MET e T V2—2d
1.3 Measurement and Probability

Problem

An operator A, corresponding to and observable a, has two normalized eigenfunctions
|Y1) and |1)9), with eigenvalues a; and as. An operator B, corresponding to and observ-
able 3, has two normalized eigenfunctions |¢;1) and |¢9), with eigenvalues by and by. The
eigenfunctions are related by

_ 2|p1) + 3 da) _ 3|p1) — 2|d2) _

[¢1) = 3 [42) = ik

Suppose the system is measured to be in the state [i1) with a = a;. If § is measured, and
then a again, show that the probability of obtaining a; again is 97/169.

Solution
First solve for the second set of eigenfunctions:

j6y) = 21l £ 31e) o) = Bl = 210)

V13 V13

When operator B acts on the inital state |yo) = [t1), the resultant state must assume one
of |¢12). The respective probabilities are given by

4 9
Pay oy = [(d1]x0)* = 3 Paysvy = [{d2]x0))* = ER

Finally, operator A must act on whichever of the |1,2) was the result of the previous mea-
surement, and the outcome will be one of |y 2). Since we were asked about the probability
of getting [11) again, the two relevant probabilites can be written,

4 9
Pa1—>b1—>a1 = 1_3 : |<¢1|¢1>|2 Pa1—>b2—>a1 - E : |<¢1|¢2>|2 )

which evaluate to (4/13)? and (9/13)?, respectively. The total probability of measuring a;
again is the sum of the two numbers above, which comes to 97/169.
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2 Wavefunction

2.1 Time-Independent Schrodinger Equation

Problem
The time evolution of a single nonrelativistic particle is determined by the time-dependent
Schrodinger equation, which reads

[ . e
—o VI V(E )| U (1) = iho ¥ (1)

and is solved by the complex wavefunction W(Z,t) = |¥(¢)). The Hamiltonian operator in
square brackets is abbreviated by H. By separation of variables, we break the wavefunction
into time- and space-components as in |WU(t)) = f(¢)[¢)). Since a linear combination of
solutions to a differential equation must also be a solution, the most general wavefunction is

an ) [thn)

Establish the time-independent Schrodinger equation H |i,) = E, [¢,) by finding f,(t)
explicitly, and then write an expression for the initial conditions f,,(0).

Solution

Z [ Enfu(t iﬁ%fn )| |Yn) =0 Fo () = fo (0) e Ent/h

n=0

fn (0) = {¢n| ¥ (0))

2.2 Momentum Operator and Momentum Eigenstates

In one dimension, the expectation value of the position of a particle is given by
() = (V|z]W) .

Problem 1
Take a time derivative of both sides, and then integrate by parts (like mad) to show that
the momentum operator must be:

0
s— —in 2
b " o
Be sure to use the Schrodinger equation
h2
1tho, U = ——8m\lf + Vv

and its complex conjugate.

Problem 2



For the momentum observable p, determine the eigenstates |p) of the operator p.

Solution 1

d (p) ho [ dv* dw dx
CSay=L_" [ g Ut e ey
T e Zmi/ x(dtx LTI )

—0o0

(p) = 22/00 dr (0" (0, %) — (8, ¥*) ¥ +0) = —ih /Oo dz U* (%) 7

—00 —00

Solution 2

A

blp) = —iho—|p) = pIp) p) = AP/ e,)

2.3 Position Space and Momentum Space

Problem 1
Consider a particle moving in one dimension. The ‘ket’ position representation of a
wavefunction, [¢), is not simply equivalent to 1 (x), but is actually defined by

) = [ da @)

where 1 (z) is given by (z|¢)). The quantity [¢)(z)|* is understood as the probability density
of finding the particle at some point x. Show the inner product (z|z’) must equal the Dirac
delta function é(x — ).

Problem 2
The momentum representation of a wavefunction is

) = [ 5 v @)

where there is a factor of (2wh)~! for each spatial dimension. Using another representation
of the Dirac delta function given by (p[p’) = 2whd(p — p'), derive the relation

_ [
1= [ SE

which tells us the probability density of finding the particle with momentum p has the 27h
factor in the denominator.

Problem 3
Let us define momentum eigenstates as plane waves, given by

Ip) = /dx e/ |z) .



Show that the Dirac delta function can be represented by the integral:

Oodl’ ilp—p')a
5(29—1)’)—/ ﬁe@ pz/h

Problem 4
The position eigenstates have the form

|@=/@f@mm.

Determine f(x,p).

Solution 1

W) = [ do () @le) = [ dow@)5(@-a) =0 (&)

Solution 2

1=l = [ [ 250 00 wln = [ 55 wer

Solution 3

@m»:/dxeppﬂh<uw—%ﬁ5@ P)
Solution 4

—ipx/h

— [ax' [an s .y fn) =5

2.4 Fourier Representation of the Wavefunction

Problem
In ‘ket’ notation, the position and momentum eigenstates of a particle moving in one
dimension read:

d —ipx ipT
o) = [ o el ) ) = [ dz et

The wavefunction of the particle, in each representation respectively, is

0} = [ dav (@) ) = [ oo @)

Attain the Fourier representations of ¢ by solving for ¢)(z) in terms of ¢)(p), and vice-versa.
There should be no explicit ‘ket’ states in the results.

