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1 Review of Classical Mechanics

Classical physics is the subset of all phenomena where quantum mechanics is not needed.
Classical branches of physics include Newtonian mechanics, electromagnetism, thermody-
namics, and relativity.

1.1 Newtonian Mechanics

Newtonian mechanics begins by defining the velocity and acceleration of a particle in terms
of its position vector ~r as a function of time. For a system of N particles, the ith particle
obeys

~vi (t) =
d

dt
~ri (t) ~ai (t) =

d

dt
~vi (t) =

d2

dt2
~ri (t) .

Newton’s second law tells us that the acceleration of the ith particle is the sum of all
forces acting on that particle:

mi~ai =
N∑
j=1

~Fij

The force vector ~Fij is the force exerted by the jth particle onto the ith particle. We also

define the linear momentum ~P and angular momentum ~L of the system

~P =
N∑
i=1

mi~vi ~L =
N∑
i=1

~ri ×mi~vi ,

both easily shown to be conserved quantities.
The energy added to the ith particle is the integral of the force along the direction of

motion, namely

W = mi

∫ ~xf

~xi

~ai · d~xi = mi

∫ tf

ti

~ai · ~vi dt ,

where the differential displacement vector d~xi has been replaced by ~vi dt. Integrating by
parts with

W =
(
~U · ~V

) ∣∣∣∣tf
ti

−
∫ tf

ti

~V · d~U .

we let
~U = mi~vi d~U = mi~ai dt d~V = ~ai dt ~V = ~vi

to get
W = miv

2
i

∣∣tf
ti
−W .

The energy added to the particle is interpreted as kinetic energy Ti. Normalizing the initial
velocity to zero, have

Ti =
1

2
miv

2
i .
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Inverting the work equation, the force vector is expressed in terms of the gradient of a
scalar energy, as in

~Fij = − ∂

∂~ri
U (~ri, ~rj) ,

where U is the potential energy between the two particles. By requiring that the potential
be symmetric in the indices i, j, we confidently write

U (~ri, ~rj) = U (~rj, ~ri) = U (|~ri − ~rj|) ,

implying Newton’s third law:
~Fij = −~Fji

The total energy of a system of N particles is the sum all kinetic terms plus all potential
terms, namely

E = T + U =
N∑
i=1

1

2
miv

2
i +

N∑
i<j

U (|~ri − ~rj|) ,

where a straightforward calculation of dE/dt shows that energy is conserved.

1.2 Lagrangian Mechanics

Classical mechanics can be re-derived using the calculus of variations and the principle of

least action. Begin by considering any function L
(
~r, ~̇r, t

)
, depending on position, velocity

(d~r/dt = ~̇r), and a time parameter.
Defining the action

S =

∫ tf

ti

L dt ,

it follows that variations in S are given by

δS =

∫ tf

ti

(
∂L

∂~r
· δ~r +

∂L

∂~̇r
· δ~̇r
)
dt

By constraining δ~r and δ~̇r to be zero on the boundaries ti, tf , the above can be integrated
by parts to get

δS =

∫ tf

ti

δ~̇r ·
(
∂L

∂~r
− d

dt

(
∂L

∂~̇r

))
dt+

���
���∂L

∂~̇r
· δ~̇r
∣∣tf
ti
,

where taking the limit δS → 0 tells us the parenthesized quantity is also zero, delivering the
Euler-Lagrange equation

∂L

∂~ri
− d

dt

(
∂L

∂~̇ri

)
= 0 ,

readily generalizing to handle systems of many parties. In terms of the Lagrangian, the
momentum of the ith particle is governed by its partial derivatives:

~pi =
∂L

∂~̇ri
~̇ ip =

∂L

∂~ri
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To proceed for non-relativistic motion, we define the classical Lagrangian

L = T − U =
N∑
i=1

1

2
mi

(
~̇ri

)2

−
N∑
i<j

U (|~ri − ~rj|) .

Insert L into the Euler-Lagrange equation to get, for a single particle,

−
N∑
i 6=j

~∇iU (|~ri − ~rj|) =
d

dt
~pi ,

none other than Newton’s second law.

Relativistic Lagrangian

To account for special relativity, the action is defined in terms of the (rest-frame) proper
time τ

S = −mc2

∫ τf

τi

dτ =

∫ tf

ti

√
1− v2/c2 dt ,

which is recast in terms of a non-rest-frame having relative speed v. Tacking on a potential
energy term, the quantity to extremize is the relativistic Lagrangian,

L = −mc2
√

1− v2/c2 − U (~r) .

