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1 Fundamentals

Thermodynamic System

A thermodynamic system is any collection of parts that permits heat transfer between its
members. A closed thermodynamic system allows no energy or material transfer across its
boundary, where an open system does allow such transfer.

Temperature

Temperature is a scale used for quantifying the amount of ‘hotness’ in a system. We’ll soon
build up the vocabulary to create a sophisticated definition of temperature, but it suffices
for now to say:

Temperature is a quantity that eventually becomes the same for two systems after
sustained contact.

Typical temperature scale units, namely Fahrenheit and Centigrade, aren’t defined in
fundamental terms of length, space, or time.

Problem 1
At atmospheric pressure (also known as standard pressure), liquid water boils at 212◦F

and freezes at 32◦F . On the centigrade scale, these temperatures are 100◦C and 0◦C, re-
spectively. Calculate the one temperature at which the Fahrenheit and centigrade scales are
in agreement, assuming each scale is linear. Answer: −40◦F = −40◦C

Zeroth Law

Sustained contact between two systems can lead to a state called thermal equilibrium,
achieved when there is zero net energy flowing between each system. This idea is also
contained in the zeroth law of thermodynamics :

If system A and system B are each in equilibrium with system C, then A and B
are in equilibrium with each other.

Quasistatic Approximation

The quasistatic approximation is the limit when thermodynamic processes occur ‘slowly’
enough such the whole substance maintains instantaneous equilibrium throughout any pro-
cess.

1.1 Matter and Heat

Thermal Expansion

The volume of an object is subject to its temperature. Adding heat causes the volume to
increase, an effect called thermal expansion. Taking a one-dimensional example, consider a
thin metal rod of length L0 and initial temperature T0. An external heat source changes
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the rod’s temperature by ∆T , and the length is observed to change by ∆L. Restoring
the temperature to T0, the length restores to L0. It follows that a linear ‘law’ for thermal
expansion can be written as

L = L0 + αL0∆T , (1)

where the parameter α is the linear thermal expansion coefficient, measuring typically around
10−5 per degree centigrade. The temperature change ∆T may be positive or negative, and
the rod expands or contracts, respectively.

Thermal expansion also occurs in two- and three-dimensional objects. Taking a 2D
example, consider a plate of dimensions L0 ×W0. With a change in temperature, the area
of the plate becomes

A = L0W0 (1 + α∆T )2 ≈ L0W0 (1 + 2α∆T ) . (2)

For small temperature displacements, α2∆T 2 is a reasonably small contribution to thermal
expansion and is ignored to first-order approximation. Thus the area scales linearly with
temperature, with effective expansion factor 2α.

For three dimensions, the effective expansion constant is β = 3α. If the volume of the
object is V0, this means

V ≈ V0 (1 + β∆T ) . (3)

Problem 2
A circular piece with diameter d is removed from a room-temperature sheet of aluminum.

If the sheet is heated in an oven, how does the area of the hole change with temperature?
Does the hole increase or decrease in area? Answer: ∆A = πd2α∆T/2, increasing.

Problem 3
On a cool 4◦C morning, a driver fills his aluminum gasoline tank to the full capacity

of 106.0 L. That evening, he checks the fuel level and finds 103.4 L remaining in the tank.
The coefficient of volume expansion for gasoline is 9.5 × 10−4/◦C, and for aluminum is
7.25× 10−5/◦C. What was the maximum temperature reached by the fuel tank during the
day? Answer: 32.70◦C

Problem 4
Consider a metal rod having a thermal expansion coefficient that varies with temperature

such that α(T ) = A+BT+CT 2. Derive a formula for the length of the material as a function
of temperature change. Answer:

∆L = L0

(
A∆T +B∆T 2/2 + C∆T 3/3

)
Problem 5

Show that for non-small changes in temperature ∆T = T −T0, the length and volume of
a material obey:

L (T ) = L0 e
α∆T V (T ) = V0 e

β∆T
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Thermal Stress

An object confined in space may not be able to physically undergo thermal expansion (or
contraction), in which case the object undergoes thermal stress. Suppose a thin metal rod
of fixed length L0 is held between two clamps at temperature T0 with no initial forces on the
ends of the rod. If the temperature changes, the rod ‘wants’ to obey the thermal expansion
equation (1), written here as

∆L

L0

= α∆T ,

where α is the linear thermal expansion coefficient.
Meanwhile, the Young’s modulus for the rod is defined as Y = (F/A)/(∆L/L0), so we

write
∆L

L0

=
F

AY
,

where F is the linear tension in the rod (positive or negative) and A is the cross-sectional
area. Since ∆L must be zero, we therefore have

F

A
= −Y α∆T . (4)

Thermal Energy

The phenomenon of ‘heat’ occurs as a consequence of some type of energy expense: mechan-
ical, chemical, electrical, nuclear, etc. We define thermal energy, denoted Q, as the broad
subset of energies and potentials that couple strongly to temperature. Like all other energies
in physics, thermal energy must be conserved.

It was known to Sir James Joule (1818-1889) and his contemporaries that the amount of
work required to raise the temperature of water is directly proportional to the temperature
change. Energy in those days was measured in calories, where one calorie is the amount of
energy required to raise the temperature of one gram of water by one degree centigrade. (One
food calorie, denoted with a capital C, is 1000 ordinary calories.) Experiments conducted
by Joule revealed that one calorie equals 4.186 energy units in the SI system, also known as
Joules. (Note that one BTU , or British Thermal Unit, is 252 cal = 1055 J .)

Specific Heat

A small thermal energy quantity dQ transferred to a substance of mass m (without changing
the phase) is linearly proportional to the change in temperature. This means we write

c =
1

m

dQ

dT
, (5)

where the proportionality constant c is the specific heat of the substance. Equation (5) can
often be integrated in the variable T , giving a more familiar statement

Q = mc∆T . (6)

A typical solid metal has c around 300 J per kilogram of material per degree centigrade. In
the same units, liquid water has c = 4187 , frozen water has c = 2108, and water vapor has
c = 1996.
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Heat Capacity

The product of mass and specific heat yields the heat capacity :

C = mc (7)

Like specific heat, the heat capacity is proportional to Joules per degree centigrade, but
the notion of ‘per kilogram of material’ has been multiplied away. At face value, the units
of heat capacity are Joules per degree centigradeper particle.

Avogadro’s Number

Chemists don’t typically deal in single particles, so a standard ‘chemist’s dozen’ has been
decided, called a mole. It turns out that one mole of any material is equal to 6.022 × 1023

particles, known as Avogadro’s Number, denoted NA.

Mass Units

By definition, one mole of Carbon-12 contains NA atoms and weighs precisely 12 g. From
this we define the unified atomic mass unit, a single number used to approximate both the
proton mass and the neutron mass having value 1.660539 × 10−24 g. In physical units, the
unified amu is roughly 0.9928 proton masses or 0.9914 neutron masses. The molecular mass
is defined as the number of atomic mass units (masses of protons and neutrons) in an element
or molecule, ignoring electron masses.

Elemental masses are not reported as whole numbers in the periodic table. This arises
from averaging over various isotopes of a given element occurring in nature, whose number
of neutrons vary from the number in the pure element.

For example, 99.2% of hydrogen atoms observed in nature contain one proton and zero
neutrons, denoted 1

1H. Meanwhile, 0.8% of hydrogen occurs with one proton and one neutron,
denoted 2

1H. Statistically 0% of hydrogen contains two neutrons per atom, meaning 3
1H is

exceedingly rare. The weighted average of the respective masses per isotope is therefore

0.992× (1 amu) + 0.008× (2 amu) + 0 = 1.008 amu,

matching the reported molecular mass of hydrogen, and the same goes for all other elements
in the periodic table.

Problem 6
An H2O molecule consists of 10 protons, 8 neutrons, and 10 electrons. Use the periodic

table values mH = 1.008 and mO = 15.999 to compute the mass of a single water molecule
in grams. Answer: 2.99× 10−23 g.

Mixtures and Dalton’s Law

A mixture of gases is itself a gas and may be treated as a unit. For instance, if a pressurized
vessel holds a mixture of helium and nitrogen, then the gases are fully mixed, sharing the
same V and T . In the variable N , we really mean NHe +NNi. Each element also makes its

6



own contribution to P , called a partial pressure, where P = PHe + PNi for the example on
hand. This is known as Dalton’s law. In general, the law of partial pressures reads

P =
∑
j

Pj , (8)

where index j sums over the species in the mixture.

1.2 Phases of Matter

Phase is a term synonymous with ‘state of matter’, used for classifying the overall spatial
arrangement and dynamics of the particles in a substance. Common phases of mater are
solid, liquid, and gas - but the list doesn’t stop there. More exotic phases such as plasmas
and liquid crystals occur in nature (and the laboratory).

The phase of a given substance is chiefly determined by (i) the surrounding temperature,
and (ii) the surrounding pressure. This is visualized by using a phase diagram, which comes
in two flavors: PT and PV , standing for a pressure-temperature plot or pressure-volume
plot, respectively.

PT Diagram

Figure 1: Typical PT phase diagram.

Figure 1 illustrates a typical PT diagram for a typical substance (water for example).
A small enough ‘parcel’ of a substance occupies just one point in the phase diagram at a
given time, and the parcel’s ‘trajectory’ in a phase diagram is continuous over time, but not
necessarily smooth. Boundaries between regions in the phase diagram are associated with
abrupt changes in the phase.

� Region A has low temperature and high pressure, corresponding to the solid state.

� Region B has moderate temperature and moderate pressure, corresponding to the
liquid state.
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� Region C has high temperature and low pressure, corresponding to the gaseous state.

� Region D indicates the supercritical state, a phase mixture of liquid and gas.

� Solid lines are boundaries that separate two phases.

� The junction of regions A, B, C is called the triple point.

PV Diagram

Figure 2: Typical PV phase diagram.

A variation of the PT diagram is the PV diagram, where the volume replaces temperature
on the horizontal axis. Figure 2 illustrates a typical PV diagram for another typical sub-
stance, excluding the solid state. The contour curves are called isotherms, having constant
temperature. The shaded area under the dotted arch represents the liquid-vapor equilibrium
phase. The isotherm TC is the critical temperature.

Latent Heat

Changing the temperature or pressure of a substance causes some shift in the phase diagram.
Crossing the boundary between any two regions (see Figure 1) corresponds to a phase change.
At such a boundary, molecular order of the substance changes radically, which involves an
energy change at the chemical level. For a substance on a phase boundary at a given
pressure, all energy added or removed from the substance contributes to phase change with
the temperature remaining constant.

To illustrate, consider a glass containing an ice + water mixture having initial temper-
ature 0◦C, the freezing point of water. Placed in a room-temperature environment, the
mixture steadily absorbs heat from the surroundings. Does the temperature of the ice +
water mixture increase? No, not for a while. Rather, any new energy added to the system
contributes to melting the ice. Only when the ice is melted will the system’s temperature
begin to increase. The same experiment works in reverse: if instead the ice + water mixture
were placed in a frigid −100◦C environment, the temperature would remain 0◦C until all
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liquid water phase changes to ice. Only after this point would the overall temperature begin
to plunge. (Of course, this all assumes that waster is a perfect conductor of heat, which is
true enough.)

During a phase change, the thermal energy of a substance is not governed by Q = mc∆T
because ∆T is zero during the change. Instead, the change in energy is called latent heat,
which is proportional to the mass of material being changed:

Q = mLα (9)

The amount of mass that changes phase per unit energy is a constant denoted Lα, where
subscript α denotes which phase boundary is being crossed.