~ [ o [ smv e 00)= [ e
- [t [ v w)eriye) 0@ = [ o et

Solution



3 Commutation

3.1 Commutation with the Hamiltonian

Problem
The commutation is a construction that tells us what terms are ‘left over’ when two
operators are interchanged:

[4.B] = AB - BA

Use the Schrodinger equation H |W) = ihd, |[¥) to show that an observable Q obeys

'@ =i ([a4]).

Note if the above equation yields zero, we say that the operator ) commutes with the
Hamiltonian, and the observable is a constant over time.

Solution
d A A 1 oA 1 . A
Q) = (20(QI) + (W[Ql0y¥) = —= (WHQIW) + — (¥QH|¥)
d 7 A A 7 ~ A
Q) == (0] [Q.H] [0) = — (|Q.4])

3.2 Time Evolution and Non-Commuting Operator

For a certain system, the operator corresponding to the physical quantity A does not com-
mute with the Hamiltonian. It has eigenvalues a; and as, corresponding to eigenfunctions

|¢1> _ ’¢l> + ‘¢2> |¢2> _ ’wl> - ‘¢2>
V2 V2 oo
where [11) and [i9) are the eigenfunctions of the Hamiltonian, with energy eigenvalues E)
and Fs.

Problem 1
If the system has initial state |U(0)) = |¢1), determine the expectation value of the
observable A using the formula:

(A) = (T AL (1) = Y |fa ()] (alAldn)

n=1,2

‘ 2

Problem 2
Verify the time evolution of (A) using the formula:

7= {[Aa])

Solution 1



Z ;b |\1/ v |1/; > _ e—iEt/h W’l) + e—ibat/n |1/)2>
= n n \/§

1 1, ,
’\I] (t)> = 5 ( —iFE1t/h +e zEzt/h) |¢ > 5 (eszlt/h o esz'zt/h) ‘¢2>

<A> _ a; + as +CL1—CL2 COS<(E1_E2>t>

2 2 h

Solution 2

B + 55 BT — B3

|W) = B1(t) [v1) + B2 (T) [1h2) (V] = 7 (o] + 7 (2]
ih% (A) = (P|OH|T) — (U|HO|V) = —% (a1 — ag) (Ey — Ea) (81 P2 + B561)

ih% (A) = - (al ; az) (Ey — E»)sin (—( - 2) )

3.3 Position, Momentum, Hamiltonian Commutations

In one dimension, the position and momentum operators, respectively, are written

0
T = h— —ih— .
e P Mox
Problem 1
Derive the following relations:
[,p] = ih 2, p%] = &p® — p°& = 2ihp

Problem 2
_ Calculate the commutation relation between the position operator & and the Hamiltonian
H = p*/2m + V (), and show that

SH
—~
~—

p
—(x) = —.
() = &
Problem 3
Calculate the commutation relation between the momentum operator p and the Hamil-
tonian to show that p 5

£<p>_

which is Newton’s second law.

Problem 4
Derive again the result from part (3) without using any results from commutation rela-
tions. That is, take the time derivative of

(p) = /_Z do U <—m§x) ¥

8



and integrate by parts. Use only the Schrodinger equation ihd,¥ = —(h?/2m)0,, ¥ +V (z) V.

Solution 1
&, p] U = 2PV — pi¥ = —ilid, (xV) + ihxd, ¥ = ih ¥
2ilip = p (2p — p) + (2p — p2) P
Solution 2
NI % (#p? — p°2) = ih%
g0 = (] =2
Solution 3
5.11] = [p.2f2m+ 7] = [3.V]
i) = ([.V]) = = (0., 7]) - _h<g_v>
Solution 4

3.4 Commuting Operators and Basis Vectors

Problem
Prove that two commuting physical operators can share the same non-degenerate basis
set.

Solution
Let the pair of operators, basis states, and eigenvalues be defined as

A [Un) = an tn) B |On) = by |Pn) -

In the most general case, the basis states relate to each other by

V) = Z’Ymn |Pn) |Pn) = Z:an [¥n)

where v and 4 are unknown matrices of coefficients. Next, let the operator AB act on |tn),
and also let BA act on [,).

AB |thn) = Z s O Yo Vomm, | )

mm/



Since A and B are commuting, the two expressions must be equal, and we deduce that
m’ = m and also m = n. Therefore, the matrices v and 4 must be purely diagonal and the
sums vanish. It’s now clear that states |¢,) are eigenfunctions of both operators A and B ,
and the same can be said for states [¢,,), completing the proof (for the nondegenerate case).
Explicitly (and similarly for B):

4 Approximations

4.1 Time-Independent Non-Degenerate Perturbation Theory

Introduction X X
Consider a Hamiltonian operator H ©) that takes on a first-order correction H’. The
eigenvectors and eigenvalues of H take on correction terms of all orders, and the total system
is determined by ) ) R
H=HO 4 )\H'
W) = [0 + A WE) + A7 [E2) + -
E,=EY £ \XED + N2E® 4 ...

where A is a tool for keeping track of order and can be set to 1 at any stage.

