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Introduction

While machines have no intuition for abstract thinking or problem solving, computers com-
pensate by having a superhuman attention span and dauntless rapidity for performing basic
calculations. For a computer to be useful, the user must therefore cast a real-world (or
otherwise interesting) problem into a model that can be solved in steps.

1 Systems of Equations

1.1 Equations and Unknowns

An equation is any mathematical statement with an equal sign ( = ). Equations can con-
tain numbers, functions, operations, and most importantly, unknown variables. A simple
‘system’ of one equation containing one unknown variable can typically be solved, which
entails producing a value for the unknown variable that doesn’t lead to any false statements.
Whenever it’s possible for equation can be solved, it is said to be determined.

Two or more equations can be considered together as a system of equations. For a
system of equations to be determined, the number of equations and the number of unknown
variables must be equal. If there are more unknowns than equations, the system is called
under-determined. On the other hand, when there are too many equations and not enough
unknowns, the system is over-determined.

Transcendental Equations

An equation or system that is determined but cannot be solved analytically is a transcen-
dental equation. For instance, the equation

cos (x)− x2 =
1

2

cannot easily be solved for x. Some kind of approximation must take place to produce a
value for x, which happens to be ≈ ±0.580037.

1.2 Linear Systems

A linear system of equations requires all variables to occur only as single powers, i.e., no
terms like x2, cosx, etc. For instance, the two equations containing two unknowns x, y is a
linear system:

2x+ 3y = 19

4x− y = 3

To solve the system, we might solve the second equation for y, giving y = 4x − 3, and
then insert this into the first equation reduce the problem to one equation and one unknown

2x+ 3 (4x− 3) = 19 ,

easily solved by x = 2. Inserting x = 2 into either equation in the system, we quickly find
y = 5 to complete the solution.
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1.3 Nonlinear Systems

A nonlinear system of equations allows unknown variables to occur at powers other than
one. To modify the above system to contain a nonlinearity, we might write:

2x2 + 3y = 19

4x− y = 3

Analytic Solution

To combine the two equations, multiply the second by a factor of 3 and add each to eliminate
y altogether (after simplifying):

x2 + 6x = 14

The problem is reduced to one equation containing one unknown, solved by the quadratic
formula:

x = −3±
√

23

Pursuing both channels, we find two values for x:

x1 ≈ 1.79583152331272 x2 ≈ −7.79583152331272

When combining the two equations to eliminate x instead, we get a nonlinear equation for
y, namely

y2 + 30y = 143 ,

solved simultaneously (using the quadratic formula again) by

y1 ≈ +4.183326093250878 y2 ≈ −34.18332609325088 .

With multiple values for both x and y, the actual solution so the problem is any two of

(x1, y1) (x1, y2) (x2, y1) (x2, y2) .

Trying each solution in either of the original equations, we conclude the system is solved by:

(1.7953, 4.18333) (−7.79583,−34.1833)

Graphical Solution

A quick and dirty way to solve a system equations is to plot each equation and look for
intersections. Using the example on hand, we solve each equation for y to get

y1 (x) =
19− 2x2

3
y2 (x) = 4x− 3 ,

which produce an upside-down parabola and a straight line, intersecting at two points when
plotted.

The graphical solution also works for transcendental equations. Clearly though, analyti-
cal and graphical solutions entail plenty of human busywork, and things only get worse from
here. If there is any hope of solving equations by an automated process, stronger notation
must be developed.
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2 Matrix Notation

When dealing with systems of equations, the algebra can get stiflingly messy, necessitating
the need for stronger notation. To help motivate the our steps, we’ll use an example linear
system of three equations and three unknowns:

x+ y + z = 5

2x+ 3y + 5z = 8

4x+ 5z = 2

To solve for each unknown, one could proceed by solving the last equation for x and inserting
the result into either of the first two equations, and then eliminate x altogether between
them. This can be continued to eliminate y, and ultimately z can be isolated, reducing the
unknowns to two. This may be repeated until all unknowns are solved for.

While the above process works, it takes little to imagine that a better notation should
be used if we’re to tackle larger and more complicated systems.

2.1 Vector

A vector is an ordered list of numbers or variables condensed into one mathematical object.
For instance, the sequence of numbers 2, 5, and 7 can be written ~V = 〈2, 5, 7〉, where V is
the label for the vector, specially marked by an arrow (~ ). (Textbooks often denote vectors
using bold letters instead of arrows. This is merely a notational convention.)

The individual members (or elements) of a vector are called components, and the total
number of components is called the vector’s dimension. The order in which the components
of a vector are listed does matter. For example, the three-dimensional vector ~V = 〈2, 5, 7〉
is not equivalent to the reversed version 〈7, 5, 2〉.

Any individual component is represented by the vector’s symbol without the arrow, but
including an index subscript. For instance, we could represent ~V as ~V = 〈Va, Vb, Vc〉 with
Va = 2, Vb = 5, Vc = 7, but the letters a, b, c could easily have been x, y, z, or perhaps i, j,
k. Vector component labels are, after the dust settles, purely for bookkeeping.

2.2 Matrix

A matrix may be regarded as a ‘vector of vectors’. That is, a matrix is a ‘block’ of numbers
arranged in rows and columns, therefore requiring two subscripts. A matrix labeled A can
generally have m rows and n columns

Aij =


A11 A12 A13 · · · A1n

A21 A22 A23 · · · A2n

A31 A32 A33 · · · A3n

· · · · · · · · · · · · · · ·
Am1 Am2 Am3 · · · Amn

 ,

where the indices i, j denote any one particular component in the matrix.
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Matrix Multiplication

Two matrices A and B lend themselves to addition and subtraction if and only if they have
the same number of rows and columns. Two matrices can be multiplied if and only if the
number of columns in the first matrix equals the number of rows in the second matrix.
Naturally, matrix multiplication is generally not a commutative process, that is AB 6= BA.

If we have a matrix Amn with m rows and n columns, and similarly a matrix Bnp, the
resultant matrix Cmp = AmnBnp has m rows ad p columns, with components given by:

Cij =
n∑
k=1

AikBjk i = 1, . . . ,m j = 1, . . . , p

Matrix as an Operator

A matrix can ‘act’ or ‘operate’ on a vector to produce a new vector. This is a special case of
matrix multiplication in where the second matrix has only one column. Such an operation
is denoted

A~x = ~b ,

where A is a matrix that operates on a vector ~x, resulting in vector ~b. Taking a common
example where ~x is a three-dimensional vector, the A~x = ~b calculation looks like

A~x =

A11 A12 A13

A21 A22 A23

A31 A32 A33

x1

x2

x3

 =

A11x1 + A12x2 + A13x3

A21x1 + A22x2 + A33x3

A31x1 + A32x2 + A33x3

 =

b1

b2

b3

 = ~b .

Identity Matrix

One natural question implied by the A~x = ~b operation is, what form must A have in order
to leave ~x unchanged? That is, what is the equivalent to ‘multiplying by one’ in matrix
notation? The task is achieved using identity matrix, which must be square, containing only
factors of one along the diagonal. The identity matrix exists in any number of dimensions,
with common examples being

I2 =

[
1 0
0 1

]
I3 =

1 0 0
0 1 0
0 0 1

 .

Inverse Matrix

While addition, subtraction, and multiplication have a role in matrix notation, the notion of
division is undefined, and we instead deal with the inverse of a matrix. If we have a matrix
A, the inverse Ā is defined such that

AĀ = I .

That is, whatever matrix Ā that can be multiplied into A to result in the identity matrix
must be the inverse. Using the above, we easily show that the operation AĀ commutes by
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multiplying A across the equation:

AĀ = I

A
(
ĀA
)

= AI

ĀA = I

Not every matrix has an attainable inverse - it may happen that division by zero occurs
while attempting to find the inverse in certain cases. What’s worse is that if A and B each
have a well-defined inverse, the sum A + B may not. While a general formula is harder to
work out, the inverse of a two-dimensional matrix can always be calculated using

Ā =
1

A11A22 − A12A21

[
A22 −A12

−A21 A11

]
.

Solving Matrix Equations

The solution to A~x = ~b is trivial to to write by exploiting the inverse of A:

A~x = ~b(
ĀA
)
~x = Ā~b

~x = Ā~b

One subtlety is the inverse Ā need not be found explicitly, rather we simply need the result
of it operating on ~b.

2.3 Equations as a Matrix

Let us return to a typical three-dimensional linear system of equations:

x+ y + z = 5

2x+ 3y + 5z = 8

4x+ 5z = 2

In matrix notation, note that the right side of each equation may be arranged in a vector
~b = (5, 8, 2). On the left, we have a mixture of coefficients multiplied into x, y, z, which is
indeed a coefficient matrix A operating on a vector ~x = (x, y, z) as follows:

A~x =

1 1 1
2 3 5
4 0 5

xy
z

 =

5
8
2

 = ~b .