Subscript α = v stands for ‘vaporization’, corresponding to the liquid-gas boundary, and
α = f stands for ‘fusion’, corresponding to the solid-liquid boundary. Water at atmospheric
pressure has Lv = 2.256× 106 J/kg and Lf = 3.34× 105 J/kg.

Figure 3: Temperature curves for tea kettle problem.

Problem 7
A tea kettle is filled with ice at −10◦C and placed on a burner that is steadily getting

hotter. Over a long enough time, the kettle empties due to evaporation. Of the four curves
drawn in Figure 3, which best represents the temperature inside the kettle as a function of
time? Use the quasistatic approximation. Answer: Top left.

Problem 8
How much ice at 0◦C must be added to a liter of water at 80◦C so as to end up with all

liquid at 20◦C? Answer:
mice

m0

=
80◦C − 20◦C

20◦C + (Lf/c)water

Problem 9
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A 15g ice cube at 0◦C is mixed with 2g of steam at 100◦C in an isolated container. What
is the final state of the system? Answer: (i) Since msteamLv−miceLf < 0, all steam condenses,
releasing 4512J , which melts 13.51g of ice, leaving 1.49g in the solid state. (ii) Next, the 2g
of hot water must come to equilibrium with the melted ice, giving 0 = 2 (x− 100◦C)+13.51x,
where x solves to 12.9◦C. (iii) Finally, let 15.51 g of water at 12.9◦C come to equilibrium
with the remaining ice, giving 0 = 15.51 (y − 12.9◦C) + 1.49Lf/c. Solving for y, the final
system has 17 g of water at about 5◦C.

Problem 10
A 20 g ice cube at −10◦C is mixed with 2 g of steam at 100◦C in an isolated container.

What is the final state of the system? Answer: (i) Energy required to warm ice to 0◦C:
422 J . (ii) Amount of steam condensed to accomplish this: 0.187 g. (iii) Energy required to
melt ice: 6680J . (iv) Energy released by remaining steam condensation: 4090J . (v) Energy
released from cooling 2 g of water from 100◦C to 0◦C: 837 J . (vi) Energy available to melt
ice: 4927 J . (vii) Mass of ice melted: 14.8 g. (viii) Final state has about 5 g of ice and 17 g
of water at 0◦C.

1.3 Heat Transfer

Conduction

Conduction is heat transfer due to microscopic motions of particles, where more rapidly-
moving particles exchange kinetic energy by collision with ‘colder’ particles. A material’s
affinity to conduct heat in this way is the thermal conductivity, k, measured in Watts per me-
ter per degree centigrade. (Incidentally, most materials that easily conduct electric currents
also have high thermal conductivity.)

Consider two objects H and C that are maintained at constant temperatures TH and
TC , respectively. The ‘hotter’ object H is connected to the ‘colder’ object C by a conductor
having cross-sectional area A and thermal conductivity k. The rate of energy flow dQ/dt
across the conductor is:

dQ

dt
= − d

dt

∫
∇U · d~x = −

∫
∇U · d~x

dt

The ∇U (vector) term is proportional to (i) the temperature difference TH −TC and (ii) the
conductor cross section A. The d~x/dt term represents the speed of energy flow across A,
proportional to the thermal conductivity k. The differential equation for heat conduction is
therefore

dQ

dt
= −kA∆T , (10)

where ∆T is known as the temperature gradient. (The negative sign makes sure that heat
flows from hot to cold.) In the special case that the conduction takes place in one dimension
along length L, the rate of heat flow toward the cooler region is

dQ

dt
= kA

(
TH − TC

L

)
.

R-Value
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The R-value of a material is equal to the thickness (along the direction of heat flow)
divided by the conductivity:

R =
L

k
One inch of wood has R ≈ 1. Typical New England houses have R ≈ 19 for the walls and
R ≈ 30 for the roof. The R-value is an additive quantity, with Reff = R1 +R2 + ....

Problem 11
The walls of a house are insulated with 2.0 cm of Styrofoam (kSF = 0.01 W/mK), and

15.0 cm of fiberglass (kFG = 0.04 W/mK). The Styrofoam is on the exterior of the house.
The outside temperature is 0◦C, and and interior of the house is maintained at 20◦C. (i)
Calculate the temperature on the SF-FG interface. (ii) What is the rate of heat transfer
per m2 through both layers of insulation? (iii) Which provides grater net insulation, an
additional 1.0 cm of Styrofoam, or an additional 5.0 cm of fiberglass? Answer: 6.96◦C,
3.5W , fiberglass.

Problem 12
Inside a conductive cylinder of length L and radius R, heat flows radially from the axis

r = 0 toward the wall at R with T (0) > T (R). Calculate thermal energy flow rate between
any two radii r1 and r2 in cylinder. Answer:

dQ/dt = k2πRL (T1 − T2) / ln (r2/r1)

Problem 13
If a tank of water initially at 0◦C is left in very cold conditions (assume −10◦C), a sheet

of ice forms on the water surface and grows downward over time. Supposing all heat transfer
takes place through the ice, and not through the container walls: (i) Determine the thickness
Z of the ice as a function of time t. (ii) Calculate the thickness of the ice sheet that will
form in one day. (iii) If the tank is 50 cm deep, how many days does it take to freeze of the
water? (iv) If the tank is 10 m deep, how many days does it take to freeze of the water?
Answer: (i) Z = (∆T2k/(ρLf ))

1/2
√
t, (ii) 9.49 cm, (iii) 2.40× 106 sec, (iv) 6.40× 106 days

Convection

Consider a pot of water initially at 10◦C that sits on a kitchen stove burner maintained at
110◦C.

1. Conduction: Heat is introduced to the liquid by contact with the bottom of its metal
container, in contact with the heat source.

2. Convection cells: Fluid parcels nudge their way to the surface, spreading horizontally,
and submerging when displaced by warmer fluid.

3. Turbulence: The bottom of the fluid becomes much warmer than the surface, and the
convection cells burst into mushroom-cloud shapes.

4. Boiling: Discernible patterns vanish, and the fluid expels its heat by ejecting the most
energetic particles.
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5. Steam: Steam rapidly expands (if not constrained), doing work on the atmosphere.

Steps (2) through (5) each involve convection. Convection is heat transfer due to macro-
scopic displacement of a fluid. The displacement can be spontaneous, as when steam carries
heat away from a hot cup of tea - or forced, as done inside a refrigerator compressor.

Electromagnetic Radiation

Electromagnetic radiation is energy transfer that uses photons as a carrier. All objects
continuously absorb and expel energy through photon exchange with the environment. The
net rate of heat flow is given by Stefan’s law,

dQ

dt
= Aeσ

(
T 4
obj − T 4

env

)
, (11)

where A is the object’s exposed surface area, e is the emissivity (0 ≤ e ≤ 1) of the material,
and σ is the Stefan-Boltzmann constant, 5.67 × 108 Wm−2K−4. Note the temperature is
counted in Kelvin units, which scales proportionally to the centigrade scale but equals zero
at T = −273.15◦C. (See Lord William Kelvin below.)

A hot electric stove coil emits intense infrared radiation with wavelengths ranging from
103 to 106 nm. (Your skin easily detects these rays.) With increasing power, the range of
emitted wavelengths widens, and eventually the coil visibly glows red with λ = 700 nm.
(Your eyes easily detect these.) With even more increasing power, the stove coil becomes
‘white hot’, emitting a very wide spectrum of wavelengths.

A hypothetical object useful for discussing radiation is the blackbody, which has e = 1,
absorbing all incident radiation. Contrastly, a reflector absorbs no radiation.

Problem 14
Earth’s upper atmosphere receives roughly 1.50 × 103 W/m2 of energy from the sun by

thermal radiation. The distance from the earth to the sun is 1.50 × 1011 m, and the radius
of the sun 6.96× 108 m. Use conservation of flux to calculate the surface temperature of the
sun. Answer: About 6000 Kelvin.

Problem 15
Wandering in the Desert : Consider an unfortunate person walking at 5 km/h on a hot

day in the desert, wearing only a bathing suit. The person’s skin temperature tends to rise
due to four mechanisms:

� Energy is generated by metabolic reactions in the body at a rate of 280W , and almost
all of this energy is converted to heat that flows to the skin.

� Heat is delivered to the skin by convection from the outside air at a rate equal to
k′Askin(Tair−Tskin), where k′ is 54 J/◦Cm2h, the exposed skin area Askin is 1.5m2, and
the air temperature Tair is 47◦C.

� The skin absorbs radiant energy from the sun at a rate of 1400W/m2.

� The skin absorbs radiant energy from the environment, which has temperature 47◦C.
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Assume the emissivity of the skin is e = 1 and the skin temperature is 36◦C. (i) Determine
the net heat flow into the person due to the four mechanisms. (ii) At what rate (in liters
per hour) must perspiration evaporate from the person’s skin to maintain a constant skin
temperature? (Assume sweat is made of water which has Lv = 2.42×106J/kg.) (iii) Suppose
instead that the person is protected by light colored clothing with e = 0 such that the skin
exposed is 0.45m2. (The convective heat exchange is not affected by the clothing.) What is
the rate of perspiration now required? Answer: (i) 280 W , 0.248 W , 2.10 × 103 W , 893 W ,
(ii) 4.87 L/h, (iii) 1.75 L/h

1.4 Atmospheric Qualities

Vapor Pressure

The vapor pressure of a substance is the pressure at which the vapor phase is in equilibrium
with the solid or liquid phase at a given temperature. For example, water and air in a sealed
container will begin mixing by evaporation and condensation (of water molecules in and out
of the air). Equilibrium is achieved when the partial pressure PW of water in the air is equal
to the vapor pressure P0.

The following table maps out the vapor pressure of water as a function of temperature:

Temperature Vapor Pressure
(◦C) (Pa× 103)
10 1.23
12 1.40
14 1.60
16 1.81
18 2.06
20 2.34
22 2.65
24 2.99
26 3.36
28 3.78
30 4.25
40 7.34

Note one Pascal (Pa) is equal to one Newton per square meter.

Humidity

The relative humidity is defined as the ratio

H =
PW
P0

,

always expressed as a percentage and never exceeding 100%. Because Earth’s atmosphere
is considered open instead of closed, H is typically much less than unity. On a rainy day,

13



H becomes close to unity. In either case, P0 is much less than the atmospheric pressure PA,
which is near 105 Pa.

Problem 16
At 24◦C and at 50.0% relative humidity, what is the partial pressure of water vapor in

the atmosphere? Answer: PW = 1.50× 103 Pa

Problem 17
At 24◦C and at 50.0% relative humidity, what is the mass density of the water vapor in

the air? (Hint: M = 18× 10−3 kg/mol.) Answer: ρ = 0.0109 kg/m3

Dew Point

Consider an ice-cold glass sitting in a room. After a short time, water droplets form on
the outside of the glass. To explain this, observe first that the air surrounding the glass,
which itself contains water molecules, is cooled by conduction. The vapor pressure of the
surrounding molecules therefore decreases (see table above), causing the relative humidity
surrounding the glass to increase. When the relative humidity reaches 100%, the correspond-
ing temperature is called the dew point, denoted Tdew.

At the dew point temperature, further cooling cannot result in increased humidity, which
is already at unity, so the density of water molecules surrounding the glass must decrease.
The excess molecules stick to the glass to form droplets. Note that the dew point is always
less than the surrounding room temperature. The higher the relative humidity, the closer
the dew point is to the temperature.