Problem 1
Verify that the zero-order equation in A gives the unperturbed case,

HOWD) = BD [0) .

Problem 2
Prove that the first-order correction to the energy eigenvalues is given by

B = (WOH'|wD) .

Problem 3
Prove that the first-order correction to the wavefunction is given by

v
) = - 3 S )
m#n m n

Problem 4

Prove that the second-order correction to the energy eigenvalues is given by the always-
negative term
(e
B = (WO = -

n
m#n

EY — EY
Problem 5

10



Denoting H', = <qf§°)\ﬁ ! |\IJI()0)>, prove that the second-order correction to the wavefunc-
tion is given by

n 3 .
E\E ) ) ey
Problem 6

Prove that the third-order correction to the energy eigenvalues is

~ 2
/
Hnl

n 5 -
2 () (50 ) )

/AR /N a ] ﬁ/

Problem 7
Explain why non-degenerate perturbation theory fails if two or more eigenvalues (energy
levels) of the Hamiltonian are equal, or nearly equal.

Solution 1

The statement H |¥,) = E, |¥,), accounting for all above-stated corrections, delivers
an infinite number of equations in powers of \. The A = 0 case delivers the unperturbed
Schrodinger equation.

Solution 2
Taking the first-order term in A and projecting <\I/l(0)] onto both sides, we get

) + (0 O 0) = BD (0 W0) + B

For the case | = n, the two terms adjacent to the equal sign cancel, and we recover the
desired expression.

Solution 3
Take [ # n to find

(|8 w0) + (B0 = BY) (0 w) = 0.

Meanwhile, the first-order correction to the wavefunction is a sum over the unperturbed
states with ‘unknown’ coefficients A,,,, as in |\IJS) ) = D Amn |\Il£2)>. The A,,, aren’t

unknown at all; the're identically equal to <\I/£2) |\I/£L1) ), which is the inner product that occurs
in the equation above.

Solution 4
The second-order terms in A read

) + 1 [00) = B [00) + B9 [92) + B |0?)
Projecting <\I/l(0)| onto both sides and letting [ = n gives the desired result.

11



Solution 5
For the [ # n case, we find

(El(o) B E(O)) <‘I’z(0)|‘1’£3)> 4 (\1150)|FI’|\II£L1)> — Er(zl) <\I,l(0)|\1/$11)> 7

n

and proceeding as we did for the first-order case, it follows that

0)| 15 1 0 1
oy - 3 TSI & BT | o,
I <El(0) _ E’r(LO))

where plugging in the formulae for |U5”), BV, and <\IJ§0)|\I/S)> gives the desired result.

Solution 6
You should find
EQ) = (0O H'|9) .

n

Solution 7
For equal or near-equal eigenvalues, each correction term involves division by zero.

4.2 Two-Fold Degenerate Perturbation Theory

Consider a system in which exactly two eigenvalues (energy levels) of the Hamiltonian HO
are equal or nearly equal. If the two corresponding eigenstates are |\Iféo)> and |\I/l()0)>, we have

HO |90y = EO |9 ©) HOWy = BO ¢ (T =0.

All is well until we introduce a perturbative term to the Hamiltonian such that H=HO1pq ,
as the non-degenerate technique leads to division by zero. To proceed, we’ll work with the

first-order approximations ) ) R
H=H9 4+ \{'

) = [¥©) + A [w)
E=FE9 4 \EW

where A\ can be set to 1 at any stage. Next, notice that a linear combination of the two

eigenstates, as in
O) = au) +519}") |

must also solve the Schrodinger equation with the same eigenvalue, where coefficients a and
B obey a*a+ 5*3 = 1.

Problem 1

Write the Schrodinger equation to first order, and then generate two equations for o and 3
by taking the inner product with <\IJ((10)| and <\I/l()0)|, respectively. Defining V;; = (‘IJEO) |H’ |\I/§»O)>,
write your result as a matrix that operates on the column vector [, 3].

Problem 2

12



Show that the first-order correction to the energy eigenvalue is equal to

1
EY = {v;a  Vio £ 4/ (Vo — Vio)? +4|vab|2} :

Solution 1

(I:_,(m _ E(o>> )y ¢ (ﬁ/ _ E(1)> 1wy =
‘/aa_E(l) Vab af 0
Vba Vi, — EM] [B] |0

Vaa - E(l) ‘/ab
Via Vi — EW

Solution 2

=0

5 Wavepackets

5.1 Free Particle in One Dimension

A particle moving in one dimension has the normalized state function
d(a) = (2ma?) et
where a is a constant with units of length.