Augmented Matrix

As a notational convenience, the A~x = ~b construction can be condensed to a single matrix,
which contains but doesn’t explicitly write each equation, called the augmented matrix:1 1 1 5

2 3 5 8
4 0 5 2
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A linear system of N equations containing N unknowns is represented by an augmented
matrix Bn,n+1.

Matrix Manipulation

A careful practitioner of algebra knows that equations may be manipulated by only two
processes: multiply by one, or add zero. Anything else will modify the equations and lead
to nonsense. Here we develop the tools to manipulate equations that are already embedded
in matrix notation. Without violating the rules of algebra, the following operations can take
place on the augmented matrix:

� Exchange two rows.

� Multiply a row by a (nonzero) constant.

� Replace a row by the sum of itself and another row.

If the proper operations are performed on the A~x = ~b equation, the system is solved when
the form I~x = Ā~b is attained:

I~x =

1 0 0
0 1 0
0 0 1

xy
z

 = Ā

b1

b2

b3

 = ~x .

In augmented matrix notation, the above results emerges in row-reduced echelon form, also
known as the RREF 1 0 0 x

0 1 0 y
0 0 1 z

 ,

where x, y, z solves the system of equations.

2.4 Gaussian Elimination

Knowing what a solution should look like, we finally address how to actually attain it using
the allowed operations. The process that carries the unsolved system A~x = ~b into the solved
system ~x = Ā~b is called Gaussian elimination.

Denoting the rows of our example augmented matrix as Rj, the first three operations
may go as follows: (i) Subtract 2R1 from R2. (ii) Subtract 4R1 from R3. (iii) Add 4R2 to
R3. 1 1 1 5

2 3 5 8
4 0 5 2

 →
1 1 1 5

0 1 3 −2
4 0 5 2

 →
1 1 1 5

0 1 3 −2
0 −4 1 −18

 →
1 1 1 5

0 1 3 −2
0 0 13 −26


Note the new matrix has zeros down and left of the diagonal, called the upper triangular
form. Continuing the elimination process: (i) Divide R3 by 13. (ii) Subtract 3R3 from R2.
(iii) Subtract R3 from R1. (iv) Subtract R2 from R1.1 1 1 5

0 1 3 −2
0 0 1 −2

 →
1 1 1 5

0 1 0 4
0 0 1 −2

 →
1 1 0 7

0 1 0 4
0 0 1 −2

 →
1 0 0 3

0 1 0 4
0 0 1 −2
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Reading off the right-hand column, we immediately see the solution to the system of equa-
tions is

x = 3 y = 4 z = −2 .

3 Newton’s Method

Much of what we ask computers to do is generate numerical approximations to functions
f (x). For continuous functions of a real variable, nearly all methods of numerical approxi-
mation stem from the definition of the derivative (rise-over-run) f ′ (x), namely

d

dx
f (x) = f ′ (x) = lim

h→0

f (x+ h)− f (x)

h
.

The path of analytic calculus calls for h to arbitrarily approach zero, however a certain trick
devised by Newton allows us to continue with h remaining finite.

3.1 One Dimensional Newton’s Method

Starting with the derivative formula and making the change of notation h = ∆x, where
∆x = x− x0, the first-order derivative equation looks like

f ′ (x0) ≈ f (x)− f (x0)

x− x0

,

which can be rearranged into the equation of a line

f (x) ≈ f ′ (x0) (x− x0) + f (x0) .

Newton’s method for solving equations f (x) goes as follows: guess whatever x∗ might
be, and call that value x0. Insert x0 into the above and denote x→ x1. Let f (x1) = 0, and
it should be true (for a good initial guess) that x1 is closer to x∗ than the original guess x0.
This can be repeated: feed x1 into the above equation to generate x2, which should be still
closer to x∗, and so on. Solving for a the general xn+1 in terms of previous values, it follows
that

xn+1 ≈ xn −
f (xn)

f ′ (xn)
,

where in the infinite-n limit, the xn converge:

xn lim
n→∞

= x∗

Examples

Square Roots

Think fast: what is
√

8? It’s not a perfect square, so maybe 2.5? The middle school method
for getting the answer is to check if 2.52 comes close to 8 on a calculator, and then perhaps
increase the guess by smaller amounts until the answer is close enough.
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We can do much better using Newton’s method by letting

f (x) = x2 − 8 ,

which is the equation of a shifted parabola, shown below, solved by (x∗)2 = 8, making
f (x∗) = 0.

Figure 1: Parabola with initial guess and refined guess indicated.

To proceed we will need the analytical derivative of f (x) = x2, which is simply

f ′ (x) = 2x .

The iterative formula for xn+1 for this problem is thus

xn+1 = xn −
x2
n − 8

2xn
.

Using x0 = 2.5 as a guess, the result for x1 reads

x1 = 2.5− 2.52 − 8

2 · 2.5
= 2.85 ,

which is much closer to
√

8 than 2.5. Clearly this process can be repeated using 2.85 as a
guess to produce x2, and so on until the calculator settles on an answer. Continuing this
using a standard calculator, the successive xn come out to:

n xn
0 2.5
1 2.85
2 2.82850877193
3 2.82842712592
4 2.82842712475
5 2.82842712475

The answer stops changing (to TI-89 device precision) after the fourth iteration.
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Digits of Pi

On a scientific calculator set to radians, the input

3.14− tan (3.14)

results in
3.14159265 · · · .

Somehow, the combination x − tanx took the crude guess π ≈ 3.14 and refined it to six
additional decimal places of π.

This is explained by Newton’s method, for if we seek a function f (x) where some value
x∗ = π sets the function to zero, notice that sin (x) works perfectly. Using the derivative

d

dx
sinx = cosx ,

the iterative formula for xn+1 becomes

xn+1 = xn −
sinxn
cosxn

= xn − tanxn ,

where inserting x0 = 3.14 reproduces the first result.

Cosine and Sine Tables

The pair of derivative equations for the sine and cosine

cosx =
d

dx
sinx = lim

∆x→0

sin (x+ ∆x)− sinx

∆x

− sinx =
d

dx
cosx = lim

∆x→0

cos (x+ ∆x)− cosx

∆x
,

their values for any x can be approximated from based on cruder guesses, i.e. a table limited
to integer values. Note of course x and ∆x must occur in radians, not degrees.

Solving for cos (x+ ∆x) and sin (x+ ∆x) respectively, we find

cos (x+ ∆x) = cos x−∆x sinx

sin (x+ ∆x) = sin x+ ∆x cosx .

Using these, we can re-construct any cosine or sine value reported on a scientific calculator
(to at least ten digits of accuracy) using only one-degree intervals between known x-values.

3.2 Multi-Dimensional Newton’s Method

Newton’s method works in one dimension because we supply one equation of one variable,
namely f (x), containing one unknown x∗ that solves f (x∗) = 0. Here we expand Newton’s
method to solve cases with N equations of N variables solved by N unknowns. Denoting each
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equation Fi in terms of each variable xj, we take a first-order partial derivative expansion of
Fi (x

j) as a starting point:

Fi (xj) ≈ Fi
(
xj0
)

+
N∑
j=1

∂Fi
∂xj

∣∣∣∣
xj0

∆xj i = 1, . . . , N

Introducing vector notation

~F = (F1, F2, . . . FN) ~x =
(
x1, x2, . . . xN

)
,

along with the Jacobian matrix

J = Jij =
∂Fi
∂xj

∣∣∣∣
~x0

,

the above is written
~F (~x) ≈ ~F (~x0) + J∆~x ,

where ∆~x = ~x− ~x0.
In analogy with the one-dimensional case, Newton’s method in N dimension begins with

an initial guess vector ~x0. Then, setting ~F (~x) = 0 and denoting ~x→ ~x1, we have

0 ≈ ~F (~x0) + J (~x1 − ~x0) ,

which must be solved for ~x1 in terms of ~x0 and applied iteratively.