Applying the Euler-Lagrange equation and proceeding in analogy to the above, we write
the relativistic force, momentum, and velocity:

−∂U
∂~r

= m
d

dt

(
~v√

1− v2/c2

)
= F (~r) ,

~p =
∂L

∂~v
=

m~v√
1− v2/c2

~v =
~p/m√

1− (p/mc)2

1.3 Hamiltonian Formalism

In Hamiltonian mechanics, the system is mapped by generalized coordinates q (t) and gener-
alized momenta p (t), where the relation p = mq̇ is not taken axiomatically. The Hamiltonian
H is defined in terms of the Lagrangian and a Legendre transform:

H (q1, q2, . . . , p1, p2, . . . ) =
N∑
i=1

piq̇i − L (q1, q2, . . . , q̇1, q̇2, . . . ) ,

where N is the number of degrees of freedom in the system. In a notation that favors spatial
dimensions, the above becomes

H (~q1, ~q2, . . . , ~p1, ~p2) =
N∑
i=1

~pi · ~̇qi − L (~q1, ~q2, . . . , ~p1, ~p2) ,
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where N is unambiguously equal to the number of particles in the system.
For a classical Lagrangian

L = T − U =
N∑
i=1

1

2
miq̇

2
i −

N∑
i<j

U (|~qi − ~qj|) ,

the Hamiltonian reduces to

H =
N∑
i=1

(
~pi · ~̇qi −

1

2
miq̇

2
i

)
+

N∑
i<j

U (|~qi − ~qj|) .

If we finally make the connection ~p = m~̇q, the above becomes

H =
N∑
i=1

1

2mi

p2
i +

N∑
i<j

U (|~qi − ~qj|) ,

which looks exactly like the total energy.
Returning to the general case with L unspecified, the action S is written

S =

∫ tf

ti

L dt =

∫ tf

ti

(
N∑
i=1

~pi · ~̇qi −H (~q1, ~q2, . . . , ~p1, ~p2)

)
dt .

Taking the variation in S (and thus all terms inside the integral), we have

δS =

∫ tf

ti

(
N∑
i=1

δ~pi · ~̇qi + ~pi · δ~̇qi −
∂H

∂~pi
δ~pi −

∂H

∂~qi
δ~qi

)
dt .

Collecting like terms and also noting the total derivative

d

dt
(~pi · δ~qi) = ~pi · δ~̇qi + ~̇pi · δ~qi ,

we find

δS =

∫ tf

ti

(
N∑
i=1

δ~pi ·
(
~̇qi −

∂H

∂~pi

)
+ δ~qi ·

(
−~̇pi −

∂H

∂~qi

))
dt+������

(~pi · δ~qi)
∣∣tf
ti
.

Taking the limit δS → 0, and also noting that all variations vanish on the boundaries, we
discover Hamilton’s equations of motion:

~̇qi =
∂H

∂~pi
~̇pi = −∂H

∂~qi
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1.4 Poisson Brackets

The Poisson bracket is an operation on two differentiable functions A(~q, ~p) and B(~q, ~p) such
that

{A,B}qp =
N∑
i=1

(
∂A

∂qi

∂B

∂pi
− ∂A

∂pi

∂B

∂qi

)
,

where N is the total number of degrees of freedom. Right away, we can see two properties
that always hold:

{A,B}qp = −{B,A}qp {A,A}qp = 0

Next, consider some function F (qi, pi, t). By the chain rule, we know

dF

dt
=
∂F

∂t
+

N∑
i=1

(
∂F

∂qi

dqi
dt

+
∂F

∂pi

dpi
dt

)
,

which, after substituting Hamilton’s equations of motion, becomes

dF

dt
=
∂F

∂t
+ {F,H}qp .

If the system is isolated from its environment, the total energy E must be conserved, making
∂H/∂t = 0. Poisson brackets immediately hand us the stronger statement that dH/dt = 0
implying E = H. It follows that the Hamiltonian can be used as the generator of infinitesimal
time translations. Using the above relations, it’s straightforward to show that

q̇k = {qk, H}qp ṗk = {pk, H}qp {qj, pk}qp = δjk

7



2 Gravitational and Electric Fields

2.1 Analogy between Gravity and Electricity

Force and Field

The gravitational force and the electric force are similar, being purely radial and depending
on an inverse square law. For two particles labeled 1 and 2 having mass m1,2 and charge q1,2

the gravitational and electric forces are written

~F grav
12 = −Gm1m2

r2
r̂ ~F elec

12 =
1

4πε0

q1q2

r2
r̂ .