Problem 1
Solve for the momentum representation of the wavefunction, ¥ (p).

Problem 2
Find the probability P(p) that the particle has momentum between p and p + dp.

Problem 3
The uncertainty in the variable is z defined as

or =/ {a?) = (@)°,

where an identical relation holds for p. Show that the product of uncertainties is

h
Op Op = = .

2

Solution 1

Y(p) = (27ra2)1/4/ dp % /4a®~ipz/h _ V2 (2%@2)1/4 s

— 00

Solution 2

13



wi = [ [ e orwin = [ a N%/] - [wrw)

Solution 3

3 /9
2 a
dl’ %2 x2/2a? — a2

1
_ 2 _
B <:17 > —0= V2ora? J- 27ra2

2a 252 20 [7 R B2
_ —O_ d 2 —2pa/h [ _ v
\/> / ppe 320 4a2

a2h?  h
2

(o Up - _4a2 -

5.2 Particle Flux Vector

Problem
For a system of particles of mass m in the state 1, the formal expression for the flux
vector (number per unit volume through init area perpendicular to the direction of motion)
is
F= 2" () V0w (997))
m

Show that, for a beam of particles of density p, the expression gives F' = vp.

Solution
Identify 1 as Ae?** such that p = A2. Also recall mv = p = hk.

5.3 Free Particle in One Dimension

A free particle traveling in one dimension is represented by the wavevector 1 (z) = Ae'kz=wt),

Problem 1
Calculate the group velocity using non-relativistic mechanics, and show that it equals
the particle velocity wu.

Problem 2
Show that the same result holds for relativistic mechanics.

Problem 3
Show that the phase velocity v, is related to the group velocity by v, = v,/2 for non-
relativistic mechanics.

Problem 4
Show that the phase velocity v, is related to the group velocity by v, = ¢/v, for rela-
tivistic mechanics.

14



Solution 1

Solution 2

dw d (E) d <\/p202+m204> pc? p P
vy=—=—|= — =

dk  dk \h ) dk h oM AMyess | My
Solution 3
w E p? p
v, = — — — — = —_— = —
Pk hk 2mp 2m 2
Solution 4
w  ymc® mpgct
v, = — = — = —
L hk P U

5.4 Wavepacket Spreading

Consider the Gaussian wavepacket:
o (p) = (471‘(72) 1/4 6—(p—po)202/2h2

Problem 1
Calculate 1 (x,t) using

_ [T dp ipx/h—itp?/(2mh)
v = [ o -

Problem 2
Evaluate the mean position and width of the wavepacket via

@ = [ dwalpimor s= "o (o= )P o)

[e.9] [e.9]

Problem 3
Show that the average value of the momentum (p) at t = 0 obeys the formula:

0
(Pi—o) = —ih/dm ™ (x,0) %@b (x,0) = po

Solution 1

2
a? T
2 jop2 (47r02)1/4 7r exp <p%2 + ﬁ)

U (2, 1) = e 70 P T
2rh\ o + man 4 (52 + 7z




Solution 2
Letting vg = po/m.

Solution 3

5.5 Confined Particle in One Dimension

Problem
For the wavefunction ¢ (z) = 1/v/2a on the interval —a < x < a with ¢(z) = 0 elsewhere,
show that the uncertainty in the momentum is infinite.

Solution

v (p) = /a da o () e” /M = QL /a dx (cos (px/h) + isin (px/h))) = P in (%)

—a a —a pa

0, = /_Oo dp (p* — (p)) —WZ(:%'Q x /_OO dp p? sin® <%) = 00

o) o0

6 Barriers

6.1 Step Barrier Reflection and Transmission

A beam of particles of energy Fy traveling along the +x direction encounters an energy
barrier with magnitude Vj that obeys

V (2) 0 <0
T) = .
Vo >0

Write down the reflection and transmission coefficients for both (1) E > Vj and (2) E < V4.
Check that R +7 =1 in each case.

16



Solution 1

Let 1, (x) denote the wavefunction for z < 0, and let 1g (z) be the wavefunction for
x > 0. The wavefunction and its derivative must be continuous across the barrier, so we
have the continuity conditions

Y1 (0) = Y& (0) 0.9 (0) = 0,9 (0) .