Inverse Jacobian Approach

One way to proceed involves the inverse Jacobian matrix J̄ such that J̄J = JJ̄ = I, were I is
the diagonal identity matrix of dimension N . Distributing J̄ into the above, and generalizing
to any step n, we get

~xn+1 = ~xn − J̄ ~F (~xn) ,

which is enough to solve the system iteratively. Of course, this method relies on calculating
the inverse of a matrix, which may not always be possible. For two-dimensional cases though,
the inverse is trivial:

J̄ =
1

J11J22 − J12J21

[
J22 −J12

−J21 J11

]
RREF Approach

A varied approach to the solution avoids computing the inverse of the Jacobian matrix.
Starting with 0 ≈ ~F (~x0) + (~x1 − ~x0) J put all ~x1-terms on the left, and all ~x0-terms on the
right. Generalizing for any n, we have

J~xn+1 = J~xn − ~F (~xn) ,

where the right side is completely determined, resolving to a vector we’ll call ~bn.
The calculation

J~xn+1 = ~bn
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can be expressed as an augmented matrix of width N + 1, namely
J11 J12 J13 · · · J1N b1

J21 J22 J23 · · · J2N b2

J31 J32 J33 · · · J3N b3

· · · · · · · · · · · · · · · · · ·
JN1 JN2 JN3 · · · JNN bN

 ,

where the solution to the system is found by attaining the row-reduced echelon form (RREF)
matrix by Gaussian elimination, resulting in

1 0 0 · · · 0 x1
n+1

0 1 0 · · · 0 x2
n+1

0 0 1 · · · 0 x3
n+1

· · · · · · · · · · · · · · · · · ·
0 0 0 · · · 1 xNn+1

 = I~xn+1 .

The refined guess vector ~xn+1 is picked out from the right-most column of the RREF matrix.

Examples

Let us solve the system of equations

2x2 + 3y = 1

4x− 7y = 3

with x0 = −1, y0 = −1 as an initial guess. We pave a path to the solution by letting

F1 (x, y) = 2x2 + 3y − 1 = 0 F2 (x, y) = 4x− 7y − 3 = 0 ,

so that the Jacobian matrix is

J11 = 4x J12 = 3 J21 = 4 J22 = −7 ,

or in matrix form,

J =

[
4x 3
4 −7

]
.

The presence of an x-term in the Jacobian matrix tells us the system is non-linear, and
must be solved by iteration. For special cases when J contains only numbers, correspond-
ing to strictly linear systems, the solution emerges from just one iteration of the RREF
calculation.

Solution via Inverse

Being a two-dimensional matrix, the inverse J̄ is readily calculated using the formula above,
giving

J̄ =

[
J22 −J12

−J21 J11

]
=

1

−28x− 12

[
−7 −3
−4 4x

]
.
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Next, we take the guess vector ~x0 = (−1,−1) and crank it through the iterative formula

~xn+1 = ~xn − J̄ ~F (~xn)

to produce ~x1, namely

~x1 = ~x0 −
1

−28x0 − 12

[
−7 −3
−4 4x0

] [
2x2

0 + 3y0 − 1
4x0 − 7y0 − 3

]
=

[
−1.875
−1.5

]
.

Sending ~x1 = (−1.875,−1.5) through the same same formula gives ~x2 = (−1.610,−1.349).
A third iteration should produce ~x3 = (−1.580,−1.331), and so on until the results converge.

Solution via RREF

Proceeding instead with the formula J~xn+1 = ~bn, we supply the initial guess vector ~x0 =
(−1,−1) to set up an augmented matrix[

−4 3 b1 (−1,−1)
4 7 b2 (−1,−1)

]
=

[
−4 3 −3
4 7 −3

]
,

which contains the solution to ~x1. Calculating the RREF matrix, we find[
−4 3 −3
4 7 −3

]
→

[
1 0 −1.875
0 1 −1.5

]
,

indicating ~x1 = (−1.875,−1.5), the same ~x1 calculated previously. Clearly the inverse ap-
proach and the RREF approach will converge to the same answer.

3.3 Second Order Newton’s Method

It’s possible to improve the convergence rate in Newton’s method by including higher-order
terms in the approximation. Writing the order-two Taylor series for a general function f (x)
based at x0, we begin with

f (x) ≈ f (x0) + f ′ (x0) (x− x0) +
1

2
f ′′ (x0) (x− x0)2 ,

which is parabolic rather than linear.
Proceeding by analogy to the first-order case, we let f (x) = 0 and solve for x→ x1 using

the quadratic formula to get

x1 ≈ x0 −
f ′ (x0)

f ′′ (x0)
± f ′ (x0)

f ′′ (xo)

√
1− 2f (x0) f ′′ (x0)

(f ′ (x0))2 .

The above formula will converge quickly for one-dimensional problems.
We can avoid the square root calculation by noting that f (x0) becomes vanishingly small

near the solution, so the square-root term may be expanded according to

√
1− z ≈ 1− z

2
− z2

8
− · · · z � 1 .
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Simplifying the above equation (choosing the positive root), arrive at

x1 ≈ x0 −
f (x0)

f ′ (x0)
− 1

2

(f (x0))2 f ′′ (x0)

(f ′ (x0))3 ,

which generalizes to any xn:

xn+1 ≈ xn −
f (xn)

f ′ (xn)

(
1 +

f (xn) f ′′ (xn)

(f ′ (xn))2

)
Perhaps not surprisingly, the second-order approximation for xn+1 equals the first-order
approximation plus a small correction based on the second derivative.

Examples

Square Roots

Returning to the previous square root example, we started with the equation of a shifted
parabola

f (x) = x2 − 8 ,

solved by (x∗)2 = 8, making f (x∗) = 0. The first and second derivatives of f (x) read

f ′ (x) = 2x f ′ (x) = 2 ,

telling us the recursive formula for xn+1 is

xn+1 ≈ xn −
x2
n − 8

2xn

(
1 +

(x2
n − 8)

2x2
n

)
.

Starting with a guess of x0 = 2.5 for consistency, the evolution of xn goes as:

n xn
0 2.5
1 2.801
2 2.82829020666
3 2.82842712143
4 2.82842712475
5 2.82842712475

Repeating the calculation without the
√

1− z approximation, the iterative formula sim-
plifies to

xn+1 ≈ xn

√
1− (x2

n − 8)

x2
n

=
√

8 .

Evidently, a second-order approximation of the order-two equation f (x) = x2 − 8 doesn’t
help - it just tells us to calculate

√
8 - the same question we’re asking of the method!
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Cube Roots

Modifying f (x) to calculate cube roots, we begin with

f (x) = x3 − a ,

solved by (x∗)3 = a, making f (x∗) = 0. The first and second derivatives of f (x) read

f ′ (x) = 3x2 f ′ (x) = 6x ,

telling us the recursive formula for xn+1 is

xn+1 ≈ xn −
x3
n − a
3x2

n

(
1 +

2 (x3
n − a)

3x3
n

)
,

which works for any guess x0 reasonably near a.

4 Area Under a Curve

A main concern in calculus is evaluation of the definite integral

I =

∫ xf

xi

f (x) dx ,

which returns the area trapped between the x-axis and the function y = f (x) on the interval
xi ≤ x ≤ xf . Considerations from symmetry can simplify the integral calculation, as a
symmetric function obeying f (−x) = f (x) gives

I =

∫ a

−a
f (x) dx = 2

∫ a

0

f (x) dx f (x) symmetric

on the interval −a ≤ x ≤ a. Meanwhile, an antisymmetric function obeying f (−x) = −f (x)
on the same interval gives

I =

∫ a

−a
f (x) dx = 0 f (x) antisymmetric .

Analytic solutions to integrals have been studied immensely, where most ‘important’
calculations (in physics, for instance) have readily-attainable solutions. Despite this, many
integrals have no easily-attainable analytic solution, and must be instead approximated by
some means in many small steps.

4.1 Integral as a Discrete Sum

Left Rectangle Rule

Reverse-engineering the definition of the definite integral, the area under a curve f (x) can
be approximated as the sum of many thin rectangular areas. The integration domain xf −xi
is divided into N intervals of constant width ∆x. At the jth interval, the x-position is

xj = xi + (xf − xi)
j

N
= xi + j ·∆x j = 0, . . . , N ,
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and the height of the curve is f (xj). It follows that the area of the jth rectangle is

f (xj) ·∆x = f (xj) · (xj+1 − xj) ,

and the sum of all rectangles gives the approximate total area:

IL (N) =
N−1∑
j=0

f (xj) ∆x

As pseudo-code, the above can be implemented by

FOR (j = xi TO (xf - dx) STEP dx) {

sum += f(x) * dx

}

In the above, it is assumed xi, xf , dx, and f (x) are defined. Since a machine can’t take dx
to a true infinitesimal limit, if turns out that the left rectangle rule just derived under-counts
the true area when the slope of f (x) is positive, but over-counts when the slope is negative.

Right Rectangle Rule

A modified rectangle rule entails evaluating f (x) at the j + 1th position, namely

IR (N) =
N−1∑
j=0

f (xj+1) ∆x ,

which could be implemented in the following pseudo-code:

FOR (j = xi TO (xf - dx) STEP dx) {

sum += f(x + dx) * dx

}

Of course, the so-called right rectangle rule is hardly an improvement of its left-sided coun-
terpart. These are in fact the crudest of integration methods and should only be considered
crudely approximate.

