Quantum Mechanics

William F. Barnes

April 3, 2020

Contents

1	Funda	α mentals
	1.1	Dimensional Analysis and Quantum Mechanics
	1.2	Finding Linear Combinations
	1.3	Measurement and Probability
2	Wave	function
	2.1	Time-Independent Schrodinger Equation
	2.2	Momentum Operator and Momentum Eigenstates
	2.3	Position Space and Momentum Space
	2.4	Fourier Representation of the Wavefunction
3	Commutation	
	3.1	Commutation with the Hamiltonian
	3.2	Time Evolution and Non-Commuting Operator
	3.3	Position, Momentum, Hamiltonian Commutations
	3.4	Commuting Operators and Basis Vectors
4	Appro	oximations
	4.1	Time-Independent Non-Degenerate Perturbation Theory 10
	4.2	Two-Fold Degenerate Perturbation Theory
5	Wave	packets
	5.1	Free Particle in One Dimension
	5.2	Particle Flux Vector
	5.3	Free Particle in One Dimension
	5.4	Wavepacket Spreading
	5.5	Confined Particle in One Dimension
6	Barrie	ers
	6.1	Step Barrier Reflection and Transmission
	6.2	Step Barrier Reflection and Evanescent Waves
	6.3	Top Hat Barrier
7	Wells	20
	7.1	Trapped Particle
8	SHO	20
	8.1	SHO Energy Levels
	8.2	SHO Wavefunctions by Power Series
	8.3	Hermite Polynomial Generating Function
	8.4	Creation, Annihilation, and Number Operator
	8.5	SHO Commutations and Identities 25

8.6	SHO and Classical Motion	26
8.7	Prepared SHO System	27
8.8	Evolution of a Low-Energy SHO	29
8.9	Momentum Space SHO Wavefunctions	30

1 Fundamentals

1.1 Dimensional Analysis and Quantum Mechanics

The fundamental constants in quantum theory, expressed in terms of Planck's length (L), mass (M), and time (T) are the speed of light c (LT^{-1}) , Planck's reduced constant $\hbar = h/2\pi$ (ML^2T^{-1}) , the squared electron charge $e^2/(4\pi\epsilon_0)$ (ML^3T^{-2}) , and the electron mass m (M).

Problem 1

Determine x, y, and z such that $\hbar^x c^y m^z$ has dimensions of length. This is called the reduced Compton wavelength λ_c , which evaluates to roughly $0.386 \times 10^{-12} m$.

Problem 2

From the combination $\hbar^x c^y (e^2/4\pi\epsilon_0)^z$, obtain a dimensionless quantity. To make it unique, choose y = -1, corresponding to the fine structure constant α . Give the formula for α and evaluate it numerically.

Problem 3

Determine the Bohr radius a_0 by dividing the result from part (1) by the result of part (2). State the numerical value of the Bohr radius in meters.

Solution 1

From dimensional analysis, we have three equations

$$x + z = 0 \qquad 2x + y = 1 \qquad x + y = 0$$

solved by x = 1 and y = z = -1, telling us that $\lambda_c = \hbar/mc$.

Solution 2

To attain a dimensionless quantity, the same game gives three equations

$$x + z = 0$$
 $2x - 1 + 3z = 0$ $-x + 1 - 2z = 0$,

solved by x = -1, z = 1. The fine structure constant is evidently:

$$\alpha = \frac{e^2/4\pi\epsilon_0}{\hbar c} \approx \frac{1}{137} \approx 0.00730$$

Solution 3

The Bohr radius evaluates to

$$a_0 = \frac{\lambda_c}{\alpha} = \frac{\hbar^2}{m \left(e^2/4\pi\epsilon_0\right)} \approx 137 \times \lambda_c \approx 5.29 \times 10^{-11} m$$

1.2 Finding Linear Combinations

Problem

Let $|\psi_1\rangle$ and $|\psi_2\rangle$ be normalized eigenfunctions that correspond to the same eigenvalue. If $\langle \psi_1 | \psi_2 \rangle$ is a real number d, find a normalized linear combination of $|\psi_1\rangle$ and $|\psi_2\rangle$ that is orthogonal to $|\psi_1\rangle$. Also find a normalized linear combination that is orthogonal to $|\psi_1\rangle + |\psi_2\rangle$.

Solution

Let $|\chi_1\rangle = A |\psi_1\rangle + B |\psi_2\rangle$ and $|\chi_2\rangle = C |\psi_1\rangle + D |\psi_2\rangle$ be the linear combinations we're looking for, and the task is reduced to finding A, B, C, and D. These are given by, respectively

$$\langle \chi_1 | \psi_1 \rangle = 0$$
 $\langle \chi_2 | (|\psi_1\rangle + |\psi_2\rangle) = 0$.

Blooming out the algebra, find A + Bd = 0 and C + D = 0, and by the normalization requirement $\langle \chi_n | \chi_n \rangle = 1$, arrive at:

$$\chi_1 = \frac{d |\psi_1\rangle - |\psi_2\rangle}{\sqrt{1 - d^2}} \qquad \qquad \chi_2 = \frac{|\psi_1\rangle - |\psi_2\rangle}{\sqrt{2 - 2d}}$$

1.3 Measurement and Probability

Problem

An operator \hat{A} , corresponding to and observable α , has two normalized eigenfunctions $|\psi_1\rangle$ and $|\psi_2\rangle$, with eigenvalues a_1 and a_2 . An operator \hat{B} , corresponding to and observable β , has two normalized eigenfunctions $|\phi_1\rangle$ and $|\phi_2\rangle$, with eigenvalues b_1 and b_2 . The eigenfunctions are related by

$$|\psi_1\rangle = \frac{2|\phi_1\rangle + 3|\phi_2\rangle}{\sqrt{13}} \qquad |\psi_2\rangle = \frac{3|\phi_1\rangle - 2|\phi_2\rangle}{\sqrt{13}}.$$

Suppose the system is measured to be in the state $|\psi_1\rangle$ with $\alpha = a_1$. If β is measured, and then α again, show that the probability of obtaining a_1 again is 97/169.

Solution

First solve for the second set of eigenfunctions:

$$|\phi_1\rangle = \frac{2|\psi_1\rangle + 3|\psi_2\rangle}{\sqrt{13}} \qquad |\phi_2\rangle = \frac{3|\psi_1\rangle - 2|\psi_2\rangle}{\sqrt{13}}$$

When operator \hat{B} acts on the inital state $|\chi_0\rangle = |\psi_1\rangle$, the resultant state must assume one of $|\phi_{1,2}\rangle$. The respective probabilities are given by

$$P_{a_1 \to b_1} = |\langle \phi_1 | \chi_0 \rangle|^2 = \frac{4}{13}$$
 $P_{a_1 \to b_2} = |\langle \phi_2 | \chi_0 \rangle|^2 = \frac{9}{13}$.

Finally, operator \hat{A} must act on whichever of the $|\phi_{1,2}\rangle$ was the result of the previous measurement, and the outcome will be one of $|\psi_{1,2}\rangle$. Since we were asked about the probability of getting $|\psi_1\rangle$ again, the two relevant probabilites can be written,

$$P_{a_1 \to b_1 \to a_1} = \frac{4}{13} \cdot |\langle \psi_1 | \phi_1 \rangle|^2 \qquad P_{a_1 \to b_2 \to a_1} = \frac{9}{13} \cdot |\langle \psi_1 | \phi_2 \rangle|^2 ,$$

which evaluate to $(4/13)^2$ and $(9/13)^2$, respectively. The total probability of measuring a_1 again is the sum of the two numbers above, which comes to 97/169.

2 Wavefunction

2.1 Time-Independent Schrodinger Equation

Problem

The time evolution of a single nonrelativistic particle is determined by the time-dependent Schrodinger equation, which reads

$$\left[-\frac{\hbar^{2}}{2m}\vec{\nabla}^{2}+V\left(\vec{x},t\right)\right]\left|\Psi\left(t\right)\right\rangle =i\hbar\frac{\partial}{\partial t}\left|\Psi\left(t\right)\right\rangle \;,$$

and is solved by the complex wavefunction $\Psi(\vec{x},t) = |\Psi(t)\rangle$. The Hamiltonian operator in square brackets is abbreviated by \hat{H} . By separation of variables, we break the wavefunction into time- and space-components as in $|\Psi(t)\rangle = f(t)|\psi\rangle$. Since a linear combination of solutions to a differential equation must also be a solution, the most general wavefunction is

$$|\Psi(t)\rangle = \sum_{n=0}^{\infty} f_n(t) |\psi_n\rangle$$
.

Establish the time-independent Schrodinger equation $\hat{H} |\psi_n\rangle = E_n |\psi_n\rangle$ by finding $f_n(t)$ explicitly, and then write an expression for the initial conditions $f_n(0)$.

Solution

$$\sum_{n=0}^{\infty} \left[E_n f_n(t) - i\hbar \frac{\partial}{\partial t} f_n(t) \right] |\psi_n\rangle = 0 \qquad f_n(t) = f_n(0) e^{-iE_n t/\hbar}$$
$$f_n(0) = \langle \psi_n | \Psi(0) \rangle$$

2.2 Momentum Operator and Momentum Eigenstates

In one dimension, the expectation value of the position of a particle is given by

$$\langle x \rangle = \langle \Psi | \hat{x} | \Psi \rangle \ .$$

Problem 1

Take a time derivative of both sides, and then integrate by parts (like mad) to show that the momentum operator must be:

$$\hat{p} = -i\hbar \frac{\partial}{\partial x}$$

Be sure to use the Schrodinger equation

$$i\hbar\partial_t\Psi = -\frac{\hbar^2}{2m}\partial_{xx}\Psi + V\Psi$$

and its complex conjugate.

Problem 2

For the momentum observable p, determine the eigenstates $|p\rangle$ of the operator \hat{p} .