For positions < 0, the potential is zero, and the momentum of the particle relates to the
energy by Ey = p?/2m where p = hk. To the right of x = 0, the energy is reduced by the
barrier. Altogether, we have

2mkE, 2m (Ey — Vp)
kp = 72 kr = iz

and notice that if the particle beam energy is less than that of the barrier then kr becomes
imaginary. The most general solution to Schrodinger’s equation 0., (z) = —(2m/h*)(E —

V)(z) is
Yy (v) = Ae™™® + Be e Ur (2) = Ce*r® 4 De~knr

The constant D is zero by the problem statement, as there is no wave traveling from
x = oo toward the barrier’s edge. It hurts nothing to set A = 1 to denote the incoming wave
as having unit amplitude. Continuity in the wavefunction and continuity in the derivative
of the wavefunction across x = 0 delivers

1+B=C kr(1—B)=Ckg.
The remaining unkowns are thus
_ kp — kg O 2ky,
 kp+kg kLt kR

The flux of reflected and transmitted particles give the reflection and transmission coeffi-
cients, which read:

kp kp —kr\2
= Fon = 1 (G1) =168 e = 15 = (G

4
T = Ftrans = ’0‘2 k_R = |O‘2 k_R Enc = LRQ
m kr, (kL +/€R>

Solution 2

For Ey < V4, the kr term becomes imaginary, so we denote kzr — ik, where k is real.
Since x > 0 corresponds to evanescent waves, the overall transmission into the barrier is
zero. The reflection coefficient R evaluates to 1, which is also classically correct.

17



6.2 Step Barrier Reflection and Evanescent Waves
A beam of particles of energy Ey < Vj traveling along the +x direction encounters an energy
barrier
0 <0
Vix)= -
Voo >0
To left of the barrier (x < 0), the wavefunction is
wL (33) — 67Lk:r: + Be—ikx 7

where the wavenumber & is given by k? = 2mEy/h*. On the right of z = 0, the wavenumber
becomes imaginary because Ey < Vp, so we write k% = 2m (Vi — Ey) /h* such that

Yr(z) =Ce™"™.

Problem 1
Letting tan § = k/k, show that the wavefunction to the left of x = 0 obeys

U (z) = 2e7 cos (kx +6) .

Problem 2
Solve for 1 g on the right of x = 0 and state the amplitude of the evanescent wave.

Solution 1

1 —idtanf cosf —isinf =,
 1+itan® cos@ +isinf

Solution 2

2 cos , .
=Ce VW =—— 77" =12 fe %] e = A,
Vr () c cos@—l—z’sin&e [ cosve ]6 €

6.3 Top Hat Barrier

A beam of particles of energy Ey < V; traveling along the +z direction encounters an energy
barrier with magnitude V{ that obeys

0 x<0
Vg)=qVy 0>z>a .
0 xz>a

Problem 1

Write down the wavefunction in the thre regions ¥ (z < 0), ¥y (0 > = > a), and
Yr(z > a) with unknown amplitude coefficients. State the conditions that allow one to solve
for the unknown coefficients.

Problem 2
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Solve for all unkown coefficients.

Problem 3

Calculate the transmission coefficient through the barrier, and also the reflection coeffi-

cient away from the barrier. Check that their sum is unity.

Problem 4

Repeat the previous three calculations for Ey > Vj.

Problem 5

Calculate the transmission coefficient in the limit of a very tall barrier such that Vi > Ej.

Solution 1

k:,/QTZQEO

¢L (ZL‘) — eikx + Be—ikx
vr (0) = ¥ (0)
Ot (0) = 0 (0)

Solution 2

B = —2ivk cosh(va)+(g9—k)(g+k) sinh(ya)
1 -1 —1 0 —1 O — —2k(—iy+k)
ik vy — 0 ik —e2% (y=ik)*+(y+ik)”
0 e e _6m.k 0 —2e27% (i +k)k
0 ~er™ —ye —ike'* 0 T e (y—ik)2—(y+ik)2
E— 2iyke~tak
" 2ivk cosh(ya)+(—v2+k2) sinh(vya)
Solution 3
1 ) 1
R: |B|2: 4~2 )2 = |E| = 2 2\2 2
1+ ('YQJer)’ésinh('ya)2 cosh (7@)2 + Wy+gmw
1 1

R - 1 4E0(V0—E0) T - 1 . h 2 V02

sinh(ya)? Vi +sm (’}/CL) 4Eo(Vo—Eop)

1 2 1
RAT— +ao+1/x

Y () = Ce™ 4 De™7*

Y= 2m (V;ﬂ— Ey)
77/1R (ZL‘) — Eeikx
¥u (a) = ¥ (a)

Ouur (a) = Opr (a)

- (72 +k? ) sinh(ya)

Solution 4

Ttz 1+1jz 24a+1/z



2mkEy 2m (Ey — Vo)
b= Ve

Y (z) = ™ + Be k" Y (1) = Ce™P*  De™'P" Vg (1) = Be'*®
Replace v — if3 in part (2).

h_ (5 — k)" sin (Ba)’ - L
= 3 2 . 2 o Zsin(Ba)?

452k2 cos (Ba)® + (B2 + k2)’sin (Ba) coS (/Ba)2 + —(52+kjg2k2 (Ba)
1 1

R= 1 4y (Eo—Vo) r= 2(__ Ve

L+ Sz ( e ) L+ sin (Ba) <4E0(E%*V0>>
Solution 5
16 2k,2 _ 16E V — E _ 16E _
Twos By = B 2a _ o (Vo O)e 20y 020

(72 + k2)° Vi Vo
7 Wells

7.1 Trapped Particle

Problem
Suppose that the wavefunction for a given particle with zero energy is known to be

¥ (z) = Aze ™/
Determine the shape of the potential well, U(x), in which the particle must be trapped.