Midpoint Rule

A compromise between the left- and right rectangle rules is the midpoint rule, which evaluates
f (xm) at the midpoint between x-values:

xm =
xj + xj+1

2

The sum becomes

IR (N) =
N−1∑
j=0

f (xm) ∆x

17



4.2 Non-Rectangular Rules

Trapezoid Rule

An improvement over rectangle-based methods is the average the left- and right rules, which
effectively turns rectangles into trapezoids, giving (you guessed it) the trapezoid rule:

IT (N) =
1

2
(IL (N) + IR (N))

IT (N) =
N−1∑
j=0

1

2
(f (xj) + f (xj+1)) ∆x

IT (N) =
1

2
(f (x0) + 2f (x1) + f (x2) + · · ·+ f (xN)) ∆x

IT (N) =
1

2
(f (x0) + f (xN)) ∆x+

N−1∑
j=1

f (xj) ∆x ,

with corresponding pseudo-code:

FOR (j = xi TO (xf - dx) STEP dx) {

sum += .5 * (f(x) + f(x + dx)) * dx

}

Simpson’s Rule

An improvement over straight-line methods instead uses a quadratic function to approximate
f (x) at each evaluation step, known as Simpson’s rule. In the most general case, a quadratic
function appears as

g (x) = Ax2 +Bx+ C .

To proceed, consider the definite integral of g (x) centered on xm about an interval 2h that
approximates the area under f (x)∫ x0+h

x0−h
f (x) dx ≈

∫ x0+h

x0−h
g (x) dx = I2h ,

where calculations are made simpler by shifting the x-axis such that x0 lies at x = 0:

I2h =

∫ h

−h
g (x) dx

Inserting the quadratic form of g (x), the above readily evaluates to

I2h =
h

3

(
2Ah2 + 2C

)
.

Meanwhile, let us examine the sum g (0− h) + 4g (0) + g (0 + h):

g (−h) + 4g (0) + g (h) = A (−h)2 +B (−h) + C + 4C + A (h)2 +B (h) + C

g (−h) + 4g (0) + g (h) = 2Ah2 + 6C

g (−h) + 4g (0) + g (h) =
h

3
I2h
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Evidently, the area under the parabola defined on −h ≤ x ≤ h is equal to the sum g (−h) +
4g (0) + g (h). Un-shifting the x-axis to put x0 back where it was, we have found∫ x0+h

x0−h
g (x) dx =

h

3
(g (x0 − h) + 4g (x0) + g (x0 + h)) .

Repeating this over a wide integration domain, and noting that h = ∆x/2, we write∫ b

a

f (x) dx ≈ IS (N) =
∆x

6

N−1∑
j=0

(f (xj) + 4f (xm) + f (xj+1))

IS (N) =
1

6
(IL (N) + 4IM (N) + IR (N)) .

Amazingly, the approximate area under f (x) is a weighted sum of previously-established
methods. Of course, the average of the left- and right rectangle rules is the trapezoid rule,
so the above is equivalent to

IS (N) =
1

3
(IT (N) + 2IM (N)) ,

the weighted sum of the trapezoid rule and the midpoint rule. As pseudo-code, Simpson’s
rule can be implemented as:

FOR (j = (xi + dx/2) TO (xf - dx/2) STEP dx) {

x = j

xa = x - dx/2

xb = x + dx/2

y = f(x)

ya = f(xa)

yb = f(xb)

sum += (1/6) * (ya + 4*y + yb) * dx

}

5 Regression Analysis

Here we develop a general means for finding a best-fit function y = f (x) to a set of data
points {xi, yi} based on a physical or mathematical model, often called regression analysis.

5.1 Linear Fit

Starting with a simple example, consider the following (six) data points occurring as ordered
pairs:

xi 0.6 1.8 2.8 3.6 4.2 5.6
yi 1.6 1.6 2.6 2.0 4.0 3.6

A scatter plot of {xi, yi} would show a roughly linear arrangement of points, perhaps ap-
proximated the equation

y =
1

2
x+ 1 ,
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which could be discerned using a ruler. Of course, we want to do better than guessing, so
begin with the most general form of a line in the xy-plane, namely

f (x) = mx+ b .

Note that some choice of m and b correspond to a line that passes closer to the group of
points {xi, yi} than any other line.

The task now is to determine m and b based on the data given. To do this, suppose
the line f (x) = mx + b is sketched somewhere in the plane. Next, write the square of the
vertical displacement from any given yi (up or down) to f (xi) for a single point:

z2
i = (f (xi)− yi)2 ,

which can be done for all data points:

F =
N∑
i=1

z2
i =

N∑
i=1

(mxi + b− yi)2

In this form, we can guarantee a best-fitting line by finding the proper m and b that minimizes
F . Taking the partial derivative with respect to m and b respectively, we have

∂F

∂m
=

N∑
i=1

xi · (mxi + b− yi)
∂F

∂b
=

N∑
i=1

(mxi + b− yi) ,

where setting ∂F/∂m = ∂F/∂b = 0 we get, after distributing the summation signs

0 = m
N∑
i=1

x2
i + b

N∑
i=1

xi −
N∑
i=1

xi yi 0 = m
N∑
i=1

xi + b
N∑
i=1

(1)−
N∑
i=1

yi .

Letting

X2 =
N∑
i=1

x2
i X =

N∑
i=1

xi Y =
N∑
i=1

yi XY =
N∑
i=1

xi yi ,

the above is easily recognized as a system of two equations and two unknowns m and b (the
rest are all numbers):

0 = mX2 + bX −XY 0 = mX + bN − Y

Note that the variables X2, X, Y , XY don’t follow ordinary algebra, that is X · X 6= X2,
and so on. Solving for m and b, we find

m =
N ·XY −X · Y
N ·X2 −X ·X

b =
Y ·X2 −X ·XY
N ·X2 −X ·X

.

Evidently, m and b are calculated in one iteration with many sub-steps.
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For the example on hand, we have N = 6, along with

X2 = 73.4 X = 18.6 Y = 15.4 XY = 55.28 ,

finally giving

m =
6 · 55.28− 18.6 · 15.4

6 · 73.4− 18.62
≈ 0.479 b =

15.4 · 73.4− 18.6 · 55.28

6 · 73.4− 18.62
≈ 1.082 ,

corresponding to the best-fit line

y = 0.479 x+ 1.082 .

5.2 Exponential Fit

Consider a new set of data points {xi, yi} that seem to fit an exponential form, namely

f (x) = A emx ,

containing two adjustable parameters A and m. Of course, it’s always possible to proceed
by letting z2

i = (f (xi)− yi)2, but we exploit a trick to reduce the effort. Let us rewrite the
parameter A as eb such that

f (x) = emx+b ,

which is just the exponential of a straight line. Taking the natural log of each side and
letting g (x) = ln (f (x)), we have

g (x) = mx+ b .

Evidently then, if we take all points yi and transform them via

yi → ln (yi) ,

the data fits to a straight line g (x). Specifically, we let

X2 =
N∑
i=1

x2
i X =

N∑
i=1

xi Y =
N∑
i=1

ln yi XY =
N∑
i=1

xi ln yi

such that the problem is reduced to a system of two equations and two unknowns:[
N X
X X2

] [
lnA
m

]
=

[
Y
XY

]

5.3 Polynomial Fit

A highly general approach for best-fitting a curve to N data points {xi, yi} is to guess a
polynomial function of order no higher than N :

f (x) = A+Bx+ Cx2 +Dx3 + Ex4 + · · · =
N∑
j=1

Aj x
j−1
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Proceeding as previously, define a sum that will be minimized when the function best-
approximates the data:

F =
N∑
i=1

z2
i =

N∑
i=1

(yi − f (xi))
2

Since f (x) contains N unknown coefficients, we must compute a separate partial deriva-
tive with respect to each variable. To minimize F , all partial derivate terms must equal zero.
Carrying this out, find

∂F

∂A
=

N∑
j=1

(
yj − A−Bxj − Cx2

j − · · ·
)

= 0

∂F

∂B
=

N∑
j=1

(
yjxj − Axj −Bx2

j − Cx3
j − · · ·

)
= 0

∂F

∂C
=

N∑
j=1

(
yjx

2
j − Ax2

j −Bx3
j − Cx4

j − · · ·
)

= 0

· · ·

∂F

∂AN
=

N∑
j=1

xN−1
j

(
yj − A−Bxj − Cx2

j − · · ·
)

= 0 ,

where if we denote

XJ =
N∑
i=1

xJi Y J =
N∑
i=1

yJi Y KXJ =
N∑
i=1

yKi x
J
i ,

the above is readily expressed in matrix form
N X1 X2 · · · XN−1

X1 X2 X3 · · · XN

X2 X3 X4 · · · XN+1

· · · · · · · · · · · · · · ·
XN−1 XN XN+1 · · · X2(N−1)



A
B
C
· · ·
AN

 =


Y 1

Y 1X1

Y 1X2

· · ·
Y 1XN−1

 .