Solution 1

$$\frac{d}{dt} \langle x \rangle = \frac{\langle p \rangle}{m} = \frac{\hbar}{2mi} \int_{-\infty}^{\infty} dx \, \left(\frac{d\Psi^*}{dt} x \Psi + \Psi^* x \frac{d\Psi}{dt} + \Psi^* \frac{dx}{dt} \Psi \right)$$
$$\langle p \rangle = \frac{\hbar}{2i} \int_{-\infty}^{\infty} dx \, \left(\Psi^* \left(\partial_x \Psi \right) - \left(\partial_x \Psi^* \right) \Psi + 0 \right) = -i\hbar \int_{-\infty}^{\infty} dx \, \Psi^* \left(\frac{\partial}{\partial x} \right) \Psi$$

Solution 2

$$\hat{p}|p\rangle = -i\hbar \frac{\partial}{\partial x}|p\rangle = p|p\rangle$$
 $|p\rangle = Ae^{ipx/\hbar}|e_p\rangle$

2.3 Position Space and Momentum Space

Problem 1

Consider a particle moving in one dimension. The 'ket' position representation of a wavefunction, $|\psi\rangle$, is not simply equivalent to $\psi(x)$, but is actually defined by

$$|\psi\rangle = \int dx \, \psi(x) \, |x\rangle ,$$

where $\psi(x)$ is given by $\langle x|\psi\rangle$. The quantity $|\psi(x)|^2$ is understood as the probability density of finding the particle at some point x. Show the inner product $\langle x|x'\rangle$ must equal the Dirac delta function $\delta(x-x')$.

Problem 2

The momentum representation of a wavefunction is

$$|\psi\rangle = \int \frac{dp}{2\pi\hbar} \, \psi\left(p\right) |p\rangle \, ,$$

where there is a factor of $(2\pi\hbar)^{-1}$ for each spatial dimension. Using another representation of the Dirac delta function given by $\langle p|p'\rangle = 2\pi\hbar\delta(p-p')$, derive the relation

$$1 = \int \frac{dp}{2\pi\hbar} |\psi(p)|^2,$$

which tells us the probability density of finding the particle with momentum p has the $2\pi\hbar$ factor in the denominator.

Problem 3

Let us define momentum eigenstates as plane waves, given by

$$|p\rangle = \int dx \, e^{ipx/\hbar} \, |x\rangle .$$

Show that the Dirac delta function can be represented by the integral:

$$\delta\left(p - p'\right) = \int_{-\infty}^{\infty} \frac{dx}{2\pi\hbar} e^{i(p - p')x/\hbar}$$

Problem 4

The position eigenstates have the form

$$|x\rangle = \int dp f(x, p) |p\rangle$$
.

Determine f(x, p).

Solution 1

$$\langle x'|\psi\rangle = \int dx \,\psi(x) \,\langle x'|x\rangle = \int dx \,\psi(x) \,\delta(x-x') = \psi(x')$$

Solution 2

$$1 = \langle \psi | \psi \rangle = \int \int \frac{dp \, dp'}{(2\pi\hbar)^2} \left(\psi^* \left(p' \right) \psi \left(p \right) \right) \langle p' | p \rangle = \int \frac{dp}{2\pi\hbar} \, |\psi(p)|^2$$

Solution 3

$$\langle p'|p\rangle = \int dx \, e^{i(p-p')x/\hbar} \, \langle x|x\rangle = 2\pi\hbar \, \delta \, (p-p')$$

Solution 4

$$|x\rangle = \int dx' \int dp f(x, p) e^{ipx'/\hbar} |x'\rangle$$

$$f(x, p) = \frac{e^{-ipx/\hbar}}{2\pi\hbar}$$

2.4 Fourier Representation of the Wavefunction

Problem

In 'ket' notation, the position and momentum eigenstates of a particle moving in one dimension read:

$$|x\rangle = \int \frac{dp}{2\pi\hbar} e^{-ipx/\hbar} |p\rangle$$
 $|p\rangle = \int dx e^{ipx/\hbar} |x\rangle$

The wavefunction of the particle, in each representation respectively, is

$$|\psi\rangle = \int dx \,\psi(x) \,|x\rangle$$
 $|\psi\rangle = \int \frac{dp}{2\pi\hbar} \,\psi(p) \,|p\rangle$.

Attain the Fourier representations of ψ by solving for $\psi(x)$ in terms of $\psi(p)$, and vice-versa. There should be no explicit 'ket' states in the results.

$$|\psi\rangle = \int dp \int \frac{dx}{2\pi\hbar} \psi(x) e^{-ipx/\hbar} |p\rangle \qquad \qquad \psi(p) = \int dx \, \psi(x) e^{-ipx/\hbar}$$

$$|\psi\rangle = \int dx \int \frac{dp}{2\pi\hbar} \psi(p) e^{ipx/\hbar} |x\rangle \qquad \qquad \psi(x) = \int \frac{dp}{2\pi\hbar} \, \psi(p) e^{ipx/\hbar}$$

3 Commutation

3.1 Commutation with the Hamiltonian

Problem

The *commutation* is a construction that tells us what terms are 'left over' when two operators are interchanged:

 $\left[\hat{A}, \hat{B}\right] = \hat{A}\hat{B} - \hat{B}\hat{A}$

Use the Schrödinger equation $\hat{H} |\Psi\rangle = i\hbar \partial_t |\Psi\rangle$ to show that an observable Q obeys

$$\frac{d}{dt} \left\langle Q \right\rangle = -\frac{i}{\hbar} \left\langle \left[\hat{Q}, \hat{H} \right] \right\rangle \, . \label{eq:delta_delta_t}$$

Note if the above equation yields zero, we say that the operator \hat{Q} commutes with the Hamiltonian, and the observable is a constant over time.

Solution

$$\frac{d}{dt} \langle Q \rangle = \langle \partial_t \Psi | \hat{Q} | \Psi \rangle + \langle \Psi | \hat{Q} | \partial_t \Psi \rangle = -\frac{1}{i\hbar} \langle \Psi | \hat{H} \hat{Q} | \Psi \rangle + \frac{1}{i\hbar} \langle \Psi | \hat{Q} \hat{H} | \Psi \rangle$$
$$\frac{d}{dt} \langle Q \rangle = -\frac{i}{\hbar} \langle \Psi | \left[\hat{Q}, \hat{H} \right] | \Psi \rangle = -\frac{i}{\hbar} \left\langle \left[\hat{Q}, \hat{H} \right] \right\rangle$$

3.2 Time Evolution and Non-Commuting Operator

For a certain system, the operator corresponding to the physical quantity A does not commute with the Hamiltonian. It has eigenvalues a_1 and a_2 , corresponding to eigenfunctions

$$|\phi_1\rangle = \frac{|\psi_1\rangle + |\psi_2\rangle}{\sqrt{2}}$$
 $|\phi_2\rangle = \frac{|\psi_1\rangle - |\psi_2\rangle}{\sqrt{2}}$,

where $|\psi_1\rangle$ and $|\psi_2\rangle$ are the eigenfunctions of the Hamiltonian, with energy eigenvalues E_1 and E_2 .

Problem 1

If the system has initial state $|\Psi(0)\rangle = |\phi_1\rangle$, determine the expectation value of the observable A using the formula:

$$\langle A \rangle = \langle \Psi(t) | \hat{A} | \Psi(t) \rangle = \sum_{n=1,2} \left| \tilde{f}_n(t) \right|^2 \langle \phi_n | \hat{A} | \phi_n \rangle$$

Problem 2

Verify the time evolution of $\langle A \rangle$ using the formula:

$$\frac{d}{dt}\left\langle A\right\rangle =-\frac{i}{\hbar}\left\langle \left[\hat{A},\hat{H}\right]\right\rangle$$

$$|\Psi(t)\rangle = \sum_{n=1,2} \langle \psi_n | \Psi(0) \rangle e^{-iE_n t/\hbar} | \psi_n \rangle = \frac{e^{-iE_1 t/\hbar} | \psi_1 \rangle + e^{-iE_2 t/\hbar} | \psi_2 \rangle}{\sqrt{2}}$$
$$|\Psi(t)\rangle = \frac{1}{2} \left(e^{-iE_1 t/\hbar} + e^{-iE_2 t/\hbar} \right) | \phi_1 \rangle + \frac{1}{2} \left(e^{-iE_1 t/\hbar} - e^{-iE_2 t/\hbar} \right) | \phi_2 \rangle$$
$$\langle A \rangle = \frac{a_1 + a_2}{2} + \frac{a_1 - a_2}{2} \cos \left(\frac{(E_1 - E_2) t}{\hbar} \right)$$

$$|\Psi\rangle = \beta_1(t) |\psi_1\rangle + \beta_2(t) |\psi_2\rangle \qquad \langle \Psi| = \frac{\beta_1^* + \beta_2^*}{\sqrt{2}} \langle \phi_1| + \frac{\beta_1^* - \beta_2^*}{\sqrt{2}} \langle \phi_2|$$

$$i\hbar \frac{d}{dt} \langle A \rangle = \langle \Psi|\hat{O}\hat{H}|\Psi\rangle - \langle \Psi|\hat{H}\hat{O}|\Psi\rangle = -\frac{1}{2} (a_1 - a_2) (E_1 - E_2) (\beta_1^* \beta_2 + \beta_2^* \beta_1)$$

$$i\hbar \frac{d}{dt} \langle A \rangle = -\left(\frac{a_1 - a_2}{2}\right) (E_1 - E_2) \sin\left(\frac{(E_1 - E_2)t}{\hbar}\right)$$

3.3 Position, Momentum, Hamiltonian Commutations

In one dimension, the position and momentum operators, respectively, are written

$$\hat{x} = x \qquad \qquad \hat{p} = -i\hbar \frac{\partial}{\partial x} \; .$$

Problem 1

Derive the following relations:

$$[\hat{x}, \hat{p}] = i\hbar \qquad \qquad [\hat{x}, \hat{p}^2] = \hat{x}\hat{p}^2 - \hat{p}^2\hat{x} = 2i\hbar\hat{p}$$

Problem 2

Calculate the commutation relation between the position operator \hat{x} and the Hamiltonian $\hat{H} = \hat{p}^2/2m + \hat{V}(x)$, and show that

$$\frac{d}{dt} \langle x \rangle = \frac{\langle p \rangle}{m} .$$

Problem 3

Calculate the commutation relation between the momentum operator \hat{p} and the Hamiltonian to show that

$$\frac{d}{dt}\left\langle p\right\rangle = -\frac{\partial}{\partial x}\left\langle V\left(x\right)\right\rangle \,,$$

which is Newton's second law.

Problem 4

Derive again the result from part (3) without using any results from commutation relations. That is, take the time derivative of

$$\langle p \rangle = \int_{-\infty}^{\infty} dx \, \Psi^* \left(-i\hbar \frac{\partial}{\partial x} \right) \Psi$$

and integrate by parts. Use only the Schrödinger equation $i\hbar \partial_t \Psi = -(\hbar^2/2m)\partial_{xx}\Psi + V(x)\Psi$.