Solution

h? 2n® (2?3
I () U (&) () =0 U@ =25 (5-3)

8 SHO

8.1 SHO Energy Levels

Consider the time-independent Schrodinger equation in one dimension (—h?/2m)d,.1)(x) +
V(z)v(x) = EY(x), where V(x) is specified by the harmonic oscillator potential, V =
(m/2)w?x?, and w is the angular frequency.

Problem 1
Introduce the dimensionless energy ¢, = (2/hw)E, and the dimensionless coordinate
¢ = zy/mw/h to show that the Schrodinger equation takes the form

U (E) + (e =€) ¥ (§) =0.
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Problem 2
In the limit that [£| is very large, show that (¢ —o0) = e*¢?/2 50 that the wavefunction
may be written

W) =FE)e
Show further that f(&) is governed by
ff=2f'+(&—-1)f=0.

Problem 3
Assume a power series solution to f (£) as in

F(&) =) Ak,
k=0

and show that the coefficients Ay obey the recursion relation

Ao = 142k —¢,
T k1) (K +2)
indicating that the coefficients for even k are separated from those of odd k. Observe (up

to normalization constant) that symmetric solutions must begin with Ay = 1 and A; = 0,
where meanwhile antisymmetric solutions have Ay = 0 and A; = 1.

Aka

Problem 4

For large values of k, observe that the ratio Ag,s/A) approaches the value 2/k. For
k large enough, the function f(£) grows exponentially in €2 and becomes too large to be
consistent with ¢(z) = f(&)e ¢/2, thus the infinite series in & has to be trunctated at some
finite £ = n. Use the recursion relation for Ay to show that the harmonic oscillator energy

levels are given by
1
E,=h —].
w <n + 2)
Solution 1

This is a straightforward substitution.

Solution 2
Argue that (&) ~ et¢*/2 corresponds to an infinite wavefunction, so keep only the minus
case. The non-asymptotic behavior of the wavefunction is contained in f(§).

Solution 3
Along the way, arrive at

o0

S [k +2) (k+ 1) Apr — 2k A4 + (e, — 1) 4] €5 =0,
k=0

where the first term has its index shifted &k — k£ + 2.

Solution 4
Given A # 0, we can only have Ao = 0 if 1 + 2k — ¢, = 0. Let £ = n and redimen-
sionalize the €, in terms of F,,.
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8.2 SHO Wavefunctions by Power Series

The simple harmonic oscillator in one dimension obeys the time-independent Schrodinger
equation (—h?/2m)0,.Vn(z) + (m/2)w?z?, (v) = By, (z).

Problem 1
Without normalizing, write down the wavefunctions
2 2k — 2n
W (&) =) Agre /2 Apyo = A
Un (€) ; 2 M2 T (ko)

for the first four states n = 0, 1, 2, 3 by making use of the recursion relation for the coefficients
Ap.

Problem 2
Verify by direct integration that the four wavefunctions ¢, (§) written in part (a) are
orthogonal.

Problem 3
Multiply each wavefunction by a constant such that the non-exponential dependency in
& matches one of the famous Hermite polynomials

Hy=1 H, =2¢ Hy, =462 -2 Hy =863 — 12¢
H, = 16&* — 48¢% 412 Hs = 32¢° — 160€° + 120€ |
such that the wavefunctions may be written

Ui (&) = N, H, (€) €572,

where NV, is the normalization constant for a given n. Calculate this constant for the first
four wavefunctions g, 11, ¥, and 3. Note that

[e.9] h o0
| =y [ awor-t.
Solution 1

Recall that symmetric solutions must begin with Ag = 1 and A; = 0, and antisymmetric
solutions have Ay = 0 and A; = 1. Thus:

Vo (§) = Age ¢/ Wy (€) = Aye €2
N R
Solution 2
(b) N
€00 €0 (©) x
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Solution 3

mw\ 1/4 1/4 1
No= () M= (5)
0 fur " V2
mw\ /4 1 mw\1/4 1
v )
? hr 2V/2 ’ hr 44/3

8.3 Hermite Polynomial Generating Function
Consider the generating function F(€,s) = & =578 = g=s"+2s¢

Problem 1

First show that

PF _OF _ OF
el zga—§+2s— =0,

and then insert into the above equation the Taylor expansion of F', namely

-2

n=0

to derive an analog to the expression f” —2¢f" + (¢, — 1)f = 0 in terms of a,(&).

Problem 2

Since the coefficients a,(£) obey the same differential equation as do f(§), along with the
Hermite polynomials H, (&), we know a,(§) must relate to H, (&) by a linear factor for each
n. The choice has already been made for us in the definition of F'(¢,s). Indeed, it turns out
that a,(§) = H,(§) exactly, meaning

e _ N~ Ha(8) .
SR YL N
n=0
Use the above identity to derive the normalization constant for the nth SHO wavefunction:

N, = (mw)1/4 1
hr 2nn!