Amazingly, the system has exactly N equations and N unknowns, and can be solved in one
pass by Gaussian elimination.

Example

Consider the following data points occurring as ordered pairs:

xi 0 1 2 3 4 5 6 7 8 9 10
yi 1 6 17 34 57 86 121 162 209 262 321

22



Plotting the data alone, it’s unclear which curve should be optimized to best-fit all points.
Supposing we had reason to take f (x) up to order 3, the problem is contained inN X1 X2

X1 X2 X3

X2 X3 X4

AB
C

 =

 Y 1

Y 1X1

Y 1X2

 ,

which after evaluating each X- and Y -like term, reads 11 55 385
55 385 3025
385 3025 25333

AB
C

 =

 1276
9900
82434

 .

An exercise in Gaussian elimination leads to the solution A = 1, B = 2, C = 3.

6 Derivative Matching

Here we address the concept of fitting a curve f (x) not simply to discrete data points, but
to differentiable continua (points on curves). Then, constraints on derivatives of f (x) have
a general effect on the way f (x) is optimized.

6.1 A Two-Roads Problem

One example of a simple boundary-value problem begins with two parabolic non-intersecting
roads or train tracks given by

y1 (x) = −x
2

4
− 1 y2 (x) =

x2

4
+ 1 .

Next, suppose we are required to find a function f (x) that, in the smoothest way possible,
connects the point (−2,−2) on the y1-curve to the point (1, 5/4) on the y2-curve.

Let us proceed by guessing that the solution, whatever it is, can be approximated by an
N -order polynomial

f (x) = A+Bx+ Cx2 +Dx3 + Ex4 + · · · =
N∑
j=1

Aj x
j−1 ,

where some choice of coefficients {Aj} contains the correct answer. The most obvious facts we
can write about f (x) is it must match y1 (−2) and y2 (1) as given in the problem statement.
This means we can generate two equations:

y1 (−2) = f (−2) = −2 = A− 2B + 4C − 8D + 16E − · · ·
y2 (1) = f (1) = 5/4 = A+B + C +D + E + · · ·

So far so good, but there are still more unknowns than equations - the system is under-
determined without new information.
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Looking again at the functions y1,2 (x), we can differentiate each twice before reaching
zero:

d

dx
y1 (x) = −x

2

d

dx
y2 (x) =

x

2

d2

dx2
y1 (x) = −1

2

d2

dx2
y2 (x) =

1

2

Evaluating each of these at the boundary points (−2,−2) and (1, 5/4), we can calculate a
number for the slope and the second derivative at each boundary point

d

dx
y1 (−2) = 1

d

dx
y2 (1) =

1

2

d2

dx2
y1 (−2) = −1

2

d2

dx2
y2 (1) =

1

2
,

where higher-order derivatives are clearly zero. Meanwhile, we may also take the first and
second derivatives of our guess function f (x), giving:

d

dx
f (x) = B + 2Cx+ 3Dx2 + 4Ex3 + 5Fx4 + · · ·

=
N∑
j=2

(j − 1)Ajx
j−2

d2

dx2
f (x) = 2C + 3 · 2Dx+ 4 · 3Ex2 + 5 · 4Fx3 + 6 · 5Gx4 · · ·

=
N∑
j=3

(j − 1) (j − 2)Ajx
j−3

We already know that the function f (x) matches the curves y1,2 at the boundary points.
Now comes the crucial observation: the function and its derivatives match the curves and
their derivatives at the boundary points. This means we gain four new equations

d

dx
(y1 (−2)) =

d

dx
(f (−2)) = 1

d

dx
(y2 (1)) =

d

dx
(f (1)) =

1

2
d2

dx2
(y1 (−2)) =

d2

dx2
(f (−2)) = −1

2
d2

dx2
(y2 (1)) =

d2

dx2
(f (1)) =

1

2
,

where in terms of the unknown coefficients, the above read:

1 = B + 2C (−2) + 3D (−2)2 + 4E (−2)3 + 4F (−2)4 + · · ·
1/2 = B + 2C + 3D + 4E + 4F + · · ·
−1/2 = 2C + 3 · 2D (−2) + 4 · 3E (−2)2 + 5 · 4F (−2)3 + 6 · 5G (−2)4 + · · ·

1/2 = 2C + 3 · 2D + 4 · 3E + 5 · 4F + 6 · 5G+ · · ·
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Interestingly, we now have six total equations, up from two. This should mean if we
choose f (x) to contain six unknowns, which amounts to keeping the A- through F -terms,
and discarding any G- or higher terms, then the system left is indeed determined, and can be
solved exactly. Truncating the series accordingly, all information in the problem is contained
in the augmented matrix

1 −2 4 −8 16 −32 −2
1 1 1 1 1 1 5/4
0 1 −4 12 −32 80 1
0 1 2 3 4 5 1/2
0 0 2 −12 48 −160 −1/2
0 0 2 6 12 20 1/2

 ,

where Gaussian elimination hands us the solution as right-most column in the RREF matrix:
1 0 0 0 0 0 43/81
0 1 0 0 0 0 94/81
0 0 1 0 0 0 −149/324
0 0 0 1 0 0 −23/162
0 0 0 0 1 0 19/162
0 0 0 0 0 1 7/162

 .

Finally, the curve is given by

f (x) =
43

81
+

94

81
x− 149

324
x2 − 23

162
x3 +

19

162
x4 +

7

162
x5 − 2 ≤ x ≤ 1

as shown.

Figure 2: Parabolic roads with connecting curve.
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6.2 Generalization

Reviewing the two-roads problem, note that the solution does not depend on the whole
curves y1,2 (x), but only on the value of the curve and its derivatives at the boundary points.
It follows that we can abstract away the need for curves, and only require the value and
slope information at two boundary points x1 and x2. In the general case, the analysis begins
with

y1 (x1) = y1 y2 (x2) = y2

d

dx
y1 (x1) = y′1

d

dx
y2 (x2) = y′2

d2

dx2
y1 (x1) = y′′1

d2

dx2
y2 (x2) = y′′2 ,

where each of the y-terms and their derivatives are specified by any means.
An N -order polynomial

f (x) = A+Bx+ Cx2 +Dx3 + Ex4 + Fx5 + · · · =
N∑
j=1

Aj x
j−1

with the proper choice of coefficients {Aj} will satisfy the boundary conditions. Since we’re
sticking with second derivative analysis, it suffices to truncate the series after the x5-term. (If
more derivatives of y1,2 are specified, higher-order terms in the series must be maintained.)
The first- and second derivative of f (x) read

f ′ (x) =
d

dx
f (x) =

N∑
j=2

(j − 1)Ajx
j−2

f ′′ (x) =
d2

dx2
f (x) =

N∑
j=3

(j − 1) (j − 2)Ajx
j−3 .

Setting f , f ′, f ′′ to match the boundary value data, we end up with a six-dimensional
augmented matrix equation

1 x1 x2
1 x3

1 x4
1 x5

1 y1

1 x2 x2
2 x3

2 x4
2 x5

2 y2

0 1 2x1 3x2
1 4x3

1 5x4
1 y′1

0 1 2x2 3x2
2 4x3

2 5x4
2 y′2

0 0 2 3 · 2x1 4 · 3x2
1 5 · 4x3

1 (1/2) y′′1
0 0 2 3 · 2x2 4 · 3x2

2 5 · 4x3
2 (1/2) y′′2

 ,

which is readily reduced by Gaussian elimination to deliver the unknown coefficients {Aj}.

7 Interpolation

Here we combine the idea of regression analysis, which concerns fitting one curve to many
data points, along with derivative matching, which adds slope considerations to curve fitting.
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These form the basis for interpolation techniques, which can fit smooth curves to many classes
of data. Taking a concrete example, consider the following data points occurring as ordered
pairs:

xi 0 1 2 3 4 5 6 7 8 9 10
yi 0 0.84 0.91 0.14 -0.76 -0.96 -0.28 0.66 0.99 0.41 -0.54

In this analysis, we visit several ways to to connect each data point to its neighbors.

7.1 Taylor Expansion

Any well-behaved function can be approximated near a base value in terms of its derivatives,
known as the Taylor expansion

f (x) = f (x0) + (x− x0)
d

dx
f (x0) +

(x− x0)2

2!

d2

dx2
f (x0) + · · ·+ (x− x0)n

n!

dn

dxn
f (x0) .