Solution 1

$$[\hat{x}, \hat{p}] \Psi = \hat{x}\hat{p}\Psi - \hat{p}\hat{x}\Psi = -i\hbar\partial_x (x\Psi) + i\hbar x\partial_x \Psi = i\hbar\Psi$$
$$2i\hbar\hat{p} = \hat{p} (\hat{x}\hat{p} - \hat{p}\hat{x}) + (\hat{x}\hat{p} - \hat{p}\hat{x})\hat{p}$$

Solution 2

$$\left[\hat{x}, \hat{H}\right] = \frac{1}{2m} \left(\hat{x}\hat{p}^2 - \hat{p}^2\hat{x}\right) = i\hbar \frac{\hat{p}}{m}$$
$$i\hbar \frac{d}{dt} \left\langle x \right\rangle = \left\langle \left[\hat{x}, \hat{H}\right] \right\rangle = i\hbar \frac{\left\langle p \right\rangle}{m}$$

Solution 3

$$\left[\hat{p}, \hat{H}\right] = \left[\hat{p}, \hat{p}^2 / 2m + \hat{V}\right] = \left[\hat{p}, \hat{V}\right]$$
$$i\hbar \frac{d}{dt} \langle p \rangle = \left\langle \left[\hat{p}, \hat{V}\right] \right\rangle = -i\hbar \left\langle \left[\partial_x, \hat{V}\right] \right\rangle = -i\hbar \left\langle \frac{\partial V}{\partial x} \right\rangle$$

Solution 4

• • •

3.4 Commuting Operators and Basis Vectors

Problem

Prove that two commuting physical operators can share the same non-degenerate basis set.

Solution

Let the pair of operators, basis states, and eigenvalues be defined as

$$\hat{A} |\psi_n\rangle = a_n |\psi_n\rangle$$
 $\hat{B} |\phi_n\rangle = b_n |\phi_n\rangle$.

In the most general case, the basis states relate to each other by

$$|\psi_n\rangle = \sum_m \gamma_{mn} |\phi_n\rangle \qquad |\phi_n\rangle = \sum_m \tilde{\gamma}_{mn} |\psi_n\rangle ,$$

where γ and $\tilde{\gamma}$ are unknown matrices of coefficients. Next, let the operator $\hat{A}\hat{B}$ act on $|\psi_n\rangle$, and also let $\hat{B}\hat{A}$ act on $|\psi_n\rangle$.

$$\hat{A}\hat{B}\left|\psi_{n}\right\rangle = \sum_{mm'} a_{m'} b_{m} \gamma_{mn} \tilde{\gamma}_{m'n} \left|\psi_{m'}\right\rangle$$

$$\hat{B}\hat{A}\left|\psi_{n}\right\rangle = \sum_{mm'} a_{m} b_{m} \gamma_{mn} \tilde{\gamma}_{m'm} \left|\psi_{m'}\right\rangle$$

Since \hat{A} and \hat{B} are commuting, the two expressions must be equal, and we deduce that m'=m and also m=n. Therefore, the matrices γ and $\tilde{\gamma}$ must be purely diagonal and the sums vanish. It's now clear that states $|\phi_n\rangle$ are eigenfunctions of both operators \hat{A} and \hat{B} , and the same can be said for states $|\psi_n\rangle$, completing the proof (for the nondegenerate case). Explicitly (and similarly for \hat{B}):

$$\hat{A} |\phi_n\rangle = \hat{A}\tilde{\gamma}_{nn} |\psi_n\rangle = \tilde{\gamma}_{nn} a_n |\psi_n\rangle = a_n |\phi_n\rangle$$

4 Approximations

4.1 Time-Independent Non-Degenerate Perturbation Theory

Introduction

Consider a Hamiltonian operator $\hat{H}^{(0)}$ that takes on a first-order correction \hat{H}' . The eigenvectors and eigenvalues of \hat{H} take on correction terms of all orders, and the total system is determined by

$$\hat{H} = \hat{H}^{(0)} + \lambda \hat{H}'$$

$$|\Psi_n\rangle = |\Psi_n^{(0)}\rangle + \lambda |\Psi_n^{(1)}\rangle + \lambda^2 |\Psi_n^{(2)}\rangle + \cdots$$

$$E_n = E_n^{(0)} + \lambda E_n^{(1)} + \lambda^2 E_n^{(2)} + \cdots,$$

where λ is a tool for keeping track of order and can be set to 1 at any stage.

Problem 1

Verify that the zero-order equation in λ gives the unperturbed case,

$$\hat{H}^{(0)} |\Psi_n^{(0)}\rangle = E_n^{(0)} |\Psi_n^{(0)}\rangle$$
.

Problem 2

Prove that the first-order correction to the energy eigenvalues is given by

$$E_n^{(1)} = \langle \Psi_n^{(0)} | \hat{H}' | \Psi_n^{(0)} \rangle$$
.

Problem 3

Prove that the first-order correction to the wavefunction is given by

$$|\Psi_n^{(1)}\rangle = -\sum_{m \neq n} \frac{\langle \Psi_m^{(0)} | \hat{H}' | \Psi_n^{(0)} \rangle}{E_m^{(0)} - E_n^{(0)}} |\Psi_m^{(0)} \rangle .$$

Problem 4

Prove that the second-order correction to the energy eigenvalues is given by the always-negative term

$$E_n^{(2)} = \langle \Psi_n^{(0)} | \hat{H}' | \Psi_n^{(1)} \rangle = -\sum_{m \neq n} \frac{\left| \langle \Psi_m^{(0)} | \hat{H}' | \Psi_n^{(0)} \rangle \right|^2}{E_m^{(0)} - E_n^{(0)}}.$$

Problem 5

Denoting $\hat{H}'_{ab} = \langle \Psi_a^{(0)} | \hat{H}' | \Psi_b^{(0)} \rangle$, prove that the second-order correction to the wavefunction is given by

$$|\Psi_n^{(2)}\rangle = \sum_{l \neq n} \left(\sum_{k \neq n} \frac{\hat{H}'_{lk} \hat{H}'_{kn}}{\left(E_l^{(0)} - E_n^{(0)} \right) \left(E_k^{(0)} - E_n^{(0)} \right)} - \frac{\hat{H}'_{nn} \hat{H}'_{ln}}{\left(E_l^{(0)} - E_n^{(0)} \right)^2} \right) |\Psi_l^{(0)}\rangle .$$

Problem 6

Prove that the third-order correction to the energy eigenvalues is

$$E_n^{(3)} = \sum_{l,k \neq n} \frac{\hat{H}'_{nl} \hat{H}'_{lk} \hat{H}'_{kn}}{\left(E_l^{(0)} - E_n^{(0)}\right) \left(E_k^{(0)} - E_n^{(0)}\right)} - \sum_{l \neq n} \frac{\hat{H}'_{nn} \left|\hat{H}'_{nl}\right|^2}{\left(E_l^{(0)} - E_n^{(0)}\right)^2}.$$

Problem 7

Explain why non-degenerate perturbation theory fails if two or more eigenvalues (energy levels) of the Hamiltonian are equal, or nearly equal.

Solution 1

The statement $\hat{H} |\Psi_n\rangle = E_n |\Psi_n\rangle$, accounting for all above-stated corrections, delivers an infinite number of equations in powers of λ . The $\lambda = 0$ case delivers the unperturbed Schrodinger equation.

Solution 2

Taking the first-order term in λ and projecting $\langle \Psi_l^{(0)} |$ onto both sides, we get

$$\langle \Psi_l^{(0)} | \hat{H}' | \Psi_n^{(0)} \rangle + \langle \Psi_l^{(0)} | \hat{H}^{(0)} | \Psi_n^{(1)} \rangle = E_n^{(0)} \langle \Psi_l^{(0)} | \Psi_n^{(1)} \rangle + E_n^{(1)} \delta_{ln} + E_n^{(1)}$$

For the case l = n, the two terms adjacent to the equal sign cancel, and we recover the desired expression.

Solution 3

Take $l \neq n$ to find

$$\langle \Psi_l^{(0)} | \hat{H}' | \Psi_n^{(0)} \rangle + \left(E_l^{(0)} - E_n^{(0)} \right) \langle \Psi_l^{(0)} | \Psi_n^{(1)} \rangle = 0.$$

Meanwhile, the first-order correction to the wavefunction is a sum over the unperturbed states with 'unknown' coefficients A_{mn} , as in $|\Psi_n^{(1)}\rangle = \sum_m A_{mn} |\Psi_m^{(0)}\rangle$. The A_{mn} aren't unknown at all; the're identically equal to $\langle \Psi_m^{(0)} | \Psi_n^{(1)} \rangle$, which is the inner product that occurs in the equation above.

Solution 4

The second-order terms in λ read

$$\hat{H}^0 \left| \Psi_n^{(2)} \right\rangle + \hat{H}' \left| \Psi_n^{(1)} \right\rangle = E_n^{(1)} \left| \Psi_n^{(1)} \right\rangle + E_n^{(0)} \left| \Psi_n^{(2)} \right\rangle + E_n^{(2)} \left| \Psi_n^{(0)} \right\rangle \; .$$

Projecting $\langle \Psi_l^{(0)} |$ onto both sides and letting l = n gives the desired result.

For the $l \neq n$ case, we find

$$\left(E_l^{(0)} - E_n^{(0)}\right) \langle \Psi_l^{(0)} | \Psi_n^{(2)} \rangle + \langle \Psi_l^{(0)} | \hat{H}' | \Psi_n^{(1)} \rangle = E_n^{(1)} \langle \Psi_l^{(0)} | \Psi_n^{(1)} \rangle ,$$

and proceeding as we did for the first-order case, it follows that

$$|\Psi_n^{(2)}\rangle = \sum_{l \neq n} \frac{-\langle \Psi_l^{(0)} | \hat{H}' | \Psi_n^{(1)} \rangle + E_n^{(1)} \langle \Psi_l^{(0)} | \Psi_n^{(1)} \rangle}{\left(E_l^{(0)} - E_n^{(0)} \right)} |\Psi_l^{(0)}\rangle ,$$

where plugging in the formulae for $|\Psi_n^{(1)}\rangle$, $E_n^{(1)}$, and $\langle\Psi_l^{(0)}|\Psi_n^{(1)}\rangle$ gives the desired result.

Solution 6

You should find

$$E_n^{(3)} = \langle \Psi_n^{(0)} | \hat{H}' | \Psi_n^{(2)} \rangle$$
.

Solution 7

For equal or near-equal eigenvalues, each correction term involves division by zero.

