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1 Fundamental Dimensions

All physical quantities carry some kind of dimensionality, which is a way of tying a number
to the physical world. There are only three* fundamental physical dimensions, which are
(including abbreviations):

Length (L) Mass (M) Time (T )

The only quantities that need not be expressed in terms of fundamental dimensions are pure
mathematical numbers, such as 3 or π.

* It should be pointed out that ‘dimension’ in this context does not refer to the idea that
space has three dimensions (length, width, depth).

1.1 Systems of Units

History has handed down (at least) three different unit systems for keeping track of dimen-
sionality.

SI Systems

The abbreviation SI stands for Système International, commonly known as the metric sys-
tem. There are two ‘factions’ within the metric system: one is called MKS and the other is
called CGS. The letters M -K-S tell us to use Meters, Kilograms, and Seconds, respectively,
as fundamental units. Meanwhile, the C-G-S prefers Centimeters, Grams, and Seconds.
That is:

System Length Mass Time
MKS Meter (m) Kilogram (kg) Second (s)
CGS Centimeter (cm) Gram (g) Second (s)

English System

Only three countries besides Great Britain have so far resisted the metric system’s campaign
to dominate all standards: Burma, Liberia, and the United States. The English system offers
another set of labels for the fundamental dimensions, those being the Foot, the Slug, and
the Second. (Despite its popularity, the English pound is not fundamental.) We add to our
table of fundamental units:

System Length Mass Time
English Foot (ft) Slug (rarely used) Second (s)

Expensive Mistake by NASA

Forgetting to properly handle units can be an expensive mistake, namely $328 million when
NASA lost the Mars Climate Orbiter. In September 1999, NASA attempted to put a satellite
close enough to Mars to study its atmosphere and surface features. However, a ground-based
computer in communication with the Orbiter was sending information using the English
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system of units! Specifically, the Orbiter expected a packet of information expressed in
Newtons, but it was interpreted as Pounds. The Orbiter didn’t steer correctly and slammed
into Mars.

1.2 Standard Units

As of yet, there is no pure system of units implied by nature alone - there is always a human
element involved in setting standards.

Standard of Length

Length standards can be traced back to ancient history, with one popular unit of measure-
ment being the the elbow-to-fingertip distance on a human arm in an L-shape, known as
the ‘cubit’. Obviously, the cubit varies form person to person, and more drastically between
separate populations, and thus was not at all standard.

From Europe we gained another measure of length, the familiar ‘foot’, which was once
defined by the length of the ruling king’s actual foot. It wasn’t until the days of Louis XIV
that the foot was standardized in France. The name was upgraded to the ‘Royal Foot’.

Around 1795, the standard length unit was decidedly the Meter, and was defined as
1/20000000 the length of Earth’s prime meridian (this was before orthodox geology was
settled on).

By the late 1800’s, the standard length unit was determined by the length of one partic-
ular (carefully protected) platinum-iridium bar, whose length was simply declared to equal
precisely one meter. Precise copies of this bar were produced and shipped off to spread the
length standard around the world.

Eventually, experimental physics would demand a more precise definition for the length
standard that was robust with respect to special relativity, which inevitably involves the
speed of light. The meter is precisely defined as the distance light travels in 1/299792458 sec
in vacuum.

Standard of Mass

The modern definition of the Kilogram is as new as 2019. Before a (relatively) recent
decision to uproot tradition, the kilogramme was an actual chunk of metal (90% platinum,
10% iridium) whose mass was decidedly one kilogram by popular vote. It’s likely that the
calibration of all science-grade mass scales and standards of the time could be traced back
to the kilogramme, housed in France for its career.

There was curious problem with the kilogramme though: it’s mass has slowly increased
over history, and much effort has been devoted to finding out why this appears so. With or
without a perfect explanation for this, the conclusion we must draw is that a chunk of metal
is ultimately not a good mass standard.

The General Conference on Weights and Measures (CGPM) tried repeatedly to settle
a definition of the kilogram that arises from quantum mechanics, specifically involving the
Planck mass. They couldn’t decide in 2011, and procrastinated again in 2014. Eventually,
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laboratory measurements of Planck’s constant became sufficiently refined (about 13 ppb
uncertainty) such that the definition of one kilogram is simply back-read out of the result.

Standard of Time

One reasonable definition for the Second is to slice a 24-hour interval into 60 · 60 · 24 parts
(like an analog watch). This was considered reliable until 1967, until it was decided that the
fundamental unit of time had better take on a less ‘Earthly’ definition. It was then decided
that one second would be defined as precisely 9192631770 periods of the light waves emitted
from cesium decay.

There was nothing special about cesium except it was an available atom for study. There’s
nothing terribly special about the number 9192631770, except it seemed good enough for
reproducing the ‘old’ value of one second. Going through the trouble to define the second
this way allows scientists to deal more easily with many practical issues, such as adding
leap-seconds to the calendar, and calibrating clocks far from Earth. (The latter was on their
minds in the 1960’s more so than it is today.)

Combinations of Units

There are many combinations of units - some are familiar, some are rarely used.

Combination Label MKS SI English
L2 Area m2 (cm)2 (ft)2

L3 Volume m2 (cm)3 (ft)3

L/T Speed m/s cm/s ft/s
L/T 2 Acceleration m/s2 cm/s2 ft/s2

M · L/T Momentum kg ·m/s g · cm/s (rare)
M · L/T 2 Force kg ·m/s2 = N g · cm/s2 Pound
M/L3 Mass Density kg/m3 g/cm3 (rare)
M/ (LT 2) Pressure N/m2 = Pa .1 Pa PSI
M · L2/T 2 Energy N ·m = J g · cm2/s2 Calorie
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2 Units in Quantum Mechanics

The fundamental constants in quantum theory, expressed in terms of Planck’s length [L],
mass [M ], and time [T ] are:

� the speed of light c: [LT−1]

� Planck’s reduced constant h̄ = h/2π: [ML2T−1]

� the squared electron charge e2/(4πε0): [ML3T−2]

� the electron mass m: [M ]

Reduced Compton Wavelength

As a useful exercise, we may determine x, y, and z such that

h̄xcymz = [L] ,

i.e., has dimensions of length. Using dimensional analysis, are handed three equations

x+ z = 0 2x+ y = 1 x+ y = 0 ,

solved by x = 1 and y = z = −1, telling us that

λc = h̄/mc ,

known as the reduced Compton wavelength λc, which evaluates to roughly 0.386 × 10−12 m.

Fine Structure Constant

The combination
h̄xcy(e2/4πε0)

z

can yield a dimensionless quantity. In this case, we generate three equations

x+ z = 0 2x− 1 + 3z = 0 − x+ 1 − 2z = 0 ,

solved by x = −1, z = 1. Choosing y = −1 with the remaining freedom, we get the fine
structure constant :

α =
e2/4πε0
h̄c

≈ 1

137
≈ 0.00730

Bohr Radius

We can recover the Bohr radius by taking the ratio of the reduced Compton wavelength to
the fine structure constant:

a0 =
λc
α

=
h̄2

m (e2/4πε0)
≈ 137 × λc ≈ 5.29 × 10−11 m
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