For small-enough intervals x − x0, most the of the terms on the right side vanish, and the
expansion reduces to Newton’s first-order derivative equation.

7.2 Rectangle Approximation

The crudest way to map a function f (x) to a set of data points is to let f be equal to yi (xi)
in the neighborhood enclosing xi. In such a case, f (x) isn’t really a function, as its slope is
vertical across dissimilar yi:

f (xi ≤ x < xi+1) = yi

7.3 Connect-the-Dots Approximation

The fancy name for connecting the dots in a data plot is linear interpolation. In this case,
best-fit curve f (x) is composed of straight line segments. Defining the interval as the space
enclosed by xi and xi+1, it’s easy to reason that a straight line connecting points yi and yi+1

is given by

f (x) = yi (xi) + (x− xi)
(
yi+1 − yi
xi+1 − xi

)
,

which is suspiciously like the order-one Taylor expansion term.

7.4 Quadratic Approximation

Supposing we involve three points xi−1, xi, xi+1 at once in each analysis step, the approximat-
ing curve f (x) can have a parabolic component, which entails discretizing the second-order
derivate term

(x− x0)2

2!

d2

dx2
f (x0) .
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The second derivative is simply the slope of the slope, which means

d2

dx2
f =

d

dx
f ′ =

f ′ (x+ ∆x)− f ′ (x)

∆x

=
1

∆x

(
f (x+ 2∆x)− f (x+ ∆x)− f (x+ ∆x) + f (x−∆x)

∆x

)
=

1

∆x2
(f (x+ 2∆x)− 2f (x+ ∆x) + f (x−∆x)) ,

a weighted sum of nearby f -values. It quickly follows that the second-order correction to
the approximation f (x) reads

(x− xi)2

2

(
yi+1 − 2yi + yi−1

(xi+1 − xi)2

)
such that

f (x) = yi (xi) + (x− xi)
(
yi+1 − yi
xi+1 − xi

)
+

(x− xi)2

2

(
yi+1 − 2yi + yi−1

(xi+1 − xi)2

)
.

The above equation will surely join each data point {xi, yi} with a curve, but it is still
awkwardly jumpy at each point.

7.5 Spline Calculation

We are able to ‘smooth out’ the entire curve f (x) through the set of N data points {xi, yi}
by constraining the derivative and the second derivative of f to be continuous across each
xi-boundary. For this, we need at least a cubic approximation to f , which is a special case
of our ‘generalized two-roads problem’ studied previously.

Specifically, we define a function fi (x) valid on the interval xi ≤ x ≤ xi+1 such that

fi (x) = Ai +Bi (x− xi) + Ci (x− xi)2 +Di (x− xi)3 ,

where Ai, Bi, Ci, Di can be calculated subject to the following continuity conditions

fi (xi) = yi fi+1 (xi+1) = yi+1

fi (xi) = fi−1 (xi) fi (xi+1) = fi+1 (xi+1)

f ′i (xi) = f ′i−1 (xi) f ′i (xi+1) = f ′i+1 (xi+1)

f ′′i (xi) = f ′′i−1 (xi) f ′′i (xi+1) = f ′′i+1 (xi+1) ,

which are valid for 2 ≤ i ≤ N − 1. Most of the left column is in fact redundant to the right
column, so let us toss the whole thing.

In total, we have N − 1 polynomials fi (x) with 4 (N − 1) unknowns Ai, Bi, Ci, Di. The
constraint information only hands us 4 (N − 2) unique equations though, where remembering

f1 (x1) = y1 fN (xN) = yN
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takes us down two ‘missing’ equations. Note that on the boundaries the function and its
first derivative are readily available from the data points, however the second derivative is
ambiguous. For this reason, we agree to take each f ′′ term as exactly zero at the boundaries,
known as the natural spline:

f ′′1 (x1) = 0 f ′′N (xN) = 0

Denoting points i and i+1 as 1 and 2, respectively, the coefficients Ai, Bi, Ci, Di at each
step are calculated from the augmented matrix

1 x1 x2
1 x3

1 y1

1 x2 x2
2 x3

2 y2

0 1 2x1 3x2
1 y′1

0 1 2x2 3x2
2 y′2

 ,

straightforwardly solved by Gaussian elimination. Iterating this between all pairs of x-
points, the final curve is guaranteed to be smooth. (The spline calculation is essentially the
two-roads problem iterated many times.)

8 Euler’s Method

Euler’s method is essentially Newton’s method (first-order Taylor expansion) applied to
differential equations. Differential equations arise in a myriad of systems from population
models, trajectory calculations, financing, etc.

8.1 Exponential Growth and Decay

Consider a population of bacteria in an environment of unlimited resources (the inside of
a rotten sandwich, for instance). If a single cell reproduces by splitting in two after some
characteristic time, it follows that the total population is modeled by the differential equation

d

dt
N (t) = kN (t) ,

where N (t) is the population at a given time, and k is a constant proportional to the
reproduction rate of any (and each) cell. To fully specify a solution, the population N must
be known at some time t, typically at t = 0.

A similar equation applies to the decay of a solid object by radioactivity. If a given
atom has tends to decay over a characteristic time τ , then the number of remaining atoms
is governed by

d

dt
N (t) = −t/τ .

Each of the equations above can be solved analytically. In more generic variables, we separate
the differential equation and integrate:

dy

dx
= αy → dy

y
= α dx →

∫
dy

y
= α

∫
dx
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ln y = αx+ Ã → y = A eαx

For most problems, an analytic solution may be cumbersome or impossible to attain, in
which case we turn to approximation methods. Taking a similar starting point

d

dt
f (x0) ≈ f (x)− f (x0)

x− x0

,

solve for f (x) to get

f (x) ≈ f (x0) + (x− x0)
d

dx
f (x0) .

Dividing the integration domain into N copies with interval ∆x between steps, the evolution
of f is calculated by iterative equation

f (xi+1) = f (xi) + ∆x
d

dx
f (xi) ,

where f (x0) is given. This is indeed a general construction, which applies to exponential
growth and decay as a special case:

N (ti+1) = N (ti) + k ∆t N (ti) Bacerial growth

N (ti+1) = N (ti)−
1

τ
∆t N (ti) Radioactive decay

8.2 Forced Motion

The classical trajectory of a particle of mass m is governed by Newton’s second law, a
second-order differential equation

d2

dt2
~x =

~F

m
,

which is in fact a system of two first-order equations:

d

dt
~v =

~F

m

d

dt
~x = ~v ,

where ~x, ~v, and ~F/m are functions of time. In the above, ~F can have more-or-less any form,

with ~F = 0 corresponding to straight-line motion.
Discretizing the two first-order system, Euler’s method hands us two equations to advance

the calculation from the ith step:

~xi+1 = ~xi + ~vi ∆t ~vi+1 = ~vi +
~Fi
m

∆t

Solving the above requires both ~x and ~v to be known at a definite time, typically t0 = 0. Of
course, the vector sign over each symbol tells us these are multi-component objects, meaning
we have a separate equation for each component (x, y, z).

30



8.3 Applications

Kinematics

For projectile motion near the surface of the Earth, particles are subject to (at least) a
uniform gravitational field, pointed strictly downward. The field influences a particle via

~Fgrav
m

= −g ẑ ,

where g is the local gravitation constant, taken as 9.8 m/s2. To make use of this equation,

simply plug ~F/m into the iterative equations for ~v and ~x.

Air Resistance and Wind

The effects of wind and air resistance can be ‘worked in’ as an alteration to the velocity at
each step i. Taking a simple model where the resistance on a moving object is proportional
to its velocity, we have

~Fresist = −b ~v ,

where b is a proportionality constant. Like ‘real’ air resistance, the force is always against
the velocity vector, and vanishes for v = 0.

To simulate wind in the xy-plane, remove the ~v-dependence from the above and write a
more general statement, namely

~Fwind = wx x̂+ wy ŷ .

Uniform wind simply has wx and wy being constant. For more exotic wind patterns, let wx
and wy be functions of space and time, and include a z-component.

Air Drag

A more careful air resistance calculation tells us that drag is proportional to the square of
the velocity, as in

~Fdrag = −Cd
2
ρAv2 v̂ ,

where ρ is the air density, A is the forward-facing area of the object in motion, and Cd is a
constant classifying the surface friction of the object.

Lift Force

An object with sufficient spin velocity is subject to interesting forces while moving in air.
It can be shown that the force on a near-spherical object that is spinning about an axis ω̂
perpendicular to both (i) its direction of motion and (ii) the gravitational force vector is

~Flift =
Cl
2
ρAv2 ~ω × ~v

|~ω × ~v|
.
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In the above, ω is the spinning angular velocity. It actually turns out hat Cl is not always
constant, as experimentally the relationship

Cl ∝
rω

v

emerges.