4.2 Two-Fold Degenerate Perturbation Theory

Consider a system in which exactly two eigenvalues (energy levels) of the Hamiltonian $\hat{H}^{(0)}$ are equal or nearly equal. If the two corresponding eigenstates are $|\Psi_a^{(0)}\rangle$ and $|\Psi_b^{(0)}\rangle$, we have

$$\hat{H}^{(0)} |\Psi_a^{(0)}\rangle = E^{(0)} |\Psi_a^{(0)}\rangle \qquad \qquad \hat{H}^{(0)} |\Psi_b^{(0)}\rangle = E^{(0)} |\Psi_b^{(0)}\rangle \qquad \qquad \langle \Psi_a^{(0)} |\Psi_b^{(0)}\rangle = 0 \; .$$

All is well until we introduce a perturbative term to the Hamiltonian such that $\hat{H} = \hat{H}^{(0)} + \hat{H}'$, as the non-degenerate technique leads to division by zero. To proceed, we'll work with the first-order approximations

$$\hat{H} = \hat{H}^{(0)} + \lambda \hat{H}'$$
$$|\Psi\rangle = |\Psi^{(0)}\rangle + \lambda |\Psi^{(1)}\rangle$$
$$E = E^{(0)} + \lambda E^{(1)},$$

where λ can be set to 1 at any stage. Next, notice that a linear combination of the two eigenstates, as in

$$|\Psi^{(0)}\rangle = \alpha |\Psi_a^{(0)}\rangle + \beta |\Psi_b^{(0)}\rangle$$
,

must also solve the Schrödinger equation with the same eigenvalue, where coefficients α and β obey $\alpha^*\alpha + \beta^*\beta = 1$.

Problem 1

Write the Schrodinger equation to first order, and then generate two equations for α and β by taking the inner product with $\langle \Psi_a^{(0)} |$ and $\langle \Psi_b^{(0)} |$, respectively. Defining $V_{ij} = \langle \Psi_i^{(0)} | \hat{H}' | \Psi_j^{(0)} \rangle$, write your result as a matrix that operates on the column vector $[\alpha, \beta]$.

Problem 2

Show that the first-order correction to the energy eigenvalue is equal to

$$E_{\pm}^{(1)} = \frac{1}{2} \left[V_{aa} + V_{bb} \pm \sqrt{(V_{aa} - V_{bb})^2 + 4 |V_{ab}|^2} \right].$$

Solution 1

$$\left(\hat{H}^{(0)} - E^{(0)} \right) |\Psi^{(1)}\rangle + \left(\hat{H}' - E^{(1)} \right) |\Psi^{(0)}\rangle = 0$$

$$\begin{bmatrix} V_{aa} - E^{(1)} & V_{ab} \\ V_{ba} & V_{bb} - E^{(1)} \end{bmatrix} \begin{bmatrix} \alpha \\ \beta \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Solution 2

$$\begin{vmatrix} V_{aa} - E^{(1)} & V_{ab} \\ V_{ba} & V_{bb} - E^{(1)} \end{vmatrix} = 0$$

5 Wavepackets

5.1 Free Particle in One Dimension

A particle moving in one dimension has the normalized state function

$$\psi(x) = \left(2\pi a^2\right)^{-1/4} e^{-x^2/4a^2} ,$$

where a is a constant with units of length.

Problem 1

Solve for the momentum representation of the wavefunction, $\psi(p)$.

Problem 2

Find the probability P(p) that the particle has momentum between p and p + dp.

Problem 3

The uncertainty in the variable is x defined as

$$\sigma_x = \sqrt{\langle x^2 \rangle - \langle x \rangle^2} \,,$$

where an identical relation holds for p. Show that the product of uncertainties is

$$\sigma_x \, \sigma_p = \frac{\hbar}{2} \, .$$

Solution 1

$$\psi(p) = (2\pi a^2)^{-1/4} \int_{-\infty}^{\infty} dx \, e^{-x^2/4a^2 - ipx/\hbar} = \sqrt{2} (2\pi a^2)^{1/4} e^{-p^2 a^2/\hbar^2}$$

$$\langle \psi | \psi \rangle = \int \int \frac{dp \, dp'}{\left(2\pi\hbar\right)^2} \left|\psi\left(p\right)\right|^2 \left\langle p' | p \right\rangle = \int dp \left[\sqrt{\frac{2}{\pi}} \frac{a}{\hbar} e^{-2p^2 a^2/\hbar^2}\right] = \int dp \, P\left(p\right)$$

$$\sigma_x^2 = \langle x^2 \rangle - 0 = \frac{1}{\sqrt{2\pi a^2}} \int_{-\infty}^{\infty} dx \, x^2 e^{-x^2/2a^2} = \frac{a^3 \sqrt{2\pi}}{\sqrt{2\pi a^2}} = a^2$$

$$\sigma_p^2 = \langle p^2 \rangle - 0 = \sqrt{\frac{2}{\pi}} \frac{a}{\hbar} \int_{-\infty}^{\infty} dp \, p^2 e^{-2p^2 a^2/\hbar^2} = \sqrt{\frac{2}{\pi}} \frac{a}{\hbar} \sqrt{\frac{\pi}{32}} \frac{\hbar^3}{a^3} = \frac{\hbar^2}{4a^2}$$

$$\sigma_x \, \sigma_p = \sqrt{\frac{a^2 \hbar^2}{4a^2}} = \frac{\hbar}{2}$$

5.2 Particle Flux Vector

Problem

For a system of particles of mass m in the state ψ , the formal expression for the flux vector (number per unit volume through init area perpendicular to the direction of motion) is

$$\vec{F} = \frac{-i\hbar}{2m} \left((\psi^*) \vec{\nabla} \psi - \psi \left(\vec{\nabla} \psi^* \right) \right) .$$

Show that, for a beam of particles of density ρ , the expression gives $F = v\rho$.

Solution

Identify ψ as Ae^{ikx} such that $\rho = A^2$. Also recall $mv = p = \hbar k$.

5.3 Free Particle in One Dimension

A free particle traveling in one dimension is represented by the wavevector $\psi(x) = Ae^{i(kx-\omega t)}$.

Problem 1

Calculate the group velocity using non-relativistic mechanics, and show that it equals the particle velocity u.

Problem 2

Show that the same result holds for relativistic mechanics.

Problem 3

Show that the phase velocity v_p is related to the group velocity by $v_p = v_g/2$ for non-relativistic mechanics.

Problem 4

Show that the phase velocity v_p is related to the group velocity by $v_p=c^2/v_g$ for relativistic mechanics.

$$v_g = \frac{d\omega}{dk} = \frac{d}{dk} \left(\frac{E}{\hbar}\right) = \frac{d}{dk} \left(\frac{\hbar^2 k^2}{2m\hbar}\right) = \frac{\hbar k}{m} = \frac{p}{m} = u$$

Solution 2

$$v_g = \frac{d\omega}{dk} = \frac{d}{dk} \left(\frac{E}{\hbar}\right) = \frac{d}{dk} \left(\frac{\sqrt{p^2c^2 + m^2c^4}}{\hbar}\right) = \frac{pc^2}{\gamma mc^2} = \frac{p}{\gamma m_{rest}} = \frac{p}{m_{rel}} = u$$

Solution 3

$$v_p = \frac{\omega}{k} = \frac{E}{\hbar k} = \frac{p^2}{2mp} = \frac{p}{2m} = \frac{u}{2}$$

Solution 4

$$v_p = \frac{\omega}{k} = \frac{\gamma mc^2}{\hbar k} = \frac{m_{rel}c^2}{p} = \frac{c^2}{u}$$

5.4 Wavepacket Spreading

Consider the Gaussian wavepacket:

$$\phi(p) = (4\pi\sigma^2)^{1/4} e^{-(p-p_0)^2 \sigma^2/2\hbar^2}$$

Problem 1

Calculate $\psi(x,t)$ using

$$\psi(x,t) = \int_{-\infty}^{\infty} \frac{dp}{2\pi\hbar} \,\phi(p) \,e^{ipx/\hbar - itp^2/(2m\hbar)} \,.$$

Problem 2

Evaluate the mean position and width of the wavepacket via

$$\langle x \rangle = \int_{-\infty}^{\infty} dx \, x \, |\psi(x,t)|^2$$

$$\sigma_x^2 = \int_{-\infty}^{\infty} dx \, (x - \langle x \rangle)^2 \, |\psi(x,t)|^2$$

Problem 3

Show that the average value of the momentum $\langle p \rangle$ at t=0 obeys the formula:

$$\langle p_{t=0} \rangle = -i\hbar \int dx \, \psi^* (x,0) \, \frac{\partial}{\partial x} \psi (x,0) = p_0$$

$$\psi(x,t) = e^{-p_0^2 \sigma^2 / 2\hbar^2} \frac{(4\pi\sigma^2)^{1/4}}{2\pi\hbar} \sqrt{\frac{\pi}{\frac{\sigma^2}{2\hbar^2} + \frac{it}{2m\hbar}}} \exp\left[\frac{\left(\frac{p_0 \sigma^2}{\hbar^2} + \frac{ix}{\hbar}\right)^2}{4\left(\frac{\sigma^2}{2\hbar^2} + \frac{it}{2m\hbar}\right)}\right]$$

Letting $v_0 = p_0/m$.

$$|\psi(x,t)|^2 = \frac{\sigma}{\sqrt{\pi}\sqrt{\sigma^4 + \left(\frac{\hbar t}{m}\right)^2}} \exp\left[-\frac{\sigma^2(x - v_0 t)^2}{\sigma^4 + \left(\frac{\hbar t}{m}\right)^2}\right]$$

Letting $q = x - v_0 t$.

$$\langle x \rangle = \frac{\sigma}{\sqrt{\pi} \sqrt{\sigma^4 + \left(\frac{\hbar t}{m}\right)^2}} \left[\int_{-\infty}^{\infty} q \, e^{\frac{-\sigma^2 q^2}{\sigma^4 + \left(\frac{\hbar t}{m}\right)^2}} dq + v_0 t \int_{-\infty}^{\infty} e^{\frac{-\sigma^2 q^2}{\sigma^4 + \left(\frac{\hbar t}{m}\right)^2}} dq \right] = v_0 t$$
$$\sigma_x^2 = \frac{\sigma}{\sqrt{\pi} \sqrt{\sigma^4 + \left(\frac{\hbar t}{m}\right)^2}} \int_{-\infty}^{\infty} dq \, q^2 e^{\frac{-\sigma^2 q^2}{\sigma^4 + \left(\frac{\hbar t}{m}\right)^2}} = \frac{\sigma^2 + \left(\frac{\hbar t}{\sigma m}\right)^2}{2}$$

Solution 3

...