Problem 18
Suppose the air temperature in a laboratory is 24◦C, and a physics student cools a half-

filled drink by adding ice. He finds that water begins to condense on the glass when it’s
temperature reaches 12◦C. What is the relative humidity in the room? Answer: 46.8%

Clouds and Fog

Clouds and fog are easily explained in the terms defined above. Simply put, condensation
(100% relative humidity) occurs at the altitude where the air temperature equals the dew
point.

Problem 19
Consider a spring day when the air temperature on the ground is 24◦C and the relative

humidity is 50%. Assume that the partial pressure of water does not change with elevation,
and that the air temperature decreases with altitude at a rate of 0.06◦C/100m. (i) At what
altitude will clouds form? (ii) If the relative humidity on the ground is higher, will the clouds
form at a higher or lower altitude? (iii) If the temperature gradient is less, will the clouds
form at higher or lower altitude? Answer: (i) 1833m, (ii) lower, (iii) higher

1.5 Ideal Gas

The chain of discoveries leading to the understanding of gases spans across several centuries.
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Boyle’s Law

In the seventeenth century, Robert Boyle (1627 - 1691) performed numerous studies on the
properties of gases using the materials of his day (simple glassware and metals). The most
famous fruit of his effort, called Boyle’s Law, states that the pressure of a fixed amount of
gas maintained at constant temperature is inversely proportional to the volume of the gas :

P ∝ 1/V

Charles’s Law

A similar discovery about gases that came out of France in the 1780s, now known as Charles’s
Law, stating that the volume of a fixed amount of gas maintained at constant pressure is
directly proportional to the absolute temperature of the gas :

V ∝ T

Lord William Kelvin

The linear relationship between volume V and temperature T found by Charles has an
interesting feature that he probably didn’t notice. All experimental data was indicating
that any plot that displays V (T ) for any substance at any pressure has an x-intercept at
−273.15◦C. Scottish physicist Kelvin realized the significance of this in 1848, and seized the
opportunity to name a new temperature scale after himself.

The Kelvin temperature scale resembles the centigrade system in every way with one
exception: the bottom of the scale, 0 Kelvin, corresponds to −273.15◦C, also known as
absolute zero. As it turns out, absolute zero is the limit low temperature for any object in
the universe.

Avogadro’s Law

Italian scientist Amedeo Avogadro made his contribution in 1811, hypothesizing correctly
that the volume of a gas at constant temperature and pressure is proportional to the number
of particles N composing the gas :

V ∝ N

Ideal Gas Equation

Compiling the above achievements into a single equation of state, we arrive at the ideal gas
equation:

PV = NKBT (12)

Equation (12) describes the macroscopic behavior of all N particles in a gas at pressure
P and temperature T occupying volume V . The constant KB is the Boltzmann constant,
and has the experimental value 1.381× 10−23 J/K.

Sometimes in physics (and more often in chemistry) the quantity NKB is written instead
as nR, where n is the number of moles of the gas, and R is the ideal gas constant, measured
as 8.314 Jmol−1K−1 (Joules per mole-Kelvin).
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Ideal Gas Model

The ideal gas law is an approximate (but usually accurate) description of a realistic gas. As
an equation of state, (12) holds if the following assumptions can be safely made:

� The volume of the container holding the gas is much greater than the total volume of
the constituent gas particles.

� The separation between gas particles is much greater than the diameter of a given
particle.

� A given particle’s position and direction of travel (not its speed) is completely random.

� Particles do not interact among themselves, with the exception of perfectly elastic
collisions.

� The container walls exchange momentum with the gas particles isotropically and don’t
deform.

� At a given instant, P , V , N , and T are uniform throughout the gas (quasistatic
approximation).

In ‘thermodynamics culture’, the subscript B is typically dropped from the Boltzmann
constant; thus we simply write K for now on.

Problem 20
A rigid box of capacity 0.5m3 is initially open, but is then sealed, trapping air inside at

20◦C at atmospheric pressure. The box is then heated until the pressure inside becomes 3
times that of the atmosphere. Calculate the temperature of the trapped air (in Kelvin) after
heating. How many particles are in the box? Answer: T = 879.45K and N = 1.25× 1025.
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2 Kinematic Gas Theory

Consider a sealed rigid vessel of volume V containing N non-interacting particles, not nec-
essarily ideal gas. In equilibrium, the gas has constant pressure and temperature.

2.1 Intermolecular Collisions

Reduced Mass

Consider any two particles in the gas. The kinetic energy and center-of-mass velocity of this
system, respectively, are

KE =
1

2

(
m1v

2
1 +m2v

2
2

)
vcm =

m1v1 +m2v2

m1 +m2

.

The relative velocity ~v2 − ~v1 between the two particles is called ~vrel, and we write ~v1 and ~v2

in terms of ~vrel as

~v1 = ~vcm −
m2

m1 +m2

~vrel ~v2 = ~vcm +
m1

m1 +m2

~vrel ,

which you are encouraged to check. In terms of vcm and ~vrel, the kinetic energy of the
two-particle system reads

KE =
1

2

[
(m1 +m2) v2

cm +
m1m2

m1 +m2

v2
rel

]
.

We see the relative motion between two particles is equivalent to having one particle of
mass µ, called the reduced mass, written here as

µ =
m1m2

m1 +m2

.

For equal masses, µ reduces to m/2.

Average Relative Velocity

From the relative velocity ~vrel = ~v2−~v1, square both sides and take the average of each term
to arrive at

〈vrel〉 =

√
〈v1〉2 + 〈v2〉2 − 2 〈~v1 · ~v2〉 .

The 〈v1〉 and 〈v2〉 terms are one and the same average 〈v〉, whereas 〈~v1 · ~v2〉 resolves to zero
because all velocity vectors are random and uncorrelated. We discover

〈vrel〉 =
√

2 〈v〉 ,

meaning that the average relative speed between particles is about 1.44 times the average
absolute speed of all particles.
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Mean Free Path

Assuming spherical particles of radius r, the collision cross section σ is, π (2r)2. In the time
∆t between collisions, a particle carves out a Gaussian ‘tube’ of volume σ 〈vrel〉∆t, where
〈vrel〉 is the relative speed between the particle and its target. The collision rate f = ∆N/∆t
must also be proportional to the density of the gas, N/V . We thus write

f =
∆N

∆t
= σ 〈vrel〉

N

V
.

Borrowing from wave mechanics, a frequency f is associated with a wavelength λ by a
velocity term: λf = 〈v〉, and works out to be

λ =
〈v〉
f

=
〈v〉

σ 〈vrel〉 (N/V )
=

1

σ
√

2

V

N
. (13)

2.2 Pressure

We proceed by calculating the pressure in two (not so very different) ways.

Heuristic Pressure Calculation

Inside the vessel, consider a cylindrical Gaussian cylinder of length L, held so the longitudinal
z-axis is perpendicular and adjacent to the inner surface of the vessel with intersection area
A, assumed circular. At any given instant, particles contained in the membrane are moving
in all directions.

Question: How many of the particles ∆N enclosed in the membrane will collide with
the container wall in time interval ∆t? Answer: Statistically half of the enclosed particles
collide with the wall (the other half are heading away). A particle will collide with the wall
in a time interval ∆t if it is heading toward the wall and within a distance L = |vz| ·∆t of
the wall, where vx is the x-component particle’s absolute speed,

√
〈v2〉. The collision rate is

also proportional to the overall density of the gas, N/V . Therefore we may write

∆N = (1/2) (A |vz|∆t) (N/V ) .

On any collision with the container wall, there are two contributions to the momentum
exchange: (i) the wall first absorbs momentum pz to momentarily stop the gas particle,
and (ii) the wall then imparts momentum −pz to the particle, with a total exchange of
∆p = 2mvz per collision.

By the impulse-momentum theorem Fdt = mdv, the definition of pressure gives

P =
F

A
= ∆N

1

A

∆p

∆t
,

and after inserting what we know about ∆N and ∆p, we have

P =
N

V
m 〈vz〉2 .
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Assuming the gas to be isotropic and living in three dimensions, it follows that〈
v2
〉

=
〈
v2
x

〉
+
〈
v2
y

〉
+
〈
v2
z

〉
= 3

〈
v2
z

〉
,

bringing us to the result

P =
1

3

N

V
m
〈
v2
〉
. (14)

Problem 21
In a 60 sec interval, 700 hailstones strike a 0.5 m2 glass window at an angle of 45◦ with

respect to the normal to the window surface. Each hailstone has mass of 4.0 g and speed
8.0m/s. If the collisions are purely elastic, Calculate the average force and pressure on the
window.

Formal Pressure Calculation

Inside the vessel, a given particle has any speed between zero and infinity in any direction.
Introducing f(~v) as a generalized velocity distribution, we write the normalization condition
as

1 =

∫
all ~v

f (~v) ddv ,

where d is the number of dimensions in velocity space.
Performing the prior analysis using more vector language, the same Gaussian cylindrical

membrane of length L inside the vessel touches the inner z-wall with common area element
−dAẑ, where dA = dxdy. For particles with speed v inside the Gaussian cylinder, the length
is represented by the vector ~L = (dt)~v. The number of particles ∆N destined to collide with

the wall is proportional to the macroscopic density N/V times the volume d ~A · ~L = dAdtvz.
Upon collision, the particle reverses the z-component of its momentum, with dpz = 2pz.
Particles with negative pz are heading away from the wall and don’t collide.

Collecting these observations, write the ‘pressure operator’ as

[Pv] = ∆N
dF

dA
= ∆N

dpz/dt

dA
=
N

V
vz2pz ,

and the total pressure is given by

P =

∫
~v

[Pv] f (~v) d3v =

∫ vx=∞

vx=−∞

∫ vy=∞

vy=−∞

∫ vz=∞

vz=0

N

V
vz2pzf (~v) dvxdvydvz .

Note the careful choice of limits on the vz variable: no particles are coming from outside the
container.

Since f (~v) is an even function by symmetry arguments, it does no harm to integrate over
the interval −∞ < vz <∞ and divide by a factor of 2. The integral simplifies to

P =
N

V

∫
~v

(vzpz) f (~v) d3v =
N

V
〈vzpz〉 ,

where the statistical definition of average has been used. Finally, note again from symmetry
that 3 〈vzpz〉 = 〈vp〉, and the pressure takes a form reminiscent of equation (14):

P =
1

3

N

V
〈vp〉
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2.3 Effusion

Effusion takes place as gas particles are allowed to escape through a small aperture in the
enclosing vessel. While the substance is losing particles, energy, and so on - we still work
within the quasistatic approximation to gain insight into the phenomenon.

Effusion Rate

We shall calculate the rate R (measured in s−1) at which particles that strike a small patch
of area A. This is analogous to the pressure calculation, however now we ignore momentum
exchange. Begin with

R =

∫
~v

[Rv] f (~v) d3v [Rv] = A
N

V
vz .

Expressed in 3D spherical coordinates, the rate is

R =

∫ φ=2π

φ=0

∫ θ=π/2

θ=0

∫ v=∞

v=0

A
N

V
v cos θf (~v) v2dv sin θdθdφ ,

where the z-axis is perpendicular to the container wall on the patch A. The gas exists
only above the z = 0 plane, as indicated by the choice of limits on the variable θ. In this
coordinate system, it follows that the normalization condition is∫ ∞

0

f (~v) 4πv2dv = 1 .