Magnus Force

A generalization of the lift force is the so-called Magnus force, which permits ω̂ to point
anywhere:

~Fmagus = S0 (~ω × ~v)

Of course, the trouble is in accurately modeling S0, which has to be tackled separately for
each problem.

Orbital Motion

Several systems in classical physics, with the most famous example being planetary orbits
in the gravitational field of the sun, are governed by an inverse-square force law:

~Fgrav
m

= −GM
r2

r̂

In the above, G is Newton’s universal gravitation constant, and M is the mass of the sun,
centered at the origin. At a point ~r in space, the force is inversely proportional to r2 and is
purely attractive. Perpendicular to r̂ is another unit vector θ̂, which form the basis for polar
coordinates:

~r = r cos θ x̂+ r sin θ ŷ

As a check on orbital motion simulations, it’s useful to verify Kepler’s laws for a two-body
problem:

� Planetary orbits are closed ellipses with the sun at a focus.

� A line joining the sun and a planet sweeps out equal areas in equal times.

� The square of a planet’s orbital period is proportional to the cubs of its semi-major
axis.

Sinusoidal Motion

Perhaps the simplest (and most important) force that leads to harmonic oscillatory motion
is caused by a Hookean spring, in which case the force is proportional to the displacement
from an equilibrium value:

~Fspring = −k (~x− ~x0)
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Oscillatory Motion

A more general oscillatory system is a pendulum suspended in a gravitational field. For
displacements in the pendulum angle θ away from its equilibrium value θ = 0 (straight
down), standard Newtonian analysis tells us the system is governed by

ω =
d

dt
θ (t)

d

dt
ω = − g

L
sin θ ,

where L is the length of the pendulum, and g is the local gravitation constant. Note the mass
m has already canceled. Such a system can be solved analytically, with one interesting result
being the period T of potion. In the general case, an initial displacement θ0 corresponds to
a period of

T = 2π

√
L

g

√
1 +

(
1

2

)2

k2 +

(
1 · 3
2 · 4

)2

k4 +

(
1 · 3 · 5
2 · 4 · 6

)2

k6 + · · · ,

where k = sin (θ0/2). Note that small values of θ0 allow us to ignore the square root term.

8.4 Breakdown of Euler’s Method

While it may seem we have attained a means for solving any possible problem, one quickly
finds that Euler’s method is perhaps the worst of the calculus-based approximation methods,
as it starts getting things wrong early. Going back to the pair of equations

~xi+1 = ~xi + ~vi ∆t ~vi+1 = ~vi +
~Fi
m

∆t ,

note that the velocity is always calculated at the point ~xi. This leads to trouble when ~x
reaches a critical point where the slope suddenly changes sign. The corresponding ~xi+t will
be significantly off-true.

Taking a simple example, consider an object of mass m attached to a spring with Hookean
constant k set into oscillatory motion. The iterative equations suggested by Euler’s method
are

qi+1 = qi +
pi
m

∆t pi+1 = pi − qik ∆t .

At the i+ 1th step, the energy of the system must be

Ei+1 =
k

2

(
qi +

pi
m

∆t
)2

+
1

2m
(pi − qik ∆t)2

Ei+1 =
p2
i

2m

(
1 +

k

m
∆t2
)

+
k

2
q2
i

(
1 +

k

m
∆t2
)

Ei+1 = Ei

(
1 +

k

m
∆t2
)
.

Evidently, the energy fails to remain constant. Even worse, the energy increases exponentially
across many iterations.
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8.5 Euler’s Backward Method

An alternative approach uses Euler’s backward method, which uses information at the i+1th
point to calculate the corresponding step:

~xi+1 = ~xi + ~vi+1 ∆t ~vi+1 = ~vi +
~Fi+1

m
∆t .

Applying this again to the mass-and-spring oscillator, we write

qi+1 = qi +
pi+1

m
∆t pi+1 = pi − qi+1k ∆t .

Of course, one may wonder how i + 1 terms can exist on the right side of the equation,
however the above is a system of two equations and two unknowns, which we can solve
exactly:

qi+1 =
qi + (pi/m) ∆t

(1 + (k/m) ∆t2)
pi+1 =

pi − qik ∆t

(1 + (k/m) ∆t2)

The resulting equations are equal to those derived in the (ordinary) forward Euler’s
method, scaled by a factor of (1 + (k/m) ∆t2). Running these through the same energy
calculation above, we quickly discover the energy decreases at each step, which means expo-
nential decay across many iterations:

Ei+1 =
Ei

(1 + (k/m) ∆t2)

8.6 Mixed Euler’s Method

Almost surely by accident, it turns out that Euler’s method with a typo correctly advances the
motion of the simple pendulum. Recalling the equations of motions for a simple pendulum
in a uniform gravitational field, we again have

ω (t) =
d

dt
θ (t)

d

dt
ω (t) = − g

L
sin θ ,

where θ is the angle of vertical deflection, L is pendulum length, and g is the local gravity
constant.

Indeed, the iterative equations

qi+1 = qi +
pi
m

∆t pi+1 = pi −
g

L
sin (qi+1) ∆t

predict pendulum motion without accumulating error. This is a so-called ‘typo’ because it
uses Euler’s forward method to advance q, and the backward method to advance p. It just
happens that their errors cancel out, but it’s not obvious (yet) why, or if this will work in
the general case.
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8.7 Iterative Matrix Equations

We’ve seen iterative equations often occurring in sets, namely as separate equations for
position q and momentum p. In most cases, a system can be reduced to a set of linear
equations, which lends itself to matrix notation. Jumping right in, recall three separate
integration schemes named after Euler that apply to the harmonic oscillator:

Forward: qi+1 = qi +
pi
m

∆t pi+1 = pi − qik ∆t

Backward: qi+1 =
qi + (pi/m) ∆t

(1 + (k/m) ∆t2)
pi+1 =

pi − qik ∆t

(1 + (k/m) ∆t2)

Mixed: qi+1 = qi +
pi
m

∆t pi+1 =
pi − qik ∆t

(1 + (k/m) ∆t2)

As matrix equations, the above are equivalent to:

Forward :

[
1 ∆t/m

−k ∆t 1

] [
qi
pi

]
=

[
qi+1

pi+1

]

Backward :
1

(1 + (k/m) ∆t2)

[
1 ∆t/m

−k ∆t 1

] [
qi
pi

]
=

[
qi+1

pi+1

]

Mixed :

[
1 ∆t/m

−k ∆t (1− (k/m) ∆t2)

] [
qi
pi

]
=

[
qi+1

pi+1

]
.

To bundle up the notation, we can write each of the above as a matrix equation having
general form

M

[
qi
pi

]
=

[
qi+1

pi+1

]
,

where N is a 2× 2 matrix when there are two unknown variables.

9 Runge-Kutta Techniques

The The Runge-Kutta method (a.k.a. RK method) corrects Euler’s method in solving
second-order differential equations. In general, RK methods apply to equations of the form

d

dt
x (t) = f (x, t)

subject to the known initial condition x0 = x (t = 0).
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9.1 Midpoint Method

The second-order Runge-Kutta method, also knows as the RK2 method or the midpoint
method, delivers exact results for certain trajectories, especially projectile motion. In ac-
cordance with the Figure shown, Let us take the midpoint ~xm between ~xi and ~xi+1 such
that

~xm = ~xi +
1

2
~vi ∆t ~vm = ~vi +

1

2

~F (~xi, ~vi)

m
∆t .

Then, to move forward from the ith step, we have

~xi+1 = ~xi + ~vm ∆t ~vi+1 = ~vi +
~F (~xm, ~vm)

m
∆t .

Figure 3: Breakdown of Euler’s method (left). Correction using slope at midpoint (right).

Derivation

To derive the above, Taylor-expand the value for x (t) up to a half-step increment

x

(
t+

∆t

2

)
≈ x (t) +

1

2
f (x (t) , t) ∆t ,

where the slope term is replaced by f . Next, note that the ‘ordinary’ first-order expansion

x (t+ ∆t) ≈ x (t) + f (x (t) , t) ∆t

can be replaced by the more accurate statement

x (t+ ∆t) ≈ x (t) + f

(
x

(
t+

∆t

2

)
, t+

∆t

2

)
∆t .

Inserting x (t+ ∆t/2) into the above, we have

x (t+ ∆t) ≈ x (t) + f

(
x (t) +

1

2
f (x (t) , t) ∆t, t+

∆t

2

)
∆t ,

which is the basis for the two-step version.
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Energy Conservation

Taking the case of a falling object in one dimension near Earth’s surface free of air drag, we
have the iterative equations

xi+1 = xi + vm ∆t vm = vi +
1

2

F (xi, vi)

m
∆t = vi −

g

2
∆t .