5.5 Confined Particle in One Dimension

Problem

For the wavefunction $\psi(x) = 1/\sqrt{2a}$ on the interval -a < x < a with $\psi(x) = 0$ elsewhere, show that the uncertainty in the momentum is infinite.

Solution

$$\psi\left(p\right) = \int_{-a}^{a} dx \,\psi\left(x\right) e^{-ipx/\hbar} = \frac{1}{2a} \int_{-a}^{a} dx \,\left(\cos\left(px/\hbar\right) + i\sin\left(px/\hbar\right)\right) = \frac{\hbar}{pa} \sin\left(\frac{pa}{\hbar}\right)$$
$$\sigma_{p}^{2} = \int_{-\infty}^{\infty} dp \,\left(p^{2} - \langle p \rangle\right) \frac{\left|\psi\left(p\right)\right|^{2}}{2\pi\hbar} \propto \int_{-\infty}^{\infty} dp \,p^{2} \sin^{2}\left(\frac{pa}{\hbar}\right) = \infty$$

6 Barriers

6.1 Step Barrier Reflection and Transmission

A beam of particles of energy E_0 traveling along the +x direction encounters an energy barrier with magnitude V_0 that obeys

$$V\left(x\right) = \begin{cases} 0 & x \le 0 \\ V_0 & x > 0 \end{cases}$$

Write down the reflection and transmission coefficients for both (1) $E > V_0$ and (2) $E < V_0$. Check that R + T = 1 in each case.

Let $\psi_L(x)$ denote the wavefunction for $x \leq 0$, and let $\psi_R(x)$ be the wavefunction for x > 0. The wavefunction and its derivative must be continuous across the barrier, so we have the continuity conditions

$$\psi_L(0) = \psi_R(0) \qquad \partial_x \psi_L(0) = \partial_x \psi_R(0) .$$

For positions $x \leq 0$, the potential is zero, and the momentum of the particle relates to the energy by $E_0 = p^2/2m$ where $p = \hbar k$. To the right of x = 0, the energy is reduced by the barrier. Altogether, we have

$$k_L = \sqrt{\frac{2mE_0}{\hbar^2}}$$
 $k_R = \sqrt{\frac{2m(E_0 - V_0)}{\hbar^2}}$,

and notice that if the particle beam energy is less than that of the barrier then k_R becomes imaginary. The most general solution to Schrodinger's equation $\partial_{xx}\psi(x) = -(2m/\hbar^2)(E - V)\psi(x)$ is

$$\psi_L(x) = Ae^{ik_L x} + Be^{-ik_L x} \qquad \qquad \psi_R(x) = Ce^{ik_R x} + De^{-ik_R x}.$$

The constant D is zero by the problem statement, as there is no wave traveling from $x = \infty$ toward the barrier's edge. It hurts nothing to set A = 1 to denote the incoming wave as having unit amplitude. Continuity in the wavefunction and continuity in the derivative of the wavefunction across x = 0 delivers

$$1 + B = C k_L (1 - B) = Ck_R.$$

The remaining unknowns are thus

$$B = \frac{k_L - k_R}{k_L + k_R} \qquad C = \frac{2k_L}{k_L + k_R} \,.$$

The flux of reflected and transmitted particles give the reflection and transmission coefficients, which read:

$$R = F_{refl} = |B|^2 \left(\frac{k_L}{m}\right) = |B|^2 F_{inc} = |B|^2 = \left(\frac{k_L - k_R}{k_L + k_R}\right)^2$$

$$T = F_{trans} = |C|^2 \left(\frac{k_R}{m}\right) = |C|^2 \left(\frac{k_R}{k_L}\right) F_{inc} = \frac{4k_L k_R}{(k_L + k_R)^2}$$

Solution 2

For $E_0 < V_0$, the k_R term becomes imaginary, so we denote $k_R \to i\kappa$, where κ is real. Since x > 0 corresponds to evanescent waves, the overall transmission into the barrier is zero. The reflection coefficient R evaluates to 1, which is also classically correct.

6.2 Step Barrier Reflection and Evanescent Waves

A beam of particles of energy $E_0 < V_0$ traveling along the +x direction encounters an energy barrier

$$V\left(x\right) = \begin{cases} 0 & x \le 0 \\ V_0 & x > 0 \end{cases}.$$

To left of the barrier $(x \leq 0)$, the wavefunction is

$$\psi_L(x) = e^{ikx} + Be^{-ikx}$$

where the wavenumber k is given by $k^2 = 2mE_0/\hbar^2$. On the right of x = 0, the wavenumber becomes imaginary because $E_0 < V_0$, so we write $\kappa^2 = 2m(V_0 - E_0)/\hbar^2$ such that

$$\psi_R(x) = Ce^{-\kappa x} .$$

Problem 1

Letting $\tan \theta = \kappa/k$, show that the wavefunction to the left of x = 0 obeys

$$\psi_L(x) = 2e^{-i\theta}\cos(kx + \theta) .$$

Problem 2

Solve for ψ_R on the right of x=0 and state the amplitude of the evanescent wave.

Solution 1

$$B = \frac{1 - i \tan \theta}{1 + i \tan \theta} = \frac{\cos \theta - i \sin \theta}{\cos \theta + i \sin \theta} = e^{-2i\theta}$$

Solution 2

$$\psi_R(x) = Ce^{-\gamma x} = \frac{2\cos\theta}{\cos\theta + i\sin\theta}e^{-\gamma x} = \left[2\cos\theta e^{-\gamma x}\right]e^{-i\theta} = A_{ev}e^{-i\theta}$$

6.3 Top Hat Barrier

A beam of particles of energy $E_0 < V_0$ traveling along the +x direction encounters an energy barrier with magnitude V_0 that obeys

$$V(x) = \begin{cases} 0 & x < 0 \\ V_0 & 0 \ge x \ge a \\ 0 & x > a \end{cases}.$$

Problem 1

Write down the wavefunction in the thre regions $\psi_L(x < 0)$, $\psi_M(0 \ge x \ge a)$, and $\psi_R(x > a)$ with unknown amplitude coefficients. State the conditions that allow one to solve for the unknown coefficients.

Problem 2

Solve for all unknwn coefficients.

Problem 3

Calculate the transmission coefficient through the barrier, and also the reflection coefficient away from the barrier. Check that their sum is unity.

Problem 4

Repeat the previous three calculations for $E_0 > V_0$.

Problem 5

Calculate the transmission coefficient in the limit of a very tall barrier such that $V_0 \gg E_0$.

Solution 1

$$k = \sqrt{\frac{2mE_0}{\hbar^2}} \qquad \gamma = \sqrt{\frac{2m(V_0 - E_0)}{\hbar^2}}$$

$$\psi_L(x) = e^{ikx} + Be^{-ikx} \qquad \psi_M(x) = Ce^{\gamma x} + De^{-\gamma x} \qquad \psi_R(x) = Ee^{ikx}$$

$$\psi_L(0) = \psi_M(0) \qquad \qquad \psi_M(a) = \psi_R(a)$$

$$\partial_x \psi_L(0) = \partial_x \psi_M(0) \qquad \qquad \partial_x \psi_M(a) = \partial_x \psi_R(a)$$

Solution 2

$$B = \frac{-\left(\gamma^2 + k^2\right) \sinh(\gamma a)}{-2i\gamma k \cosh(\gamma a) + (g-k)(g+k) \sinh(\gamma a)}$$

$$\begin{bmatrix} 1 & -1 & -1 & 0 & -1 \\ ik & \gamma & -\gamma & 0 & ik \\ 0 & e^{\gamma a} & e^{-\gamma a} & -e^{iak} & 0 \\ 0 & \gamma e^{\gamma a} & -\gamma e^{-\gamma a} & -ike^{iak} & 0 \end{bmatrix}$$

$$C = \frac{-2k(-i\gamma + k)}{-e^{2\gamma a}(\gamma - ik)^2 + (\gamma + ik)^2}$$

$$D = \frac{-2e^{2\gamma a}(i\gamma + k)k}{e^{2\gamma a}(\gamma - ik)^2 - (\gamma + ik)^2}$$

$$E = \frac{2i\gamma k e^{-iak}}{2i\gamma k \cosh(\gamma a) + (-\gamma^2 + k^2) \sinh(\gamma a)}$$

Solution 3

$$R = |B|^{2} = \frac{1}{1 + \frac{4\gamma^{2}k^{2}}{(\gamma^{2} + k^{2})^{2}\sinh(\gamma a)^{2}}} \qquad T = |E|^{2} = \frac{1}{\cosh(\gamma a)^{2} + \frac{(\gamma^{2} - k^{2})^{2}\sinh(\gamma a)^{2}}{4\gamma^{2}k^{2}}}$$

$$R = \frac{1}{1 + \frac{1}{\sinh(\gamma a)^{2}} \left(\frac{4E_{0}(V_{0} - E_{0})}{V_{0}^{2}}\right)} \qquad T = \frac{1}{1 + \sinh(\gamma a)^{2} \left(\frac{V_{0}^{2}}{4E_{0}(V_{0} - E_{0})}\right)}$$

$$R + T = \frac{1}{1 + x} + \frac{1}{1 + 1/x} = \frac{2 + x + 1/x}{2 + x + 1/x} = 1$$

$$k = \sqrt{\frac{2mE_0}{\hbar^2}} \qquad \beta = \sqrt{\frac{2m(E_0 - V_0)}{\hbar^2}}$$

$$\psi_L(x) = e^{ikx} + Be^{-ikx} \qquad \psi_M(x) = Ce^{i\beta x} + De^{-i\beta x} \qquad \psi_R(x) = Ee^{ikx}$$

Replace $\gamma \to i\beta$ in part (2).

$$R = \frac{(\beta^2 - k^2)^2 \sin(\beta a)^2}{4\beta^2 k^2 \cos(\beta a)^2 + (\beta^2 + k^2)^2 \sin(\beta a)^2} \qquad T = \frac{1}{\cos(\beta a)^2 + \frac{(\beta^2 + k^2)^2 \sin(\beta a)^2}{4\beta^2 k^2}}$$
$$R = \frac{1}{1 + \frac{1}{\sin(\beta a)^2} \left(\frac{4E_0(E_0 - V_0)}{V_0^2}\right)} \qquad T = \frac{1}{1 + \sin(\beta a)^2 \left(\frac{V_0^2}{4E_0(E_0 - V_0)}\right)}$$

Solution 5

$$T_{(V_0 \gg E_0)} \approx \frac{16\gamma^2 k^2}{(\gamma^2 + k^2)^2} e^{-2\gamma a} = \frac{16E_0 (V_0 - E_0)}{V_0^2} e^{-2\gamma a} \approx \frac{16E_0}{V_0} e^{-2\gamma a}$$

7 Wells

7.1 Trapped Particle

Problem

Suppose that the wavefunction for a given particle with zero energy is known to be

$$\psi\left(x\right) = Axe^{-x^2/L^2} .$$

Determine the shape of the potential well, U(x), in which the particle must be trapped.