Using the statistical definition of average velocity, instantaneous effusion rate is evidently

R =
A

4

N

V
〈v〉 . (15)

Effusion Energy

With the effusion rate known, it’s possible to frame the calculation for the average energy
per particle carried away by effusion. Begin with the pair of relations

〈E〉 =

∫
~v

[Ez] f (~v) d3v [Ez] =
1

R
× AN

V
vz ×

mv2
z

2
.

Use the integral
∫ π/2

0
cos3 θ sin θ dθ = 1/4 to simplify the 〈E〉 expression and deduce

〈E〉 =
m

4

〈v3〉
〈v〉

. (16)
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2.4 Maxwell Speed Distribution

Our recent achievements are generally applicable and have not assumed the ideal gas model.
To gain special traction on the ideal gas, we borrow from a more general study of Boltzmann
factors to write the Maxwell(-Boltzmann) speed distribution:

D (v) dv =
( m

2πKT

)3/2

4πv2e−mv
2/2KT dv (17)

The chance of finding an ideal gas particle with speed within the interval [v1, v2] equals the
area under D (v) curve spanning that interval, or

P (v1 < v < v2) =

∫ v2

v1

D (v) dv .

The curve ‘opens up’ parabolically near speed v = 0, has a finite peak, and dies off ex-
ponentially for very large v. D (v) is already normalized such that P = 1 for the interval
[0,∞].

Note also there is one dependent variable in D (v), but it is indeed a three-dimensional
equation: the 4πv2 term is byproduct of spherical coordinates in ‘velocity space’.

Average Speed

With D (v) on hand, we use Gaussian integrals to calculate the average speed 〈v〉 for the
ideal gas:

vave = 〈v〉 =

∫ ∞
0

v D (v) dv =

√
8KT

πm
(18)

Problem 22
Use Gaussian integrals to prove the following:〈

v2
〉

=
3KT

m

〈
v3
〉

=
4KT 〈v〉

m

〈
v4
〉

=
15K2T 2

m2

Maximum Speed

A single derivative of equation (17) determines the peak vmax:

vmax =

√
2KT

m
(19)

RMS Speed

The root mean square speed is defined as
√
〈v2〉, or

vrms =

√
3KT

m
. (20)

Writing each result side-by-side, we see:

vmax < vave < vrms

√
2KT

m
<

√
8KT

πm
<

√
3KT

m

21



The numerical coefficients are approximately 1.414, 1.596, and 1.732 respectively.

Problem 23
Insert the ideal gas equation (12) into the internal energy equation (21) to recover the

formula for vrms.

Problem 24
The temperature of 7.00mol of helium gas, considered ideal, is increased by 2.00K. What

is the change in internal energy?

Problem 25
Ideal gas molecules in a container have the following measured speed distribution:

Speed (m/s) Percentage
220 10%
250 10%
500 15%
650 30%
900 20%
1300 15%

Calculate the average speed, the rms speed, and the most probable speed. If the system
is ideal gas of molecular mass M = 50 × 10−3 kg/mol, what is the temperature? Answer:
690m/s, 768m/s, 650m/s, 1180K.

Problem 26
The escape speed for a particle to leave the gravitational influence of a massive body is

given by (2GM/R)1/2. The temperature near the top of Jupiter’s multicolored cloud layer is
about 140K. The temperature of Earth’s atmosphere at 20km is 220K. Calculate the RMS
speed of H2 molecules in each of those environments. Give the answer as a fraction of the
escape speed from the respective planet. Answer: 14.7% for Earth and 2.16% for Jupiter,
explaining the rarity of H2 in Earth’s atmosphere. Jupiter’s atmosphere consists of 89%H2

plus other gases.

Problem 27
Ceres is an asteroid with a mass equal to 0.014 times the mass of the Moon, has den-

sity 2400 kg/m3, and surface temperature around 200 K. Can this object support an O2

atmosphere? Answer: vrms/vesc = 72.9% thus O2 will largely leave the asteroid.

2.5 Equipartition of Energy

Internal Energy

Assuming gas particles do not mutually interact at a distance, the quantity m 〈v2〉 /2 repre-
sents the average internal energy per particle in the system. According to equation (14), we
find the general result

〈U〉 =
m 〈v2〉

2
=

3PV

2N
or U =

3

2
PV , (21)
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where for an ideal gas, the internal energy resolves to

U =
3

2
NKT .

Focusing on the factor of 3 momentarily, recall that it arises from symmetry by general-
izing to three dimensions from one. Let us further generalize the idea of ‘dimension’ to mean
‘degree of freedom’. That is, point-like gas particles in a box have three translational degrees
of freedom. When molecules are not point-like, their motions may include rotation and vi-
bration. These modes of motion (unavailable to points or spheres) make new contributions
to the internal energy.

For an ideal gas comprised of non-point-like molecules, we will eventually prove the
internal energy obeys

U =
f

2
NKT , (22)

where f is the number of degrees of freedom available to a given molecule. Note that each
degree of freedom must be quadratic with respect to its dependent variable. Kinetic energy is
mv2/2, and similarly rotational and vibrational energies are Iω2/2 and k∆x2/2, respectively.

Equipartition Theorem

Equation (22) is a corollary of a more general statement called the equipartition theorem,
stating:

The internal energy per molecule gains a factor of KT/2 for each independent
quadratic degree of freedom.

This theorem can be derived in full generality using statistical mechanics (also accounting
for non-quadratic potentials), but is beyond the scope of this study.

Diatomic Molecules

Consider a generalized ideal gas made of N dumbbell-shaped H2 molecules. In accordance
with (22), we count the quadratic degrees of freedom per molecule as follows:

� Three translational modes, so f is at least 3.

� Two degrees of rotational freedom. The diatomic molecule may spin like a baton in two
orthogonal modes, however rotations about the axis joining the atoms do not change
during collision. So far, f = 3 + 2.

� Two contributions from the single vibrational mode (a combination of both kinetic and
potential energies), increasing f again by 2.

We expect therefore that the energy of a diatomic gas is

Udia = (7/2)NKT .
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However, f = 7 is only observed at high temperatures. Experiments performed on H2 gas
have shown that only translational modes occur at temperatures under 200 K. Below this,
the rotational and vibrational energies are ‘frozen out’ and don’t contribute to the internal
energy. By 400K, the two rotational modes are fully active. Vibrational modes finally show
themselves around 4000 K. Evidently, diatomic molecules have f appearing as 3, 5, or 7,
depending on T .

Problem 28
Use the equipartition theorem to find the total rotational energy of the molecules in

4.00mol of diatomic gas at 310K.

2.6 Heat Capacity of Gases and Solids

The heat capacity is the factor that couples energy change to temperature change for a given
substance (not news):

C =
dQ

dT
(23)

It is generally wrong to assume that all added energy contributes to the kinetic energy
of the gas, as some effort is ‘wasted’ on volume expansion of the system. We therefore frame
heat capacity calculations somewhere between two extremes: constant volume and constant
pressure, where C gains a respective V - or a P -subscript.

Ideal Gas at Constant Volume

Consider a sample of ideal gas inside a sealed, infinitely rigid container of fixed volume V .
It follows that all added heat contributes to the kinetic energy, as only the pressure and
temperature are variable. Using equations (22) and (23), we find

CV =
f

2
NK . (24)

For one mole of monatomic gas with point-like constituents with f = 3 (such as helium or
argon), the prediction for CV evaluates to

CVmon =
3

2
R = 12.47

J

mol ·K
,

in very good agreement with experiments. Due to complications that are later solved by
quantum mechanics, equation (24) is only accurate for some gases.

Ideal Gas at Constant Pressure

For systems allowed to change volume while maintained at constant pressure, the added
energy ∆Q splits according to

∆Q = ∆Uint + P∆V ,
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where the increase in translational, rotational, and vibrational motions of the molecules is
all contained in ∆Uint, and P∆V is the energy needed to shove the environment out of the
way as the gas expands. Taking a T -derivative of the above yields

CP = CV +NK , (25)

where P∆V/∆T has been replaced using the ideal gas equation. Further insight into the
ideal gas is gained from the ratio CP/CV , which comes out to

γ =
CP
CV

= 1 +
2

f
. (26)

Problem 29
Methane (CH4) is a 3-dimensional molecule - a tetrahedron with carbon in the center.

Determine the best approximations for CV and γ. Answer: 24.9 Jmol−1K−1 and 1.33

Elemental Solids

The equipartition theorem allows easy calculation of the heat capacity of many solids. For
our purposes, a solid is regarded as a semi-frozen ideal gas, which we take as a periodic
arrangement of molecules with no contributions to thermal energy from translational or
rotational motions. The structure is held together by quadratic potentials, thus such solids
have six degrees of freedom per molecule: three components of kinetic energy due to vibration
and three corresponding quadratic potentials.

According to (24), one mole of ‘frozen gas’ with f = 6 has

CVsolids =
6

2
R = 24.9

J

mol ·K
,

which is obeyed by all elemental solids at high enough temperature, known as the rule of
Dulong and Petit.

2.7 The van der Waals Model

The van der Waals model is an extension of the ideal gas law that accounts for the par-
ticle size and the interactions between particles. To write a generalized ideal gas law, two
experimental constants enter the mix - blandly named a and b.

The starting point is the ideal gas model, with equation of state PV = NKT . Supposing
each of N particles in a sample (gas or liquid) has volume b, we make the replacement

V → V −Nb ,

where the variable V is understood as the volume available for the sample to occupy. The
particles themselves do not contribute to V .

Next we assume particles interact through the attractive Leonnard Jones potential. With-
out increasing temperature, particle interactions lead to an increase in number density N/V
and pressure P , as evident by considering a particle on the surface layer of the sample. On
the surface layer, the net force on a particle is inward, proportional in strength to N/V . The
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total force inward is proportional to the surface area of V , contributing another factor N/V .
It follows that the correction to pressure is

P → P + a (N/V )2 ,

where a is a constant of dimension kg m5 s−2.
The van der Waals equation is(

P + a
N2

V 2

)
(V −Nb) = NKT , (27)

and is extremely accurate for many types of gases and fluids. Water vapor has a =
.5507 J m3 mol−2 and b = 3.04× 10−5 m3/mol. In the same units, N2 gas has a = .1361 and
b = 3.85× 10−5, and H2 gas has a = .0247 and b = 2.65× 10−5.

Additional Problems

Problem 30
Show that the mean free path for ideal gas molecules is

λ =
1

σ
√

2

KT

P
.

Problem 31
Show that the average effusion energy per ideal gas particle is 〈E〉 = KT . Explain why

the total energy carried away per effused particle is W = 2KT . Compare W to 3NKT/2 to
explain why the temperature of the vessel holding an effusing gas decreases so rapidly.
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3 First Law of Thermodynamics

The first law of thermodynamics is a statement of energy conservation (in quasistatic sys-
tems). If U is the internal energy of a substance at pressure P and volume V , thermal energy
dQ added (or removed) varies by

dU = dQ− PdV , (28)

known as the first law of thermodynamics. To make sense of the sign of the PdV term,
imagine adding heat +dQ to a gas sample using a candle. If the experiment is prepared such
that the temperature does not change, making dU = 0, then the gas necessarily expands its
volume. The PdV term must appear negative to balance out dQ.

3.1 Thermodynamic Processes

The first las of thermodynamics exhibits a few special cases.