Solution 1

Z[ag—2§a;+2nan]5":0 en =2n+1
Solution 2
o e 2 (s g)? £2_(1_£)2 st o
/ d &8 80 -9 =/ deZn,mu H,, (€) ¢
- - n=0 m=0

ﬁGQSt:ﬁZ%Q"jt" 3 (z / dé I, (€) H, (€) —€2>
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nyn __ S tm - —£2
N _;%/ﬂdéﬂnwﬂm(&)eﬁ

Vaznl = [ deH, (€ (@)

—00

8.4 Creation, Annihilation, and Number Operator

The Hamiltonian and energy levels for the quantum simple harmonic oscillator system are,
respectively,

~oopr T, 1

H:%+§mwx E, = hw TL+§ .
Problem 1

Introducing the creation and annihilation operators, respectively, as

&T_( —p_ /@93) &_( b, /@@)
V2mhw 2h V2mhw 2h ’

prove that the Hamiltonian operator can be written in terms of a number operator N , given
by:

~ ~ 1 ~
H:hw<N+§) N =d'a
Problem 2 A R
Show that if H |¢,,) = E, |[¢,) then N |i,) = n|,).

Problem 3
Prove the relation aa’ = H /fiw +1/2, and use this to show that the effect of the creation
operator a' acting on state [¢,) is

a' ) = Vit 1ln) -

Problem 4
Show that the effect of the annihilation operator a acting on state |1,,) is

a |¢n> - \/ﬁ|¢n—1> :

Solution 1

Solution 2

Solution 3

24



(a'a) a' [vy) = (n+ 1) a' |1hn) N xn) = (n+1) [xn)
(Xl Nlxn) = (R +1) Xn) = VR + 1 [thni1)

Solution 4

~

i 1) = (% . %) ) = 2+ 1) )

avm+1|Yme1) = (m+1) [n) m+1=n

8.5 SHO Commutations and Identities

Problem 1
Prove three commutation relations for the quantum simple harmonic oscillator:

(6,41 =1 [N,a] —_a [1\7,@*] _ at

Problem 2
Applying the annihilation operator k£ times, we write

&klwn>:\/n(n—1)(n—k+1)|wn—k> )

which tells us that n — k > 0 to have real eigenvalues, and the ground state |1g) corresponds
to k = n. Verify that annihilation stops at the ground state and goes no deeper by showing

Problem 3
The nth eigenstate can be built up from the ground state by applying the creation

operator n times:
1
= — (ah)"

Show that the above relation is both self-consistent and properly normalized.

Problem 4
Use a' to derive the recursion relation for the Hermite polynomials
Hoan (§) = (2 —2¢) H, (€
n+1 - df n )

where £ = zy/mw/h.

Problem 5
Solve for # and p in terms of the creation and annihilation operators a' and a.

Solution 1
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H 1 .
sall=aaf —afa= 242 - N=1
[a,a] aa a'a hw+2
. . H 1
[N,a}:afaa—aafa: N2 _Zla=-a
hw 2

Solution 2

—i%ho [ miw 2
~ N i NoHoe™® mw/2h _
a |w0> |: S + o $:| oL1p€ 0
Solution 3
V1

V) = ﬁ&n_l [Yo11) =

1-2-3---n
Vn!
(i) = = l(@ @) = 2 () = L ) = 1

n!

A" [iPosa) =

e " o) = 4]

Vn!

Solution 4

—h@x 2 2
mnw

b B =62 _ /n M e—6%/2
( \/585 + \/§£> N, H, (f) +1 ( 5 (n n 1)) Hya (f)

Solution 5

h mhw

~ A-i— A ~ ,\-‘—
2mw(a—|—a) D=1/ 5 (a a)
8.6 SHO and Classical Motion

Problem 1
Show that (x) = 0 for any stationary SHO wavefunction.

Problem 2
Show that the simple harmonic oscillator obeys

d{z) _ (p)

dt m
Problem 3
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Suppose a SHO system has the following non-stationary wavefunction at ¢ = 0:

U (2,0) = N [t () + 2¢1 (2)]
Show that (x) is a function of time.

Problem 4
Evaluate the integral

1:/%dm¢o(x)¢1(x)

o0

by two different methods. First substitute Hermite polynomials and evaluate the Gaussian
integral. Second, express x in terms of @ and af, and get the same result given by the first
method.

Solution 1

<:L’> = <1/}n|§5|@/}n> X <¢n|(& + &T)|¢n> ~ <¢n|¢n—1> + <¢n|¢n+1> =0

Solution 2

Solution 3
U (z,t) = Ne oy () + 2Ne P10y (x)

(r) = N* /_OO dx z (1o ()° + 4y ()7 + 44 () 1y (x) cos ((Ey — Ey)t/h))

(z) =0+ 0+ 4N?cos (@) /Zdwm¢0(x)¢1 ()

mw 12h e | N

=\ [ et =\
h

I'= (Wolihin) = |/ 5 (unlto)

8.7 Prepared SHO System

A particle of mass m moving in the harmonic oscillator potential V (x) = mw?x?/2 is prepared
at ¢ = 0 in the state

U (z,0) = Ne ™ /2 [4 (93 mw/h>3 +2 <$\/m>2 +1 (:EW) + 22} .