Solution

$$-\frac{\hbar^{2}}{2m}\partial_{xx}\psi\left(x\right)+U\left(x\right)\psi\left(x\right)=0 \qquad \qquad U\left(x\right)=\frac{2\hbar^{2}}{mL^{2}}\left(\frac{x^{2}}{L^{2}}-\frac{3}{2}\right)$$

8 SHO

8.1 SHO Energy Levels

Consider the time-independent Schrodinger equation in one dimension $(-\hbar^2/2m)\partial_{xx}\psi(x) + V(x)\psi(x) = E\psi(x)$, where V(x) is specified by the harmonic oscillator potential, $V = (m/2)\omega^2x^2$, and ω is the angular frequency.

Problem 1

Introduce the dimensionless energy $\epsilon_n = (2/\hbar\omega)E_n$ and the dimensionless coordinate $\xi = x\sqrt{m\omega/\hbar}$ to show that the Schrodinger equation takes the form

$$\psi''(\xi) + (\epsilon_n - \xi^2) \psi(\xi) = 0.$$

Problem 2

In the limit that $|\xi|$ is very large, show that $\psi_{(|\xi|\to\infty)}=e^{\pm\xi^2/2}$, so that the wavefunction may be written

$$\psi(\xi) = f(\xi) e^{-\xi^2/2}$$
.

Show further that $f(\xi)$ is governed by

$$f'' - 2\xi f' + (\epsilon_n - 1) f = 0.$$

Problem 3

Assume a power series solution to $f(\xi)$ as in

$$f\left(\xi\right) = \sum_{k=0}^{\infty} A_k \xi^k \,,$$

and show that the coefficients A_k obey the recursion relation

$$A_{k+2} = \frac{1 + 2k - \epsilon_n}{(k+1)(k+2)} A_k ,$$

indicating that the coefficients for even k are separated from those of odd k. Observe (up to normalization constant) that symmetric solutions must begin with $A_0 = 1$ and $A_1 = 0$, where meanwhile antisymmetric solutions have $A_0 = 0$ and $A_1 = 1$.

Problem 4

For large values of k, observe that the ratio A_{k+2}/A_k approaches the value 2/k. For k large enough, the function $f(\xi)$ grows exponentially in ξ^2 and becomes too large to be consistent with $\psi(x) = f(\xi)e^{-\xi^2/2}$, thus the infinite series in k has to be trunctated at some finite k = n. Use the recursion relation for A_k to show that the harmonic oscillator energy levels are given by

$$E_n = \hbar\omega \left(n + \frac{1}{2} \right) .$$

Solution 1

This is a straightforward substitution.

Solution 2

Argue that $\psi(\xi) \sim e^{+\xi^2/2}$ corresponds to an infinite wavefunction, so keep only the minus case. The non-asymptotic behavior of the wavefunction is contained in $f(\xi)$.

Solution 3

Along the way, arrive at

$$\sum_{k=0}^{\infty} \left[(k+2) (k+1) A_{k+2} - 2k A_k + (\epsilon_n - 1) A_k \right] \xi^k = 0,$$

where the first term has its index shifted $k \to k + 2$.

Solution 4

Given $A_k \neq 0$, we can only have $A_{k+2} = 0$ if $1 + 2k - \epsilon_n = 0$. Let k = n and redimensionalize the ϵ_n in terms of E_n .

8.2 SHO Wavefunctions by Power Series

The simple harmonic oscillator in one dimension obeys the time-independent Schrodinger equation $(-\hbar^2/2m)\partial_{xx}\psi_n(x) + (m/2)\omega^2x^2\psi_n(x) = E_n\psi_n(x)$.

Problem 1

Without normalizing, write down the wavefunctions

$$\psi_n(\xi) = \sum_{k \le n} A_k \xi^k e^{-\xi^2/2}$$
 $A_{k+2} = \frac{2k - 2n}{(k+1)(k+2)} A_k$

for the first four states n = 0, 1, 2, 3 by making use of the recursion relation for the coefficients A_k .

Problem 2

Verify by direct integration that the four wavefunctions $\psi_n(\xi)$ written in part (a) are orthogonal.

Problem 3

Multiply each wavefunction by a constant such that the non-exponential dependency in ξ matches one of the famous *Hermite* polynomials

$$H_0 = 1$$
 $H_1 = 2\xi$ $H_2 = 4\xi^2 - 2$ $H_3 = 8\xi^3 - 12\xi$ $H_4 = 16\xi^4 - 48\xi^2 + 12$ $H_5 = 32\xi^5 - 160\xi^3 + 120\xi$,

such that the wavefunctions may be written

$$\psi_n(\xi) = N_n H_n(\xi) e^{\xi^2/2} ,$$

where N_n is the normalization constant for a given n. Calculate this constant for the first four wavefunctions ψ_0 , ψ_1 , ψ_2 , and ψ_3 . Note that

$$\int_{-\infty}^{\infty} dx \ |\psi(x)|^2 = \sqrt{\frac{\hbar}{m\omega}} \int_{-\infty}^{\infty} d\xi \ |\psi(\xi)|^2 = 1.$$

Solution 1

Recall that symmetric solutions must begin with $A_0 = 1$ and $A_1 = 0$, and antisymmetric solutions have $A_0 = 0$ and $A_1 = 1$. Thus:

$$\psi_0(\xi) = A_0 e^{-\xi^2/2} \qquad \qquad \psi_1(\xi) = A_1 \xi e^{-\xi^2/2}$$

$$\psi_2(\xi) = A_0 (1 - 2\xi^2) e^{-\xi^2/2} \qquad \qquad \psi_3(\xi) = A_1 \left(\xi - \frac{2}{3}\xi^3\right) e^{-\xi^2/2m}$$

Solution 2

(b) $\int_{-\infty}^{\infty} d\xi \, \psi_n(\xi) \, \psi_m(\xi) \propto \delta_{mn}$

$$N_0 = \left(\frac{m\omega}{\hbar\pi}\right)^{1/4} \qquad N_1 = \left(\frac{m\omega}{\hbar\pi}\right)^{1/4} \frac{1}{\sqrt{2}}$$

$$N_2 = \left(\frac{m\omega}{\hbar\pi}\right)^{1/4} \frac{1}{2\sqrt{2}} \qquad N_3 = \left(\frac{m\omega}{\hbar\pi}\right)^{1/4} \frac{1}{4\sqrt{3}}$$

8.3 Hermite Polynomial Generating Function

Consider the generating function $F(\xi, s) = e^{\xi^2 - (s - \xi)^2} = e^{-s^2 + 2s\xi}$.

Problem 1

First show that

$$\frac{\partial^2 F}{\partial \xi^2} - 2\xi \frac{\partial F}{\partial \xi} + 2s \frac{\partial F}{\partial s} = 0 ,$$

and then insert into the above equation the Taylor expansion of F, namely

$$F(\xi, s) = \sum_{n=0}^{\infty} \frac{a_n(\xi)}{n!} s^n,$$

to derive an analog to the expression $f'' - 2\xi f' + (\epsilon_n - 1)f = 0$ in terms of $a_n(\xi)$.

Problem 2

Since the coefficients $a_n(\xi)$ obey the same differential equation as do $f(\xi)$, along with the Hermite polynomials $H_n(\xi)$, we know $a_n(\xi)$ must relate to $H_n(\xi)$ by a linear factor for each n. The choice has already been made for us in the definition of $F(\xi, s)$. Indeed, it turns out that $a_n(\xi) = H_n(\xi)$ exactly, meaning

$$e^{\xi^2 - (s - \xi)^2} = \sum_{n=0}^{\infty} \frac{H_n(\xi)}{n!} s^n$$
.

Use the above identity to derive the normalization constant for the nth SHO wavefunction:

$$N_n = \left(\frac{m\omega}{\hbar\pi}\right)^{1/4} \frac{1}{\sqrt{2^n n!}}$$

Solution 1

$$\sum_{n} [a_n'' - 2\xi a_n' + 2na_n] s^n = 0 \qquad \epsilon_n = 2n + 1$$

$$\int_{-\infty}^{\infty} d\xi \, e^{-\xi^2} e^{\xi^2 - (s - \xi)^2} e^{\xi^2 - (t - \xi)^2} = \int_{-\infty}^{\infty} d\xi \, \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} \frac{s^n t^m}{n! m!} H_n(\xi) \, H_m(\xi) \, e^{-\xi^2}$$

$$\sqrt{\pi} e^{2st} = \sqrt{\pi} \sum_{n=0}^{\infty} \frac{2^n s^n t^n}{n!} = \sum_{n=0}^{\infty} \frac{s^n}{n!} \left(\sum_{m=0}^{\infty} \frac{t^m}{m!} \int_{-\infty}^{\infty} d\xi \, H_n(\xi) \, H_m(\xi) \, e^{-\xi^2} \right)$$

$$\sqrt{\pi} 2^n t^n = \sum_{m=0}^{\infty} \frac{t^m}{m!} \int_{-\infty}^{\infty} d\xi \ H_n(\xi) \ H_m(\xi) \ e^{-\xi^2}$$
$$\sqrt{\pi} 2^n n! = \int_{-\infty}^{\infty} d\xi \ H_n(\xi) \ H_n(\xi) \ e^{-\xi^2}$$

8.4 Creation, Annihilation, and Number Operator

The Hamiltonian and energy levels for the quantum simple harmonic oscillator system are, respectively,

$$\hat{H} = \frac{\hat{p}^2}{2m} + \frac{1}{2}m\omega^2\hat{x}^2 \qquad E_n = \hbar\omega\left(n + \frac{1}{2}\right) .$$

Problem 1

Introducing the *creation* and *annihilation* operators, respectively, as

$$\hat{a}^{\dagger} = \left(\frac{-i\hat{p}}{\sqrt{2m\hbar\omega}} + \sqrt{\frac{m\omega}{2\hbar}}\hat{x}\right) \qquad \qquad \hat{a} = \left(\frac{i\hat{p}}{\sqrt{2m\hbar\omega}} + \sqrt{\frac{m\omega}{2\hbar}}\hat{x}\right) ,$$

prove that the Hamiltonian operator can be written in terms of a *number* operator \hat{N} , given by:

$$\hat{H} = \hbar\omega \left(\hat{N} + \frac{1}{2}\right) \qquad \qquad \hat{N} = \hat{a}^{\dagger}\hat{a}$$

Problem 2

Show that if $\hat{H} |\psi_n\rangle = E_n |\psi_n\rangle$ then $\hat{N} |\psi_n\rangle = n |\psi_n\rangle$.