Isothermal Process

An isothermal process is one that leaves the system’s temperature unchanged, which gen-
erally means there is no change in the system’s internal energy. The first law with dU = 0
reads 0 = dQ− PdV .

Isochoric Process

A process that leaves the system’s volume unchanged (easier said than done) is classified
as isochoric. The dV term in the first law is zero by construction, so all heat added to the
system contributes to internal energy via dU = dQ− 0.

Isobaric Process

A process that leaves the system’s pressure unchanged (easily said and easily done) is classi-
fied as isobaric. For example, the macroscopic work done on a gas is not an integral

∫
PdV ,

but simply the product P∆V .

Adiabatic Process

Adiabatic processes are those that have zero net heat transfer into or out of the system. The
first law of thermodynamics quantifies this by dU = 0 − PdV , where any internal energy
change dU is balanced out by response in pressure and volume.

Reversible and Irreversible Processes

Many processes in classical mechanics (oscillations, orbits) are reversible, where the system
may backtrack along its path in configuration space (t → −t) without violating any laws
of physics or probabilistic expectations. Only some thermodynamic processes are reversible,
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and only if conditions are right, with one example being isothermal phase change between
water and ice at 0◦C in a sealed container.

Most thermodynamic phenomena are naturally irreversible, such as when a bomb ex-
plodes. To restore such a system to its original state, an external re-organizing force would
have to intervene.

3.2 Ideal Gas Processes

We now examine the consequences of thermodynamic processes for a controlled sample of
ideal gas, always obeying the ideal gas equation (12).

Isothermal

For isothermal expansion in ideal gas, all added heat contributes to volume expansion ac-
cording to dQ = PdV . The total energy entering the gas equals the total work done on the
environment, given by the integral

W =

∫
PdV =

∫ Vf

Vi

NKT

V
dV = NKT ln

(
Vf
Vi

)
. (29)

Isochoric

An isochoric process permits no volume change, which we studied when writing the heat
capacity of ideal gas at constant volume. The first law tells us dQ = dU , where meanwhile
dQ/dT = CV = fNK/2. It follows that the work done during an isochoric process is

W = CV ∆T =
f

2
NK∆T . (30)

Isobaric

For an ideal gas, we found CP = CV +NK, or

W = CP∆T =

(
f

2
+ 1

)
NK∆T . (31)

Adiabatic

An adiabatic process usually involves a rapid expansion or compression of a gas that is ‘too
fast’ for external heat transfer, making dQ = 0 = dQ−PdV . Inserting the ideal gas internal
energy relation (22) into the first law, we write

f

2
dT = −T dV

V
, (32)

implying (after a few moves in calculus)

PV γ = constant TV γ−1 = konstant . (33)
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The work entering an ideal gas during an adiabatic process is

W =

∫
P dV = NK

∫
T

V
dV = −NKf

2
(Tf − Ti) = −PV

T

f

2
∆T . (34)

Note the term (PV/T ) may be evaluated at any point during the adiabatic process, so long
as the combination of P , V , and T are known simultaneously. Using relation (26), we may
alternatively write

W =
1

1− γ
(VfPf − ViPi) . (35)

The variable γ is always > 1 by construction, thus (35) has a buried negative sign. If the
overall sign of W is positive, the work is done by the gas. If negative, the work is done on
the gas.

Free Expansion of Ideal Gas

Consider a sealed, perfectly-insulating vessel with ideal gas contained within half of its total
volume. The other half of the vessel is vacuum, and a thin membrane separates the two
compartments. The membrane is then punctured and the gas is allowed to freely expand into
the vacuum until the two compartments are in equilibrium. (The system is not quasistatic
during expansion.)

Such free expansion is an adiabatic process, as no heat enters or leaves the vessel through
the insulated walls. The system does zero work, as no force is required to expand into vacuum.
The temperature change is zero according to equation (34), thus the internal energy change
is also zero. In summary, we see

Q = 0 W = 0 ∆T = 0 ∆U = 0 ,

clearly showing the energy state of the gas is unchanged. Of course, the gas will never
accidentally find itself crammed into one side of the box again; work would be required to
compress the system to its original state. Free expansion of ideal gas is therefore irreversible.

Problem 32
Take a P -derivative of equation (33) to derive

dT

dP
=

2

f + 2

T

P
. (36)

Problem 33
Consider an ideal gas of N particles with initial temperature Ti and initial volume Vi

that is compressed to final volume Vf . Which, process requires more energy compress the
gas, isothermal or adiabatic?

Problem 34
At height z in the Earth’s atmosphere, (i) show that a horizontal thin layer of air with

(massless) volume density ρ(z) and pressure P (z) in obeys the equation dP/dz = −mgρ(z)
at mechanical equilibrium, where m is the average mass of molecules in the air. (ii) Consider
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a bubble of gas that moves upward fast by expanding or shrinking adiabatically. Show that
the temperature gradient experienced by the bubble is given by

dT

dz
= −mgρ (z)

2

f + 2

T

P
.

(iii) At low altitudes above sea level, the pressure decreases by about 1.2kPa for every 100m.
For higher altitudes within the troposphere, show that P (z) = P0 e

−mgz/KT0 , where P0 and
T0 are measured at sea level (P0 ≈ 101325 Pa, T0 ≈ 288.15K).

Problem 35
A scuba diver is swimming a depth of 25 m, where the pressure is 3.5 atm. The air she

exhales forms bubbles 8.0mm in radius, which rise to the surface where the pressure is 1atm.
Assume the bubbles remain at the uniform 300 K temperature of the surrounding water.
How much work is done by each bubble as it expands to the rising surface? Answer: 0.953J

Problem 36
When a quantity of monatomic ideal gas expands at a constant pressure of 4.00×104Pa,

the volume of the gas increases from 2.00 × 10−3 m3 to 8.00 × 10−3 m3. (i) What is the
change in internal energy of the gas? (ii) Does heat flow into out of the gas? (iii) What is
the magnitude of the heat flow? Answer: 360 J , 600 J into the gas.

3.3 Thermodynamic Cycles

A thermodynamic cycle is a chain of processes that bring an open system’s state variables
to a previous configuration. It follows that the net internal energy change ∆U is zero for a
complete thermodynamic cycle, meaning that any heat added to a system must be removed
somewhere in the same cycle.

During any infinitesimal volume change, work done is equal to PdV . Integrated over a
thermodynamic cycle, the total work done equals the area enclosed by the loop on the PV
diagram. If the loop traces out in a clockwise direction, the work output of the system is
positive. When going counter-clockwise, the system absorbs work over a complete cycle.

Heat Engine

A heat engine is a device that utilizes a thermodynamic cycle in repetition to perform ‘useful’
work. The efficiency of a heat engine is defined as the ratio of output work over input heat
energy. Using the first law we write

e =
W

QH

=
Q−∆U

QH

=
Q

QH

. (37)

Through a complete thermodynamic cycle, the net heat flow Q equals QH + QC . The
efficiency is therefore

e =
QH +QC

QH

= 1−
∣∣∣∣QC

QH

∣∣∣∣ ,
using the fact that QC is negative for a typical heat engine.
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Problem 37
Two moles of an ideal diatomic gas are taken around the cycle abc as shown in Figure 4.

Data: Pa = 1.00 × 105 Pa, Pc = 1.40 × 105 Pa, Va = 0.049 m3. If the path from b to c is
isothermal, calculate the work done by the gas. Answer: −2300 J

Problem 38
Two moles of an ideal diatomic gas are taken around the cycle abc as shown in Figure 4.

Data: Pa = 1.00 × 105 Pa, Pc = 1.40 × 105 Pa, Va = 0.100 m3. If the path from b to c is
adiabatic, calculate the volume of the gas at point c. Answer: 0.13m3

Figure 4: A thermodynamic cycle’s PV diagram.

Problem 39
A cylinder with a piston contains 0.150 mol of nitrogen at 1.80 × 105 Pa at 300 K.

The nitrogen may be treated as an ideal diatomic gas whose molecules can rotate, but
not vibrate. The gas is first compressed isobarically to half its original volume. It then
expands adiabatically back to its original volume, and is finally heated isochorically to its
original pressure. (i) Do the arrows on the corresponding PV diagram point clockwise or
counterclockwise? Draw it. (ii) Compute the temperatures at the beginning and end of the
adiabatic expansion. (iii) Compute the minimum pressure. (iv) Compute the work done by
nitrogen during one thermodynamic cycle. Answer: (i) counterclockwise, (ii) 150K, 114K,
(iii) 6.82× 104 Pa, (iv) −75 J

Otto Cycle

Most small automobiles and nearly all motorized recreational vehicles (excluding diesel and
hybrid drives) operate on the gasoline-burning Otto cycle. Inside Otto engines, a fuel-air
mixture (approximately ideal gas) is compressed inside a piston and then ignited with a
spark, resulting in rapid volume expansion, ‘blasting’ the piston outward. The spent fuel-
air mixture is ejected from the piston and the process repeats. Engines in general have a
different number of steps required to complete their thermodynamic cycles, with popular
conventions being ‘two-stroke’ and ‘four-stroke’.
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The Otto cycle consists of four thermodynamic processes illustrated in Figure 5. We
begin analyzing an Otto engine piston as it is fully expanded at volume Vmax and filled with
a fuel-air mixture (approximately ideal gas), ready to ignite. In this ‘cool’ state, the piston
has temperature is T0 pressure P0.

1. Compression stroke (adiabatic): An external force (work left over from a previous
cycle) rapidly compresses the piston to volume Vmin. The pressure of the fuel-air
mixture thereby increases to P1, and the temperature to T1. Because no significant
heat is added to the cylinder during the compression stroke, it is an adiabatic process.

2. Fuel ignition (isochoric): With the piston fully compressed, a spark ignites the fuel-air
mixture, quickly releasing a great deal of kinetic energy QH into the gas. The pressure
jumps quickly to P2, and likewise the temperature to T2. The volume remains constant
at Vmin. The energy added follows the relation:

QH = nCV (T2 − T1) ,

where n is the number of moles of fuel-air mixture in the piston.

3. Power stroke (adiabatic): The cylinder’s volume expands to Vmax following ignition,
and whatever device is attached to the moving part of the piston receives organized
work W (driving the car forward, for instance). The pressure drops to P+ during this
process, but not quite down to P0. The spent fuel-air mixture is still ‘hot’ at this point,
having temperature T+, slightly greater than T0.

4. Exhaust stroke (isochoric): The cylinder expels the spent fuel-air mixture of energy
QH to the environment and takes in a new fuel-air packet, returning the pressure to
P0. The piston effectively remains at Vmax (after intake of new fuel), and is ready again
for a compression stroke. The (negative) energy added follows the relation

QC = nCV (T0 − T+) .

The efficiency of the Otto engine is straightforward to calculate by equation (37), giving

e = 1 +
QC

QH

= 1 +
T0 − T+

T2 − T1

,

but we can do better. The Otto cycle’s two adiabatic transitions obey identities (33), allowing
all T -variables to cancel. Meanwhile, define the piston compression ratio r = Vmax/Vmin so
the formula for e boils down to

e = 1− 1

rγ−1
. (38)

Problem 40
How much of QC may be used to bolster to the power stroke of an engine? Answer:

None, not even theoretically.

Problem 41
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Figure 5: The Otto cycle.