Solution 4
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Problem 1
Rewrite the initial state in terms of the dimensionless variable & = xv/mw/h and the
Hermite polynomials H,(£). Also solve for the normalization constant N.

Problem 2
Determine the wavefunction at all times, W(x,t).

Problem 3
At time ¢, a measurement of the system’s energy is made. What is the probability of
each possible outcome? Check that the sum of all probabilities is unity.

Problem 4
Determine (x).

Solution 1

Hy=1 H, =2¢ Hy = 46% -2 Hsy = 863 — 12¢
U (2,0) = Ne /2 [AHy (€) + BH, (€) + CH; (§) + DHs (€)]
mw\1/4 [ 2 ) 1+ 6 1
Solution 2

mw\ /4 1 mw 2 .
W (2,t) = ( ) H, hted —z?mw/2h ,—iEnt/h
U (2, 1) — ol <x - )e e

v (l‘,t) = \/725 |:A¢O (ZL’, t) + \/531/)1 (I,t) + 2\/50% (ZL’, t) + 4\/§D¢3 (I‘, t)
Solution 3

2

2 2 _|i+6
Po=%|2i+1|2%13.33% Py =2 0~ 49.33%
2 [1]? 2 |17
Py= —8|>| ~533 Py = —48|=| ~32.00
25 ‘2 % S ‘2 %

Solution 4

(W (t)) = A(t) [tbo) + B (1) [t1) + C (t) [tha) + D (t) [1)s)
(x) = (W (1) 3% (1)) = A"B + B* (A+v2C) + C* (V2B + V3D) + D'V3C

(0) = ("B +BA) + V2 (B C+CB) + 3 (C'D+ D'C)

4 64 4
(x) = [\/ e (A*B+ B*A) eap + 7 (B*C + C*B) epc + 244/ - (C*D + D*C)ecp

() = [\/%16 + \/%6 + 24\/%] cos (wt)
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8.8 Evolution of a Low-Energy SHO

A particle of mass m moving in the harmonic oscillator potential V (z) = mw?z? /2 is prepared
at t = 0 in the state

1 2 2
U (2,0) = ———e /4
(@0) (2mo2)'/*
Problem 1
Calculate (E) for all times ¢ > 0 by two methods. First, use direct integration by
substituting p = —ihd, and & = z. Second, make the assumption that o2 = h/2mw and

proceed by representing p and & in terms of @ and af.

Problem 2

Without assuming that o = h/2mw, calculate the probability that a measurement of
the system’s energy equals F, = hw(n + 1/2) for any integer n > 0. Hint: use the relation
¢ = x+/mw/h along with the Hermite polynomial generating function

o9 Z 3 )

n!
n=0

Solution 1

() = (¥ 0] (£ + gmes® ) [0 (0) = 1+ mo® =

Solution 2

/oo dé’ 662_(3_6)26_62/2—§2h/4mw02 _ Z 3_7: /OO dé% Hn (é_) 6_52/2_§2h/4mw02
n.
o n=0 -

| dmmwa?/h 2mwa?/h — 1 2 /g2 2
—— R 2z 7 d H —£ /2—&%h/dmwo
1+ 2mwa?/h P [8 <2mw02/h +1 ngven / ¢

b _ 2mw02 I~ _ /OO df H (5) 6752/2752h/4mwa2
7 n - n

27h b—1 st (b—1\? s?2-  ste
O (e (P s (0] A L,
1+b< e (b+1)+2! (b+1) - ) TR TR

= , = Nov/h/mwl, ,
—1En,t/h n n —1Ent/h
=3 {0l O (e = 50 B ()

n=even

T Vb \ (b—1\"?
Cm(n/2)! \14b <b+1)

P Nov/h/mwl,
! (2mo2)M/*
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8.9 Momentum Space SHO Wavefunctions

The Hamiltonian operator for a particle in a one-dimensional SHO potential is H = p? /2m+
2.2
mw?z? /2.

Problem 1
Substituting
& =x\/mw/h,

find the corresponding transformation 4 that non-dimensionalizes the momentum operator
p in order to derive the dimensionless Hamiltonian:

H 1., 1,
€

w2 T2
Problem 2
Due to the symmetry in the Hamiltonain above, it’s evident that the mometum space
wavefunctions ¢, (p) are identical in form to the position space wavefunction v, (x). They
differ by normalization constant by virtue that |, (p)|> must have dimension [p]~!, whereas
|t (2)]* have dimension [z]~'. Find this constant and write down the momentum wavefunc-
tions ¥, (p).

Solution 1

Solution 2
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