Problem 3

Prove the relation $\hat{a}\hat{a}^{\dagger} = \hat{H}/\hbar\omega + 1/2$, and use this to show that the effect of the creation operator \hat{a}^{\dagger} acting on state $|\psi_n\rangle$ is

$$\hat{a}^{\dagger} | \psi_n \rangle = \sqrt{n+1} | \psi_{n+1} \rangle .$$

Problem 4

Show that the effect of the annihilation operator \hat{a} acting on state $|\psi_n\rangle$ is

$$\hat{a} |\psi_n\rangle = \sqrt{n} |\psi_{n-1}\rangle$$
.

Solution 1

$$\hat{a}^{\dagger}\hat{a} = \frac{\hat{p}^2}{2m\hbar\omega} + \frac{m\omega\hat{x}^2}{2\hbar} + \frac{i}{2\hbar}\left[\hat{x},\hat{p}\right] = \frac{1}{\hbar\omega}\left(\frac{\hat{p}^2}{2m} + \frac{1}{2}m\omega^2\hat{x}^2\right) - \frac{1}{2}$$

Solution 2

$$\hbar\omega\left(\hat{N} + \frac{1}{2}\right)|\psi_n\rangle = \hbar\omega\left(n + \frac{1}{2}\right)|\psi_n\rangle$$

$$(\hat{a}^{\dagger}\hat{a}) \hat{a}^{\dagger} |\psi_{n}\rangle = (n+1) \hat{a}^{\dagger} |\psi_{n}\rangle \qquad \qquad \hat{N} |\chi_{n}\rangle = (n+1) |\chi_{n}\rangle$$
$$\langle \chi_{n} | \hat{N} | \chi_{n}\rangle = (n+1) \qquad \qquad |\chi_{n}\rangle = \sqrt{n+1} |\psi_{n+1}\rangle$$

$$\hat{a}\hat{a}^{\dagger} |\psi_{m}\rangle = \left(\frac{\hat{H}}{\hbar\omega} + \frac{1}{2}\right) |\psi_{m}\rangle = (m+1) |\psi_{m}\rangle$$

$$\hat{a}\sqrt{m+1} |\psi_{m+1}\rangle = (m+1) |\psi_{m}\rangle \qquad m+1=n$$

8.5 SHO Commutations and Identities

Problem 1

Prove three commutation relations for the quantum simple harmonic oscillator:

$$\left[\hat{a},\hat{a}^{\dagger}\right]=1$$
 $\left[\hat{N},\hat{a}\right]=-\hat{a}$ $\left[\hat{N},\hat{a}^{\dagger}\right]=\hat{a}^{\dagger}$

Problem 2

Applying the annihilation operator k times, we write

$$\hat{a}^{k} |\psi_{n}\rangle = \sqrt{n(n-1)\cdots(n-k+1)} |\psi_{n-k}\rangle ,$$

which tells us that $n-k \geq 0$ to have real eigenvalues, and the ground state $|\psi_0\rangle$ corresponds to k=n. Verify that annihilation stops at the ground state and goes no deeper by showing that $\hat{a} |\psi_0\rangle = 0$.

Problem 3

The nth eigenstate can be built up from the ground state by applying the creation operator n times:

$$|\psi_n\rangle = \frac{1}{\sqrt{n!}} \left(\hat{a}^{\dagger}\right)^n |\psi_0\rangle$$

Show that the above relation is both self-consistent and properly normalized.

Problem 4

Use \hat{a}^{\dagger} to derive the recursion relation for the Hermite polynomials

$$-H_{n+1}(\xi) = \left(\frac{d}{d\xi} - 2\xi\right) H_n(\xi) ,$$

where $\xi = x\sqrt{m\omega/\hbar}$.

Problem 5

Solve for \hat{x} and \hat{p} in terms of the creation and annihilation operators \hat{a}^{\dagger} and \hat{a} .

$$\begin{aligned} \left[\hat{a}, \hat{a}^{\dagger}\right] &= \hat{a}\hat{a}^{\dagger} - \hat{a}^{\dagger}\hat{a} = \frac{\hat{H}}{\hbar\omega} + \frac{1}{2} - \hat{N} = 1 \\ \left[\hat{N}, \hat{a}\right] &= \hat{a}^{\dagger}\hat{a}\hat{a} - \hat{a}\hat{a}^{\dagger}\hat{a} = \left(\hat{N} - \frac{\hat{H}}{\hbar\omega} - \frac{1}{2}\right)\hat{a} = -\hat{a} \\ \left[\hat{N}, \hat{a}^{\dagger}\right] &= \hat{a}^{\dagger}\hat{a}\hat{a} - \hat{a}^{\dagger}\hat{a}^{\dagger}\hat{a} = \hat{a}^{\dagger}\left(\frac{\hat{H}}{\hbar\omega} + \frac{1}{2} - \hat{N}\right) = \hat{a}^{\dagger} \end{aligned}$$

$$\hat{a} |\psi_0\rangle \sim \left[\frac{-i^2\hbar\partial_x}{\sqrt{2m\hbar\omega}} + \sqrt{\frac{m\omega}{2\hbar}}x\right] N_0 H_0 e^{-x^2m\omega/2\hbar} = 0$$

Solution 3

$$|\psi_n\rangle = \frac{\sqrt{1}}{\sqrt{n!}}\hat{a}^{n-1} |\psi_{0+1}\rangle = \frac{\sqrt{1}\sqrt{2}}{\sqrt{n!}}\hat{a}^{n-2} |\psi_{0+2}\rangle = \frac{\sqrt{1\cdot 2\cdot 3\cdots n}}{\sqrt{n!}}\hat{a}^{n-n} |\psi_{0+n}\rangle = |\psi_n\rangle$$
$$\langle \psi_n|\psi_n\rangle = \frac{1}{n!} \langle \psi_0|(\hat{a})^n(\hat{a}^\dagger)^n|\psi_0\rangle = \frac{\sqrt{n!}}{n!} \langle \psi_0|\hat{a}^n|\psi_n\rangle = \frac{\sqrt{n!}\sqrt{n!}}{n!} \langle \psi_0|\psi_0\rangle = 1$$

Solution 4

$$\left(\frac{-\hbar\partial_x}{\sqrt{2m\hbar\omega}} + \sqrt{\frac{m\omega}{2\hbar}}x\right)N_nH_n\left(x\sqrt{\frac{m\omega}{\hbar}}\right)e^{-x^2m\omega/2\hbar} = \sqrt{n+1}N_{n+1}H_{n+1}\left(x\right)e^{-x^2m\omega/2\hbar}$$

$$\left(-\frac{1}{\sqrt{2}}\partial_\xi + \frac{1}{\sqrt{2}}\xi\right)N_nH_n\left(\xi\right)e^{-\xi^2/2} = \sqrt{n+1}\left(\frac{N_n}{\sqrt{2\left(n+1\right)}}\right)H_{n+1}\left(\xi\right)e^{-\xi^2/2}$$

Solution 5

$$\hat{x} = \sqrt{\frac{\hbar}{2m\omega}} \left(\hat{a} + \hat{a}^{\dagger} \right)$$
 $\hat{p} = i\sqrt{\frac{m\hbar\omega}{2}} \left(\hat{a} - \hat{a}^{\dagger} \right)$

8.6 SHO and Classical Motion

Problem 1

Show that $\langle x \rangle = 0$ for any stationary SHO wavefunction.

Problem 2

Show that the simple harmonic oscillator obeys

$$\frac{d\langle x\rangle}{dt} = \frac{\langle p\rangle}{m} .$$

Problem 3

Suppose a SHO system has the following non-stationary wavefunction at t = 0:

$$\Psi(x,0) = N \left[\psi_0(x) + 2\psi_1(x) \right]$$

Show that $\langle x \rangle$ is a function of time.

Problem 4

Evaluate the integral

$$I = \int_{-\infty}^{\infty} dx \, x \, \psi_0(x) \, \psi_1(x)$$

by two different methods. First substitute Hermite polynomials and evaluate the Gaussian integral. Second, express x in terms of \hat{a} and \hat{a}^{\dagger} , and get the same result given by the first method.

Solution 1

$$\langle x \rangle = \langle \psi_n | \hat{x} | \psi_n \rangle \propto \langle \psi_n | (\hat{a} + \hat{a}^{\dagger}) | \psi_n \rangle \sim \langle \psi_n | \psi_{n-1} \rangle + \langle \psi_n | \psi_{n+1} \rangle = 0$$

Solution 2

$$\frac{d}{dt} \left\langle x \right\rangle = -\frac{i}{\hbar} \left\langle \left[\hat{x}, \hat{H} \right] \right\rangle = -\frac{i}{\hbar} \left\langle \left[\hat{x}, \frac{\hat{p}^2}{2m} \right] + \left[\hat{x}, \frac{1}{2} m \omega^2 \hat{x}^2 \right] \right\rangle = -\frac{i}{\hbar} \left\langle \frac{2i\hbar \hat{p}}{2m} + 0 \right\rangle = \frac{\langle p \rangle}{m}$$

Solution 3

$$\Psi(x,t) = Ne^{-iE_{0}t/\hbar}\psi_{0}(x) + 2Ne^{-iE_{1}t/\hbar}\psi_{1}(x)$$

$$\langle x \rangle = N^{2} \int_{-\infty}^{\infty} dx \, x \, \left(\psi_{0}(x)^{2} + 4\psi_{1}(x)^{2} + 4\psi_{0}(x) \, \psi_{1}(x) \cos\left((E_{0} - E_{1}) \, t/\hbar\right)\right)$$

$$\langle x \rangle = 0 + 0 + 4N^{2} \cos\left(\frac{(E_{0} - E_{1}) \, t}{\hbar}\right) \int_{-\infty}^{\infty} dx \, x \, \psi_{0}(x) \, \psi_{1}(x)$$

Solution 4

$$I = \sqrt{\frac{m\omega}{\hbar\pi}} \sqrt{\frac{1}{2}} \frac{2\hbar}{m\omega} \int_{-\infty}^{\infty} d\xi \, \xi^2 e^{-\xi^2} = \sqrt{\frac{\hbar}{2m\omega}}$$
$$I = \langle \psi_0 | \hat{x} | \psi_1 \rangle = \sqrt{\frac{\hbar}{2m\omega}} \, \langle \psi_0 | \psi_0 \rangle$$

8.7 Prepared SHO System

A particle of mass m moving in the harmonic oscillator potential $V(x) = m\omega^2 x^2/2$ is prepared at t = 0 in the state

$$\Psi(x,0) = Ne^{-m\omega x^2/2\hbar} \left[4\left(x\sqrt{m\omega/\hbar}\right)^3 + 2\left(x\sqrt{m\omega/\hbar}\right)^2 + i\left(x\sqrt{m\omega/\hbar}\right) + 2i \right].$$

Problem 1

Rewrite the initial state in terms of the dimensionless variable $\xi = x\sqrt{m\omega/\hbar}$ and the Hermite polynomials $H_n(\xi)$. Also solve for the normalization constant N.