A gasoline engine takes in 8.00 × 103 J of heat and delivers 1.60 × 103 J of work per
cycle. The heat is obtained from gasoline with a heat combusion of 4.6× 104 J/g. (i) What
is thermal efficiency? (ii) How much heat is discarded in each cycle? (iii) What mass of fuel
is burned in each cycle? (iv) If the engine goes through 70.0 cycles per second, what is the
power output in watts? (v) What is the power in horsepower? Answer: .212, 6.70 × 103 J ,
1.85× 10−4 kg, 1.62× 105 W , 217 hp.

Problem 42
A Toyota Celica GT has a four cylinder Otto-cycle engine with a compression ratio of

r = 9.50. The diameter of each cylinder, called the bore of the engine is 87.1 mm. The
distance that the piston moves during the compression, called the stroke of the engine is
90.9 mm. The initial (and minimal) pressure of the air - fuel mixture (when the volume is
maximal) is 8.50× 104 Pa, and the initial temperature is 300K (same as the environment).
Assume that 200 J of heat is added to each cylinder in each cycle by burning the fuel
(gasoline), which has CV = 20.5 Jmol−1K−1 and γ = 1.40. (i) Calculate the work done
in each cycle. (ii) Calculate the thermal energy released when the gas is cooled to the
temperature of the outside air. (iii) Calculate the minimal volume of the air - fuel mixture.
(iv) Calculate P , V , and T just before ignition. Answer: 119 J , 81.3 J , 6.05 × 10−4m3,
1.99× 106 Pa, 6.37× 10−5m3, 738K.

Diesel Cycle

Some automobiles and nearly all road shipping vehicles (excluding hybrid drives) operate
on the diesel cycle. Like the Otto cycle, the diesel cycle entails four thermodynamic pro-
cesses. Inside a diesel engine piston however, fuel-air mixture (approximated as ideal gas) is
compressed until it self-ignites without the help of a spark, causing the power stroke. The
ignition takes place in a constant-pressure condition, and the volume jumps almost instantly,
much unlike the Otto cycle’s ignition scenario.

Problem 43
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Figure 6 is the PV diagram for the diesel cycle. The compression stroke, the instant of
fuel ignition, power stroke, and exhaust stroke are labeled 1, 2, 3, 4, respectively. Assuming
steps 1 and 3 are adiabatic, show that the efficiency of the diesel engine is given by

e = 1− 1

γ

(c/b)−γ − (c/a)−γ

(c/b)−1 − (c/a)−1 ,

where volumes a, b, and c are indicated on the horizontal axis and γ is the ratio CP/CV .

Figure 6: The Diesel cycle.

Refrigerators

A refrigerator operates as a heat engine in reverse: work is required to displace heat from the
cold reservoir to the hot reservoir. The working substance that circulates inside a refrigerator
is a fixed amount of water, freon, or ammonia (no chemical exhaust). The operation is
outlined as follows:

1. Starting in the gaseous phase, the working substance is forced through a compressor,
emerging with reduced volume and increased temperature and pressure.

2. The substance goes through a long heat-conducting tube called the condenser, which is
in thermal contact with the environment (hence the refrigerator needs to ventilate). In
the condenser, the working substance loses heat QH < 0 and changes phase to liquid.

3. The working substance then encounters a very small ‘bottleneck’ called the throttle that
hinders most of the circulation. On the input side of the throttle, the temperature and
pressure of the working substance are relatively high. The output side is at much lower
temperature and pressure.

4. As a cold liquid, the working substance passes through the refrigerator body, warming
again to the gaseous phase, absorbing energy QC > 0.
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Like the heat engine, the refrigerator obeys the first law

QH +QC = Qin = ∆U +W ,

where ∆U = 0 and W < 0. The merit of a refrigerator is not its efficiency, but instead the
coefficient of performance, defined as the ratio of heat removed from the refrigerator body
over the work required to do so. That is,

K =
|QC |
|W |

=
|QC |

|QH | − |QC |
. (39)

Problem 44
An ideal air conditioner takes heat from a room at 68.5◦F and transfers it to the envi-

ronment, which is at 93.1◦F . For each joule of electrical energy required to operate the air
conditioner, how many joules of thermal energy are removed from the room?

Problem 45
Liquid refrigerant at a pressure of 1.34×105Pa leaves the expansion valve of a refrigerator

at −22◦C. It then flows through the vaporization coils inside the refrigerator and leaves as
vapor at the same pressure at a temperature of −18◦C, the same temperature as the inside
of the refrigerator. The boiling point of the refrigerant at this pressure is −18◦C, the heat of
vaporization is 1.60× 105 J/kg, and the specific heat capacity of the vapor is 485Jkg−1K−1.
The coefficient of performance of the refrigerator is K = 2.52. If 8.00 kg of refrigerant flows
through the refrigerator each hour, find the electric power that must be supplied to the
refrigerator. Answer: 123W

Problem 46
A heat pump designed for southern climates extracts heat from the outside air, and

delivers air at 20◦C to the inside of the house. Compute the coefficient of performance of the
heat pump (i) in the south, where the outside temperature is 5◦C; (ii) in the north, where
the outside temperature is −10◦C. (iii) Two identical houses, one in the north and one in
the south, are heated by this pump, and maintain temperatures of 20◦C. Considering heat
loss though the walls, windows, and roof, what is the ratio of the electrical power required
to heat the two houses? Answer: (i) 18.5, (ii) 8.77, (iii) 4.0

Carnot Cycle

Sadi Carnot (1796-1832) designed an engine with maximal efficiency by using only reversible
isothermal and reversible adiabatic processes. All heat transfer during the Carnot cycle
occurs on isotherms; there is no heat transfer across finite temperature differences. No
machine using the Carnot cycle would be ‘fast’ enough for industrial standards, but Carnot
engines are still the most efficient type.

The gaseous working substance within a Carnot engine piston never leaves the piston,
and undergoes no chemical change. Carnot engines rely on a literal ‘hot’ reservoir from
which to draw energy, and a similar ‘cold’ reservoir to deposit energy. These two reservoirs
may in practice be as simple as hot and cold containers of water. The four stages of the
Carnot cycle go as follows:
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1. Slow isothermal: A piston in the ‘compressed’ state enclosing a gas of volume Vmin
is attached to a reservoir at high temperature TH and absorbs heat QH isothermally.
The volume swells to V1, and the reservoir is removed. Recall from equation (29) that

QH = NKTH ln

(
V1

Vmin

)
.

2. Fast adiabatic: The gas expands adiabatically, lowering its temperature from TH until
it reaches TC . The volume swells once more to reach a maximum Vmax.

3. Slow isothermal: The system moves to contact the cold reservoir of temperature TC ,
where isothermal compression takes the volume to V2 (with V2 < V1). The discarded
energy is

QC = NKTC ln

(
V2

Vmax

)
= −NKTC ln

(
Vmax
V2

)
.

4. Fast adiabatic: The system moves away from the cold reservoir and the gas is com-
pressed adiabatically, raising its temperature from TC until it reaches TH . The volume
returns to Vmin.

The efficiency of the Carnot engine, according to definition (37), is

e =
QH +QC

QH

= 1− TC
TH

ln (Vmax/V2)

ln (V1/Vmin)
,

where the identity (33) for adiabatic processes tells us Vmax/V2 = V1/Vmin, and thus

QC

QH

= −TC
TH

. (40)

Astonishingly, the efficiency depends on neither the construction of an engine nor the prop-
erties of the working substance, only the reservoir temperatures:

e = 1− TC
TH

(41)

Problem 47
Consider a Carnot engine operating between temperatures TH and TC , where TC is above

the ambient temperature T0. A second engine operates between the temperatures TC and
T0. Show that the overall efficiency of this system is equal to the efficiency of a single Carnot
engine operating between TH and T0.

Problem 48
A Carnot engine operating between two thermal reservoirs has an efficiency of e. When it

is run in reverse, it becomes a Carnot refrigerator. Calculate the coefficient of performance.
Answer: (1− e) /e
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Reversible Loops

By riding isothermal and adiabatic curves, Carnot successfully identified a closed loop in the
PV diagram that is entirely reversible. It should follow that we may consider any reversible
path as a stack of Carnot cycles. To capture this idea, write equation (40) in the form

QC

TC
+
QH

TH
= 0

where a path made of many isothermal and adiabatic segments must obey∑ Q

T
= 0 .

Heat transfer on shared isotherms cancel, and the sum refers only to the boundary of the
PV -curve. Taking a finer resolution, the sum generalizes to a path integral∮

dQ

T
= 0 . (42)

Evidently, there is something that links quantity dQ/T to the reversibility of thermodynamic
processes.
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4 Entropy and the Second Law of Thermodynamics

The entropy of system is a quantity representing its ‘reversibility’. First surfacing in equation
(42), let us define the entropy as

S =

∫
dQ

T
. (43)

4.1 Entropy Calculations

For reversible processes, the entropy can be found by direct integration of (43). For two
states linked by an irreversible process, it suffices to calculate the entropy over some other
path (in the PV diagram) consisting of reversible process that would connect those two
states.

Problem 49
When 1.00kg of water at 0◦C is frozen to make ice, what is the entropy change? Answer:

−1200 J/K

Problem 50
An object of mass m1, specific heat c1, and temperature T1 is placed in contact with a

second object mass m2, specific heat c2, and temperature T2 > T1. As a result, object 1
heats to temperature T and object 2 cools to T ′. (i) Show that energy conservation requires
that m1c1(T − T1) = m2c2(T2 − T ′). (ii) Show that the entropy increase of the system is

∆S = m1c1 ln (T/T1) +m2c2 ln (T ′/T2) .

Isothermal Expansion of Ideal Gas

For isothermal expansion of ideal gas, we wrote the energy entering the system as equation
(29), implying ∆Q = NKT ln (Vf/Vi). By the definition of entropy, it follows that

S = NK ln

(
Vf
Vi

)
. (44)

Isochoric Expansion of Ideal Gas

For isochoric expansion of ideal gas, we wrote the energy entering the system as equation
(30), implying dQ/dT = CV . By the definition of entropy, it follows that

S =

∫
dQ

dT

dT

T
= CV ln

(
Tf
Ti

)
. (45)

Isobaric Expansion of Ideal Gas

For isobaric expansion of ideal gas, we wrote the energy entering the system as equation
(31), implying dQ/dT = CP . By the definition of entropy, it follows that

S =

∫
dQ

dT

dT

T
= CP ln

(
Tf
Ti

)
. (46)
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Adiabatic Process in Ideal Gas

Starting with the definition of entropy, an adiabatic process in ideal gas obeys

S =

∫
dQ

T
=

∫
dU + PdV

T
= NK

∫ (
f

2

dT

T
+
dV

V

)
= 0 ,

which evaluates to zero because the terms inside the integral are equal and opposite by
equation (32).

Free Expansion of Ideal Gas

In discussing the free expansion of ideal gas, we found that no energy changes whatsoever,
i.e., ∆U = ∆Q = W = 0. However, we also found that ideal gas expansion is irreversible,
so the entropy shouldn’t be zero.

To calculate the entropy of free expansion of ideal gas, imagine the effort required to
isothermally compress the gas to its original volume. This is precisely the same condition
that gave us equation (44), thus the entropy is

S = NK ln

(
Vf
Vi

)
.

A change in entropy implies a change in the ‘quality’ of the energy in a system. This
means ideal gas freely-expanding through a hole, as opposed to escaping into a vacuum,
could instead be used to do something that keeps energy ‘organized’, such as to wind up a
spring connected to a turbine.