Then inserting the form for vm into xi+1 gives

xi+1 = xi + vi ∆t− g

2
∆t2 vi+1 = vi − g ∆t ,

which is surely exact.
Supposing we were tracking the energy of the object, it’s straightforward to show that

the value remains fixed across iterations for this example:

Ei+1 = mgxi+1 +
1

2
mv2

i+1

Ei+1 = mg
(
xi + vi ∆t− g

2
∆t2
)

+
1

2
m (vi − g ∆t)2

Ei+1 = mgxi +
1

2
mv2

i +((((
((((

((
∆t (mgvi −mgvi) +

��
���

���
�

∆t2
(mg

2
− mg

2

)
Ei+1 = Ei

9.2 Fourth-Order Method

Perhaps the most-commonly used approximation is the fourth-order Runge-Kutta method,
abbreviated RK4. Jumping right to the result, the way we advance to the next step is

xi+1 = xi +
1

6
(k1 + 2k2 + 2k3 + k4) ∆t ,

where:

k1 = f (x, t)

k2 = f

(
x+

∆t

2
k1, t+

∆t

2

)
k3 = f

(
x+

∆t

2
k2, t+

∆t

2

)
k4 = f (x+ ∆t k3, t+ ∆t)

The RK4 method stays ‘true enough’ for many problems, and is exact for many others.

Example

Recalling (again) the setup for a simple pendulum in a uniform gravitational field, we have

ω (t) =
d

dt
θ (t)

d

dt
ω (t) = − g

L
sin θ ,
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where θ is the angle of vertical deflection, L is pendulum length, and g is the local gravity
constant. For given initial conditions θ0, ω0, the advance to the i+ 1th step is contained in
the following pseudo-code:

k1w = -(g / l) * SIN(q1temp)

k1t = p1temp

w2 = p1temp + k1w * dt / 2

t2 = q1temp + k1t * dt / 2

k2w = -(g / l) * SIN(t2)

k2t = w2

w3 = p1temp + k2w * dt / 2

t3 = q1temp + k2t * dt / 2

k3w = -(g / l) * SIN(t3)

k3t = w3

w4 = p1temp + k3w * dt

t4 = q1temp + k3t * dt

k4w = -(g / l) * SIN(t4)

dwdt = (k1w + 2 * k2w + 2 * k3w + k4w) / 6

dtdt = (k1t + 2 * k2t + 2 * k3t + k4t) / 6

p1 = p1temp + dwdt * dt

q1 = q1temp + dtdt * dt

10 Symplectic Integrator

10.1 Hamiltonian Systems

Physical systems not subject to large effects from quantum mechanics or general relativity
are well-predicted by Hamilton’s equations of motion, a generalization of framing Newtonian
mechanics. We begin with an object H, which a function of generalized coordinated q and
p, each a function of time. For most cases, it’s possible to show that the three equations

H (q, p) = T (p) + U (q)
∂q

∂t
=
∂H

∂p

∂p

∂t
= −∂H

∂q

determine the evolution of the system from initial q0 and p0. In the above, the function T (p)
is the kinetic energy, almost always equal to p2/2m, whereas U (q) is a spatially-dependent
potential energy function. If the system conserves energy, then the Hamiltonian is simply
the total energy E.

Discretization

Expanding out the q-derivative formulas in terms of small differential terms, we get

∂q

∂t
=
∂H

∂p
→ qi+1 − qi

∆t
=
H (qi, pi+i)−H (qi, pi)

pi+1 − pi
.
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By now, we’ve seen there exists some freedom in where we choose to base the calculations
for the i+1th step. Taking a hint from the mixed Euler’s method, let us write the derivative
with respect to q evaluated at pi+1:

∂p

∂t
= −∂H

∂q
→ pi+1 − pi

∆t
= −H (qi+1, pi+i)−H (qi, pi+1)

qi+1 − qi
.

Energy Conservation

To assure that the above equations don’t cause the Hamiltonian to change, we combine them
as follows

���
���H (qi, pi+i)−H (qi, pi) +H (qi+1, pi+i)−����

��H (qi, pi+i) =
(qi+1 − qi) (pi+1 − pi)

∆t
(1− 1)

H (qi+1, pi+i) = H (qi, pi) ,

which indeed remains the same. Note that this construction lends itself to a very wide variety
of problems in physics, and easily generalizes to more degrees of freedom (extra dimensions
or particles).

10.2 Symplectic Notation

A system with N degrees of freedom requires N pairs, or 2N generalized coordinates qj,
pj, where j = 1 . . . N . Let us construct a single column vector containing all generalized
coordinates:

~η =

[
~q
~p

]
=


q1

q2

· · ·
p1

p2

· · ·

 ηi = qi ηi+N = pi

Then, Hamilton’s equations of motion take the form

∂ηi+N

∂t
= −∂H

∂ηi
∂ηi

∂t
=

∂H

∂ηi+N
.

The ‘J’ Matrix

Proceeding with a simple N = 2 example, we can easily write the above as a matrix
0 0 1 0
0 0 0 1
−1 0 0 0
0 −1 0 0



−∂tp1

−∂tp2

∂tq
1

∂tq
2

 =


∂tq

1

∂tq
2

∂tp
1

∂tp
2

 ,
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or in tighter notation, we write the 2N × 2N matrix as J such that

J
∂

∂~η
H =

∂

∂t
~η .

Of course, each of the above results generalizes to more than N = 2, in which case J gains
more rows and columns but retains the same structure. In the general case, we readily find

JJ = −I JT = J−1 = −J |J | = 1 .

The ‘M’ Matrix

Recalling our study of Euler’s method, recall that coordinates are advanced to the i + 1th
step using using a matrix

M

[
~qi
~pi

]
=

[
~qi+1

~pi+1

]
,

which in symplectic notation reads
M~ηi = ~ηi+1 .

10.3 Symplectic Condition

So far, we have worked out the notation to support iterative equations for determining the
evolution of a physical system. At the ith step, we have

∂

∂t
~ηi = J

∂

∂~ηi
H (~qi, ~pi) .

To assure the Hamiltonian (and thus the energy) is not altered by our choice of variables,
let us demand that the form

∂

∂t
~ηi+1 = J

∂

∂~ηi+1

H (~qi+1, ~pi+1)

remain true. This passes all freedom to the matrix M , as J is constant and H is assumed
given.

Substituting M~ηi = ~ηi+1 into the second equation, we get

∂

∂t
(M~ηi) = J

∂

∂ (M~ηi)
H (~qi+1, ~pi+1) ,

which simplifies to tell us
∂

∂t
~ηi = MJMT ∂

∂~ηi
H (~qi, ~pi) .

Comparing this to the first equation, we find

J = MJMT ,

known as the symplectic condition. This is a very important result, as it can test any
proposed M matrix without needing a simulation.
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Examples

Since we already have some M -matrices laying around from our study of Euler’s method,
we may test each against the symplectic condition:

Forward :

[
1 ∆t/m

−k ∆t 1

] [
0 1
−1 0

] [
1 −k ∆t

∆t/m 1

]

Backward :

(
1

(1 + (k/m) ∆t2)

)2 [
1 ∆t/m

−k ∆t 1

] [
0 1
−1 0

] [
1 −k ∆t

∆t/m 1

]

Mixed :

[
1 ∆t/m

−k ∆t (1− (k/m) ∆t2)

] [
0 1
−1 0

] [
1 −k ∆t

∆t/m (1− (k/m) ∆t2)

]
Denoting the forward, backward, and mixed matrices as MF , MB, MS, respectively, the
above simplifies to

Forward :
(
MJMT

)
F

=

(
1 +

k

m
∆t2
)
J

Backward :
(
MJMT

)
B

=

(
1 +

k

m
∆t2
)−1

J

Mixed :
(
MJMT

)
S

= J .

Not surprisingly, the forward and backward methods fail the symplectic test. The mixed case
however slips through flawlessly! That is, the mixed Euler’s method, as applied to harmonic
motion, satisfies the symplectic test.

10.4 Equations of Motion

Returning to the general case where the Hamiltonian and its derivatives determine every-
thing, namely

H (~q, ~p) = T (~p) + U (~q)
∂~q

∂t
=
∂H

∂~p

∂~p

∂t
= −∂H

∂~q
,

we now know to discretize the derivative terms via

~qi+1 = ~qi +
∂T

∂~pi
∆t ~pi+1 = ~pi −

∂V

∂~qi+1

∆t ,

which preserves the value of H across iteration steps.
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