Problem 2

Determine the wavefunction at all times, $\Psi(x,t)$.

Problem 3

At time t, a measurement of the system's energy is made. What is the probability of each possible outcome? Check that the sum of all probabilities is unity.

Problem 4

Determine $\langle x \rangle$.

Solution 1

$$H_{0} = 1 H_{1} = 2\xi H_{2} = 4\xi^{2} - 2 H_{3} = 8\xi^{3} - 12\xi$$

$$\Psi(x,0) = Ne^{-\xi^{2}/2} \left[AH_{0}(\xi) + BH_{1}(\xi) + CH_{2}(\xi) + DH_{3}(\xi) \right]$$

$$N = \left(\frac{m\omega}{\hbar \pi} \right)^{1/4} \sqrt{\frac{2}{75}} A = 2i + 1 B = \frac{i+6}{2} C = D = \frac{1}{2}$$

Solution 2

$$\psi_{n}\left(x,t\right) = \left(\frac{m\omega}{\hbar\pi}\right)^{1/4} \frac{1}{\sqrt{2^{n}n!}} H_{n}\left(x\sqrt{\frac{m\omega}{\hbar}}\right) e^{-x^{2}m\omega/2\hbar} e^{-iE_{n}t/\hbar}$$

$$\Psi\left(x,t\right) = \sqrt{\frac{2}{75}} \left[A\psi_{0}\left(x,t\right) + \sqrt{2}B\psi_{1}\left(x,t\right) + 2\sqrt{2}C\psi_{2}\left(x,t\right) + 4\sqrt{3}D\psi_{3}\left(x,t\right)\right]$$

Solution 3

$$P_0 = \frac{2}{75} |2i + 1|^2 \approx 13.33\%$$

$$P_1 = \frac{2}{75} 2 \left| \frac{i + 6}{2} \right|^2 \approx 49.33\%$$

$$P_2 = \frac{2}{75} 8 \left| \frac{1}{2} \right|^2 \approx 5.33\%$$

$$P_3 = \frac{2}{75} 48 \left| \frac{1}{2} \right|^2 \approx 32.00\%$$

$$|\Psi(t)\rangle = \tilde{A}(t) |\psi_0\rangle + \tilde{B}(t) |\psi_1\rangle + \tilde{C}(t) |\psi_2\rangle + \tilde{D}(t) |\psi_3\rangle$$

$$\langle x\rangle = \langle \Psi(t) |\hat{x}|\Psi(t)\rangle = \tilde{A}^*\tilde{B} + \tilde{B}^* \left(\tilde{A} + \sqrt{2}\tilde{C}\right) + \tilde{C}^* \left(\sqrt{2}\tilde{B} + \sqrt{3}\tilde{D}\right) + \tilde{D}^*\sqrt{3}\tilde{C}$$

$$\langle x\rangle = \left(\tilde{A}^*\tilde{B} + \tilde{B}^*\tilde{A}\right) + \sqrt{2}\left(\tilde{B}^*\tilde{C} + \tilde{C}^*\tilde{B}\right) + \sqrt{3}\left(\tilde{C}^*\tilde{D} + \tilde{D}^*\tilde{C}\right)$$

$$\langle x\rangle = \left[\sqrt{\frac{4}{75}}\left(A^*B + B^*A\right)\epsilon_{AB} + \sqrt{\frac{64}{75}}\left(B^*C + C^*B\right)\epsilon_{BC} + 24\sqrt{\frac{4}{75}}\left(C^*D + D^*C\right)\epsilon_{CD}\right]$$

$$\langle x\rangle = \left[\sqrt{\frac{4}{75}}16 + \sqrt{\frac{64}{75}}6 + 24\sqrt{\frac{4}{75}}\right]\cos(\omega t)$$

8.8 Evolution of a Low-Energy SHO

A particle of mass m moving in the harmonic oscillator potential $V(x) = m\omega^2 x^2/2$ is prepared at t = 0 in the state

$$\Psi(x,0) = \frac{1}{(2\pi\sigma^2)^{1/4}} e^{-x^2/4\sigma^2}.$$

Problem 1

Calculate $\langle E \rangle$ for all times $t \geq 0$ by two methods. First, use direct integration by substituting $\hat{p} = -i\hbar \partial_x$ and $\hat{x} = x$. Second, make the assumption that $\sigma^2 = \hbar/2m\omega$ and proceed by representing \hat{p} and \hat{x} in terms of \hat{a} and \hat{a}^{\dagger} .

Problem 2

Without assuming that $\sigma^2 = \hbar/2m\omega$, calculate the probability that a measurement of the system's energy equals $E_n = \hbar\omega(n+1/2)$ for any integer $n \geq 0$. Hint: use the relation $\xi = x\sqrt{m\omega/\hbar}$ along with the Hermite polynomial generating function

$$e^{\xi^2 - (s - \xi)^2} = \sum_{n=0}^{\infty} \frac{H_n(\xi)}{n!} s^n$$
.

Solution 1

$$\langle E \rangle = \langle \Psi \left(t \right) | \left(\frac{\hat{p}^2}{2m} + \frac{1}{2} m \omega^2 \hat{x}^2 \right) | \Psi \left(t \right) \rangle = \frac{\hbar^2}{8m\sigma^2} + \frac{1}{2} m \omega^2 \sigma^2 = \frac{\hbar \omega}{2}$$

$$\int_{-\infty}^{\infty} d\xi \, e^{\xi^2 - (s - \xi)^2} e^{-\xi^2/2 - \xi^2 \hbar/4m\omega\sigma^2} = \sum_{n=0}^{\infty} \frac{s^n}{n!} \int_{-\infty}^{\infty} d\xi \, H_n\left(\xi\right) e^{-\xi^2/2 - \xi^2 \hbar/4m\omega\sigma^2}$$

$$\sqrt{\frac{4\pi m\omega\sigma^2/\hbar}{1 + 2m\omega\sigma^2/\hbar}} \, \text{Exp} \left[s^2 \left(\frac{2m\omega\sigma^2/\hbar - 1}{2m\omega\sigma^2/\hbar + 1} \right) \right] = \sum_{n=\text{even}}^{\infty} \frac{s^n}{n!} \int_{-\infty}^{\infty} d\xi \, H_n\left(\xi\right) e^{-\xi^2/2 - \xi^2 \hbar/4m\omega\sigma^2}$$

$$b = \frac{2m\omega\sigma^2}{\hbar} \qquad \tilde{I}_n = \int_{-\infty}^{\infty} d\xi \, H_n\left(\xi\right) e^{-\xi^2/2 - \xi^2 \hbar/4m\omega\sigma^2}$$

$$\sqrt{\frac{2\pi b}{1 + b}} \left(1 + s^2 \left(\frac{b - 1}{b + 1} \right) + \frac{s^4}{2!} \left(\frac{b - 1}{b + 1} \right)^2 + \cdots \right) = \tilde{I}_0 + \frac{s^2}{2!} \tilde{I}_2 + \frac{s^4}{4!} \tilde{I}_4 + \cdots$$

$$\Psi\left(x, t\right) = \sum_{n=0}^{\infty} \left\langle \psi_n | \Psi\left(0\right) \right\rangle \psi_n\left(x\right) e^{-iE_n t/\hbar} = \sum_{n=\text{even}}^{\infty} \frac{N_n \sqrt{\hbar/m\omega} \tilde{I}_n}{(2\pi\sigma^2)^{1/4}} \psi_n\left(x\right) e^{-iE_n t/\hbar}$$

$$P_n = \left| \frac{N_n \sqrt{\hbar/m\omega} \tilde{I}_n}{(2\pi\sigma^2)^{1/4}} \right|^2 = \frac{2}{2^n \left(n/2\right)!} \left(\frac{\sqrt{b}}{1 + b} \right) \left(\frac{b - 1}{b + 1} \right)^{n/2}$$

8.9 Momentum Space SHO Wavefunctions

The Hamiltonian operator for a particle in a one-dimensional SHO potential is $\hat{H} = \hat{p}^2/2m + m\omega^2\hat{x}^2/2$.

Problem 1

Substituting

$$\xi = x\sqrt{m\omega/\hbar} \; ,$$

find the corresponding transformation $\hat{\gamma}$ that non-dimensionalizes the momentum operator \hat{p} in order to derive the dimensionless Hamiltonian:

$$\frac{\hat{H}}{\hbar\omega} = \frac{1}{2}\hat{\gamma}^2 + \frac{1}{2}\hat{\xi}^2$$

Problem 2

Due to the symmetry in the Hamiltonain above, it's evident that the mometum space wavefunctions $\psi_n(p)$ are identical in form to the position space wavefunction $\psi_n(x)$. They differ by normalization constant by virtue that $|\psi_n(p)|^2$ must have dimension $[p]^{-1}$, whereas $|\psi_n(x)|^2$ have dimension $[x]^{-1}$. Find this constant and write down the momentum wavefunctions $\psi_n(p)$.

Solution 1

$$\hat{\gamma} = \frac{\hat{p}}{\sqrt{m\hbar\omega}}$$

$$\psi_n\left(p\right) = \left[\sqrt{\frac{2\pi}{m\hbar\omega}}\right] \left(\frac{m\omega}{\hbar\pi}\right)^{1/4} \frac{1}{\sqrt{2^n n!}} H_n\left(\frac{p}{\sqrt{m\hbar\omega}}\right) e^{-p^2/2m\hbar\omega}$$