Entropy of Light

A ‘gas’ of photons, also referred to as blackbody radiation, is subject to entropy. Recall that
Stefan’s law (11) states that the rate of electromagnetic energy transfer is given by

dQ

dt
= Aσ

(
T 4
obj − T 4

env

)
,

where e = 1 and for simplicity we’ll take Tenv to be constant. The total energy in a volume
V of photon gas is

Q =
σ

c

(
T 4
obj − T 4

env

) ∫
d3x =

V σ

c

(
T 4
obj − T 4

env

)
,

and it follows that dQ = (V σ/c)4T 3
objdT . It follows that the entropy S as a function of Tobj

is

S =

∫
dQ

T
=

4V σ

c

∫
T 2dT =

4V σ

3c

(
T 3
obj − T 3

0

)
.

If we approximate Tenv = 0 and T0 = 0, the entropy becomes

S =
4

3

Q

T
.
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4.2 Second Law of Thermodynamics

The second law of thermodynamics is a restriction on the entropy of closed systems. The
following statements more-or-less equally capture the second law:

Entropy statement

The entropy of a closed system can never decrease. The entropy of an open system can be
forced to decrease, but the net entropy of the system + surroundings necessarily increases.

Engine statement

It is impossible for any system to undergo a cyclic process in which it absorbs heat at a single
temperature and converts the heat completely into mechanical work.

Refrigerator statement

It is impossible for any process to have as its sole result the transfer of heat from a cooler to
a hotter body.

4.3 Systems in Contact

Systems placed in contact will exchange energy, temperature, particles, and so on - depend-
ing on the intimacy of contact. Such conjoined systems always tend toward some kind of
equilibrium state, and we take advantage of this to re-understand the notion temperature,
pressure, etc.

Thermal Equilibrium

Consider two thermodynamic systems A and B that are in separate, rigid, sealed containers.
With TA > TB initially, the systems are then placed in contact to allow internal energy
exchange by conduction or radiation, with the total U = UA + UB remaining constant.

A heat packet dQ = −dUA = dUB exchanged between systems changes the entropy of
both:

dSA = −|dQ|
TA

dSB =
|dQ|
TB

To accommodate the temperature terms, the entropy loss of the hotter system A is smaller
in magnitude than the entropy gain of the cooler system B. The sum dSA+dSB is necessarily
positive, thus the energy exchange in irreversible.

Thermal equilibrium is achieved when the entropy stops increasing, corresponding to
TA = TB = T , or

1

T
=
dSA
dUA

=
dSB
dUB

=
1

T
.

We seize this opportunity to actually define the notion of temperature as an entropy maxi-
mum with respect to internal energy (for fixed V and N):
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T =

(
∂S

∂U

)−1

V,N

(47)

Mechanical Equilibrium

Supposing the partition between systems A and B were made flexible but not porous, the
systems tend toward mechanical equilibrium, where maximum entropy corresponds to equal
pressures. Supposing TA = TB with VA > VB initially, the heat packet exchanged between
systems is purely mechanical as dQ = −PAdVA = PBdVB.

Using the same arguments as above, we may replace instances of dQ with PdV terms to
get:

P

T
=
dSA
dVA

=
dSB
dVB

=
P

T

Alas, we’re in position to relate pressure to entropy as we did the temperature. The equation

P = T

(
∂S

∂V

)
U,N

(48)

describes systems with fixed internal energy and fixed number of particles. Note that (48)
is merely a tool for calculation, not a refined definition of pressure.

Diffusive Equilibrium

We now let systems A and B exchange both energy and particles through a non-flexing
porous membrane. Placed in contact, the systems achieve diffusive equilibrium in addition
to thermal equilibrium.

The heat dQ exchanged between systems is proportional to the number of particles dN
that move across the membrane. The proportionality factor between energy and particles is
called the chemical potential, denoted by the Greek letter µ (‘myu’) as follows:

dQ = µdN

implying
−µ
T

=
dSA
dNA

=
dSB
dNB

=
−µ
T

.

We thus define the chemical potential in terms of the entropy:

µ = −T
(
∂S

∂N

)
U,V

(49)

The minus sign in equation (49) reminds us that particles flow from regions of higher µ to
lower. When there are multiple particle species present in a system, µ adopts a subscript i
for each species, and the quantity µdN becomes

∑
µidNi.
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4.4 First Thermodynamic Identity

Recall the first law of thermodynamics as stated in equation (28), namely

dU = dQ− PdV .

Our study of thermal and diffusive equilibrium has shown dQ coming in two flavors as
dQ = TdS and dQ = µdN , respectively. It follows that the first law has a special form

dU = TdS − PdV + µdN , (50)

which we’ll call the first thermodynamic identity.

Entropy of the Universe

The whole universe consists of any given system plus its total environment such that Suni =
Ssys + Senv. It follows that equation (50) lets us write

dSuni = dSsys +

[
1

T
(dU + PdV − µdN)

]
env

. (51)
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5 Thermodynamic Potentials

The term ‘energy’ in thermodynamics can mean any number of things. To make matters
worse for the energy identity crisis, following are a few more ways to get confused...

5.1 Enthalpy

In order to create a system of volume V that has internal energy U in an environment at
pressure P , the total energy required is called the enthalpy, defined as

H = U + PV . (52)

Enthalpy is the internal energy of a system plus the work required to shove the environment
out of the way in order to make room the system. Conversely, H is the total energy recovered
if you could annihilate the system.

The differential enthalpy is dH = dU + PdV + V dP , where substituting the first ther-
modynamic identity (50) gives a new identity

dH = TdS + V dP + µdN , (53)

indicating that a system with fixed S, P , and N will minimize the enthalpy. The ‘entropy
of the universe’ equation (51) accordingly boils down to:

dSuni = − 1

T
(dH)S,P,N

Problem 51
Show that the enthalpy of an ideal gas is H = 5NKT/2.

5.2 Helmholtz Free Energy

A system of N particles created in isothermal conditions at constant volume shall borrow
energy from the environment (easing the job of the assembler) equal to TS, where T is the
temperature and S is the entropy of the system. The net work required is therefore

A = U − TS , (54)

the Helmholtz Free Energy, equivalent to the energy recovered if the system is destroyed in
the same constant-temperature and constant-volume conditions.

The differential Helmholtz free energy is dA = dU −TdS−SdT , where substituting (50)
gives another identity

dA = −SdT − PdV + µdN . (55)

In accordance with (51), we find that a system with fixed V and N in an environment with
constant T will minimize the Helmholtz free energy:

dSuni = − 1

T
(dA)T,V,N
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5.3 Gibbs Free Energy

In conditions where both temperature and pressure are constant, creating a system requires
the Gibbs free energy

G = U + PV − TS , (56)

which means you supply the internal energy U and the work PV to shove the environment
out of the way. The environment supplies TS for you, hence the minus sign. In constant T
and P conditions, G is the energy recovered if the system is annihilated.

Taking the differential Gibbs free energy and substituting (50) gives a corresponding
identity:

dG = −SdT + V dP + µdN (57)

At constant temperature and pressure, the dT - and dP -terms are zero, leaving us with
dG = µdN , which integrates to

G = µN . (58)

You might wish that a similar relation connects A to N by starting with µ = (∂A/∂N)T,V .
However, adding particles while maintaining fixed T and V forces the density to slowly
increase, which directly changes µ.

A system with fixed T , P , and N will do whatever it can to minimize the Gibbs free
energy, as reinforced by equation (51) applied to this scenario:

dSuni = − 1

T
(dG)P,T,N .

Recall if T is allowed to vary, the system instead minimizes the enthalpy instead.

5.4 Grand Free Energy

One more grouping of terms useful for describing irreversible processes in open systems is
the grand free energy, defined as

Φ = U − TS − µN . (59)

The quantity (59) is the energy recovered by reducing the system to zero size: putting all
particles and energy back into the reservoir. Using equation (58), it’s straightforwardly
shown that

Φ = −PV . (60)

Suppose a system of fixed V is allowed to exchange both U and N with its environ-
ment. Assume the chemical potential µ of the system is already in equilibrium with the
environment, as is the temperature T . The differential version of Φ reads

dΦ = dU − TdS − µdN ,

which is the right hand side of equation (51). It immediately follows that

dSuni = − 1

T
(dΦ)T,V,µ ,

meaning a system with fixed V in thermal and diffusive equilibrium with the environment
will minimize the grand free energy.
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5.5 Internal Energy

A handy consistency check on the internal energy U can be derived in terms of TS, PV and
µN , avoiding terms like H, A, G, and Φ. Start with the first thermodynamic identity

dU = TdS − PdV + µdN ,

and ask: which potential could be added to dU in order to make the right side a total
derivative? Denoting such a term Ξ, we write

d (U + Ξ) = d (TS)− d (PV ) + d (µN) ,

where clearly,
dΞ = SdT − V dP + dµN .

Notice though that this is (minus) the differential version of Φ + PV , which is identically
zero, meaning that Ξ is exactly zero. Integrating the above gives

U = TS − PV + µN ,

the familiar formula for the Gibbs free energy.

5.6 Gibbs-Duhem Equation

The arrangement of thermodynamic state variables that gives zero on either side of the
equation gives a special result relating differential chemical potentials. Begin with the Grand
free energy as given by (59), and add the PV term onto the left to get zero on the right:

Φ + PV = U − TS −
∑
i

µiNi + PV = 0

Note this discussion applies to a multi-species system, as indicated by the sum over
particles with their corresponding chemical potentials. Taking the differential version, we
find

d (Φ + PV ) = −SdT + V dP −
∑
i

dµiNi = 0 ,

where for constant-temperature and constant-pressure conditions, we arrive at the Gibbs-
Duhem equation: ∑

i

dµiNi = 0 (61)

5.7 Legendre Transform

We have found that the energy state of a system is beholden to its (sometimes controlled)
relationship with the environment. For example, at fixed temperature, volume, and number
of particles, the best representation is the Helmholtz free energy A (T, V,N). Here we address
why to ever bother with different potentials - that is, why not simply write U = U (T, V,N)
and deal with internal energy all the time?
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Staying in the Helmholtz regime, to assign U as a function of T is patently incorrect, as
temperature is already defined by equation (47), namely

T =

(
∂S

∂U

)−1

V,N

.

It is appropriate however to express the internal energy in terms of the entropy instead
as U = U (S, V,N). To proceed, consider a given point P on a U(S) curve, and determine
the slope ∂U/∂S = T at that point. Draw a straight line through point P having slope T ,
and extend the line until it hits the U -axis. The U -intercept is precisely the Helmholtz free
energy A. That is, we have drawn the line

U (S, V,N) = A (T, V,N) + S

(
∂U

∂S

)
V,N

,

which is equivalent to the usual formula A = U − TS. The act of subtracting TS from U is
known as the Legendre transform. The same procedure extends to each of the thermodynamic
potentials.

5.8 State Variables as Derivatives

Thermodynamic identities (50), (53), (55), and (57) can be arranged to express certain state
variables. Following are only several of the common relations:

−S =

(
∂A

∂T

)
V,N

− P =

(
∂A

∂V

)
T,N

µ =

(
∂A

∂N

)
T,V

−S =

(
∂G

∂T

)
P,N

V =

(
∂G

∂P

)
T,N

µ =

(
∂G

∂N

)
T,P

1

T
=

(
∂S

∂U

)
V,N

P

T
=

(
∂S

∂V

)
U,N

− µ

T
=

(
∂S

∂N

)
U,V

Similar relations for the heat capacity of an ideal gas are:

CV =

(
∂U

∂T

)
V,N

=
3

2
NK CP =

(
∂H

∂T

)
P,N

=
5

2
NK

As a partial derivative, the coefficient of thermal expansion, namely β = 3α from equation
(3) may be written as

β =
1

V

(
∂V

∂T

)
P

.

A similar property of matter is the isothermal compressibility κT , defined as

κT = − 1

V

(
∂V

∂P

)
T

.
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Problem 52
Assume some equation of state (not necessarily the ideal gas equation) connects a system’s

pressure P , temperature T , and volume V . For the infinitesimal change P → P + dP ,
T → T + dT with V fixed, (i) show that (∂V/∂P )TdP + (∂V/∂T )PdT = 0. (ii) Next show
that

dP

dT
=

(
∂P

∂T

)
V

= −(∂V/∂T )P
(∂V/∂P )T

.

Problem 53
Near room temperature, liquid water has a thermal expansion coefficient β = 2.5 ×

10−4K−1 and isothermal compressibility κT = 4.5× 10−10Pa−1. Estimate the pressure that
must be exerted on a drop of water in order to prevent it from expanding while increasing
from 20◦C to 30◦C. Use this result to explain why it is easier to measure CP rather than
CV . Answer: 55.8 atm

Problem 54
For a van der Walls fluid obeying equation (27) at fixed T and N , use the thermodynamic

identity (57) to show that the Gibbs free energy is

G = −NKT ln (V −Nb) +
N2bKT

V −Nb
− 2aN2

V
+ C (T ) . (62)

5.9 Maxwell Relations

A trick from calculus allows a deeper relationship between derivatives and state variables.
Consider a function f of two variables x and y. It’s easy to see that the mixed second
derivatives of f are identical: ∂xyf = ∂yxf . Applying this to thermodynamics, Take for
example the differential Helmholtz free energy, dA, with a fixed number of particles. By
equation (55), we have

dA = −SdT − PdV .

From the rules of partial derivatives, dA also reads

dA =

(
∂A

∂T

)
V

dT +

(
∂A

∂V

)
T

dV ,

where using the calculus trick, we must have(
∂

∂V

(
∂A

∂T

)
V

)
T

=

(
∂

∂T

(
∂A

∂V

)
T

)
V

Substituting state variables for the inner derivatives, but leaving the outer ones, we arrive
at a Maxwell relation: (

∂S

∂V

)
T

=

(
∂P

∂T

)
V

(63)

In the same spirit, we can do the same for dU , dH, and dG, where the number of particles
is fixed in all cases. Respectively, the results are:(

∂T

∂V

)
S

= −
(
∂P

∂S

)
V

(64)
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(
∂T

∂P

)
S

=

(
∂V

∂S

)
P

(65)(
∂S

∂P

)
T

= −
(
∂V

∂T

)
P

(66)

5.10 Extensive and Intensive Quantities

All variables in thermodynamics fall into one of two classifications. A quantity may be
extensive, where the scale of the variable goes with the size of the system, or it may be
intensive, where the scale of the variable doesn’t care about the scale of the system. To
illustrate, consider a thermodynamic system with the laundry list of state variables. If the
system is duplicated and attached to itself, which variables duplicate, and which don’t? You
should conclude:

Extensive: M , V , N , U , A, G, S Intensive: P , T , µ, ρ

Properties of intensive and extensive variables:

� An extensive quantity multiplied by an intensive quantity yields an extensive quantity.

� The sum of two extensive quantities is also extensive.

� A ratio of extensive quantities yields an intensive quantity.

� The product of two extensive quantities is rare in calculations - check twice if you
encounter this.

� The sum of an extensive quantity and an intensive quantity should never occur.
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6 Chemical Physics

6.1 Thermochemistry Tables

In response to change, a thermodynamic system’s state variables will adjust in accordance
with environmental conditions. At ‘standard’ room temperature (298 K) and at ‘standard’
atmospheric pressure (1atm), also known as STP conditions, the enthalpy H, entropy S, and
Gibbs free energy G of common substances behave as listed in the following thermochemistry
table, also called an entropy table:

Species Name Enthalpy Entropy Gibbs free energy
∆H S ∆G

[kJmol−1] [Jmol−1K−1] [kJmol−1]
H2O Liquid Water -285.83 69.95 -237.15
H2O Water Vapor -241.83 188.84 -228.59
H2 Hydrogen Gas 0 130.7 0
O2 Oxygen Gas 0 205.07 0
O Monatomic Oxygen 249.170 161.055 231.731
N Nitrogen Gas 472.704 153.298 455.563
NH3 Ammonia -45.90 192.77 -16.37

Electrolysis of Water

Consider a 1 mol sample of liquid water at standard temperature and pressure conditions.
When electric current is applied through the sample, the reaction

H2O → H2 +
1

2
O2

takes place. Using the data above, we may calculate the energy required to drive the reaction.
Rummaging through the various energy quantities studied previously, observe that the

enthalpy H = U + PV matches the scenario. From thermochemistry data, we find that the
enthalpy decreases by ∆H = −286 kJ . (Note: of the 286 kJ that enters the system, an
amount of work equal to 1 atm × ∆V = 4kJ is spent on shoving aside the atmosphere to
make room for the new gases, with 282 kJ remaining.)

The entropy of the reaction is

∆S = SH2+ 1
2
O2
− SH2O =

(
131 +

205

2
− 70

)
JK−1 = 163 JK−1 ,

thus the environment contributes (positive) energy

T∆S = (298K)
(
163 JK−1

)
= 49 kJ .

Finally, the change in Gibbs free energy G = H − TS works out as ∆G = ∆H − T∆S =
−286 kJ + 49 kJ = −237 kJ , which ‘predicts’ the top-right value in the thermochemistry
table. Evidently, the device driving electrolysis must only provide 237 kJ per mole of water.
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6.2 Ideal Mixtures

Entropy of Mixing

Consider two systems (gases, equally-dense liquids, certain solids) A and B that are in
thermal contact but in diffusive isolation by a partition. When the partition is removed, the
change in entropy is strictly due to mixing, thus the analysis is highly analogous to ideal gas
expansion. For each system respectively, start from equation (44) to write

∆SA = NAK ln

(
1 +

VB
VA

)
∆SB = NBK ln

(
1 +

VA
VB

)
,

and let y equal the volume and number ratio of species B to species A. The sum ∆SA+∆SB
is the entropy of mixing formula:

∆Smix = NAK [(1− y) ln (1− y)− y ln y] (67)

Letting χα equal the ratio the volume and number ratio of either species over the total, the
above formula is equivalent to:

∆Smix = − (NA +NB)K (χA lnχA + χB lnχB) (68)

Problem 55
Show that the entropy of mixing for two equal portions N = NA = NB of ideal gas

resolves to
∆S = 2NK ln 2 .

Free Energy of a Mixture

Consider (the same) two systems (gases, equally-dense liquids, certain solids) A and B that
are in thermal contact but in diffusive isolation by a partition. Before the partition is
removed, the Gibbs free energy is

G = µANA + µBNB ,

where letting N = NA +NB and x = NB/N , we have

G = µAN (1− x) + µBNx = (1− x)G0
A + xG0

B ,

where G0
A = µAN and G0

B = µBN denote the unmixed energies. When the partition is
removed, the total Gibbs free energy is simply

Gmix = (1− x)G0
A + xG0

B + T∆Smix . (69)

6.3 Dilute Solutions

Consider a system that initially consists of NA particles of species A. According to equation
(58), the Gibbs free energy reads

G = NAµ0 (T, P )
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at fixed temperature and pressure. The volume of the system may be considered as the sum
of NA volume elements.

A single particle of species B added to the system will ‘freely expand’ (isothermally) into
the existing volume in analogy to equation (44), contributing −KT ln (NA) to the Gibbs free
energy. The chemical binding energy is represented by some unknown function f (T, P ), so
we write the energy change as

dG = f (T, P )−KT ln (NA) .

Adding a second particle of species B is not a matter of taking dG → 2dG due to the
indistinguishability of particles. It follows that for two particles of species B, the total
correction to the Gibbs free energy is

dG = 2f (T, P )− 2KT lnNA +KT ln 2 .

Generalizing to NB particles while maintaining the dilute limit NB � NA particles is
straightforward. The KT ln 2 term generalizes to KT lnNB!, which by Stirling’s approxi-
mation becomes KT (NB lnNB − NB). Finally, we have the Gibbs free energy of a dilute
solution,

G = NAµ0 (T, P ) +NBf (T, P )−NBKT lnNA +NBKT lnNB −NBKT . (70)

The chemical potentials of species A and B are readily calculated from the Gibbs free
energy. These are:

µA =

(
∂G

∂NA

)
T,P,NA

= µ0 (T, P )− NBKT

NA

(71)

µB =

(
∂G

∂NB

)
T,P,NB

= f (T, P ) +KT ln

(
NB

NA

)
(72)

6.4 Osmotic Pressure

Consider a system of total volume V and number of particles solvent NA. Next, divide
the system with a semipermiable membrane and introduce some number of solute particles
NB on one side of the membrane. The membrane is tuned to allow the passage of solute
particles, but not solvent particles. It follows that the pressure is weakly discontinuous across
the membrane, and so too is the chemical potential on either side of the membrane, leading
us to write

µ0 (T, P2) ≈ µ0 (T, P1) + (P2 − P1)
∂µ0

∂P
.

Using equation (71) for the chemical potential of the solvent particles, arrive at

(P2 − P1)
∂µ0

∂P
=
NBKT

NA

.

Of course, the derivative ∂µ0/∂P is simply V/NA at constant T and N , and we arrive at

(P2 − P1) =
NBKT

V
, (73)

a result known as the van’t Hoff formula. The pressure difference P2 − P1 is known as the
osmotic pressure.
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6.5 Fugacity

As a dilute solution tends to equilibrium, the pressure required for the system to become
diffuse and behave like ideal gas is called the fugacity. Begin by considering the entropy of
freely-expanding ideal gas

S = NK ln

(
Vf
Vi

)
,

which also obeys PiVi = PfVf . Next, insert S into the definition (49) of chemical potential
to get

µ = µ0 +KT ln

(
Pf
Pi

)
,

where the µ0 term has been imposed into the equation to handle dilute solutions. The ideal
gas has µ0 = 0.

The above result generalizes to multiple dilute solutions. Let the ‘initial’ pressure Pi
equal the sum P of all partial pressures, so drop the subscript. The j-th partial substance
thus obeys

µj = µ0 +KT ln

(
Pj
P

)
, (74)

which generalizes again to non-ideal gases by introducing a van der Waals constant b as

µj = µ0 +KT ln

(
Pj
P

)
+ bP ,

which is equivalent to adding a dimensionless term φ into the ln-term of equation (74). Note
that we have deployed a simplified van der Waals equation P (V −Nb) = NKT .

Problem 56
Show that:

bP = KT lnφ

The dimensionless quantity φ is called the fugacity coefficient, and the bare term ‘fugacity’
typically refers to the modified pressure

f = φP . (75)

Fugacity comes into play when describing non-ideal gases near the ideal gas limit. Paraphras-
ing the differential version of equation (74) for one chemical species, we define a formula that
replaces pressure with fugacity:

dµ = KTd (ln f) (76)

Immediately following definition (76), we solve for f to write

f = exp

(
µ− µ0

KT

)
.
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