The unit vector r̂ extends from particle 1 to particle 2. Dividing out the ‘test’ particle’s
mass and charge, respectively, deliver equations for the gravitational field and the electric
field

~g =
1

m2

~F grav
12 = −Gm

r2
r̂ ~E =

1

q2

~F elec
12 =

1

4πε0

q

r2
r̂ ,

where the 1-subscript has been omitted.

Flux and Gauss’s Law

Next, suppose the ‘source’ particle is enclosed by a Gaussian surface S. The gravitational
flux ΦG and the electric flux ΦE is the integral of the field projected onto the surface normal,
as in

ΦG =

∫
S
~g · d ~A = −Gm

∫
S

cos θ

r2
dA ΦE =

∫
S

~E · d ~A =
q

4πε0

∫
S

cos θ

r2
dA ,

where cos θ is the angle between the unit vector r̂ and the normal vector to the surface.
Without loss of generality, assume the Gaussian surface to be spherical, reducing the integral
term as ∫

S

cos θ

r2
dA =

���cos θ

R2
R2

∫ π

0

∫ 2π

0

sin θ dθ dφ = 4π ,

finishing each flux calculation:

ΦG = −4πGm ΦE =
q

ε0

Density and Divergence

Note that the mass m and charge q can be cast as the integral of a density times a volume
element, as in

ΦG = −4πG

∫
V
ρm d

3x ΦE =
1

ε0

∫
V
ρq d

3x .

Meanwhile we may set the Gaussian surface just outside the particle’s edge and apply
the divergence theorem to give

ΦG =

∫
V

~∇ · ~g d3x ΦE =

∫
V

~∇ · ~E d3x .
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Comparing each representation of ΦG and ΦE, the volume integrals can be eliminated, leaving
us with the differential version of Gauss’s law:

~∇ · ~g = −4πGρm ~∇ · ~E =
ρq
ε0

Scalar Potential and Poisson’s Equation

Since the gravitational and electric fields are each purely radial, each has zero curl, i.e.
~∇× ~g = 0 and ~∇× ~E = 0. It follows that each vector field can be expressed in terms of the
gradient of a scalar field according to

~g = −~∇V (~r) ~E = −~∇φ (~r) ,

where each scalar field V (~r) and φ (~r) is a function of position. In terms of the scalar
potential, each instance of Gauss’s law becomes Poisson’s equation:

∇2V (~r) = 4πGρm ∇2φ (~r) = −ρq
ε0

The scalar potential is calculated from the line integral against the field, starting from the
zero-energy state:

V (~r) =

∫ ~r

∞
~g (~r′) · (−r̂) dr′ = −Gm

r
φ (~r) =

∫ ~r

∞

~E (~r′) · (−r̂) dr′ = 1

4πε0

q

r

Current and Continuity

The notion of ‘current’ Iq is ubiquitous in electricity, but also has an analogy in neutral matter
with mass playing the role of charge. The current density Jq is the current divided per area
perpendicular to the direction of travel. By vector calculus and conservation arguments, it
follows that the closed surface integral of the current density must equal the quantity leaving
the enclosed volume:∫

S

~Jm · d ~A = − d

dt

∫
V
ρm d

3x

∫
S

~Jq · d ~A = − d

dt

∫
V
ρq d

3x

Applying the divergence theorem and shuffling the time derivative onto the ρ-terms, we have∫
V

(
~∇ · ~Jm +

∂ρm
∂t

)
d3x = 0

∫
V

(
~∇ · ~Jq +

∂ρq
∂t

)
d3x = 0 ,

which is true at any volume, implying the pair of continuity equations:

~∇ · ~Jm = −∂ρm
∂t

~∇ · ~Jq = −∂ρq
∂t

Needless to mention, these are non-relativistic equations.
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2.2 Breakdown of the Analogy

While it appears that gravitational fields and electric fields are analogous, the similarities
stop here. Observe first that the gravitational force is purely attractive, and the masses
m1,2 are always positive. By contrast, the overall sign on the electric force can be positive
or negative, depending on the product q1q2. Moreover, the phenomenon of magnetism is
understood entirely in terms of electric currents, whereas there is no analogy to magnetism
in the domain of gravity.

A more subtle difference between gravity and electromagnetism arises from relativity. It’s
straightforward to show that the energy stored in a gravitational field adds to the effective
mass via E = mc2, which in turn adds to the effective gravity, and so on. As a result, the
total gravitational field compounds nonlinearly. Electric charge, on the other hand, is not
subject to the same effect.
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3 Index Notation and Coordinates

In order to refine the analogy between the equations of gravity and electricity, we must shed
the old vector-based notation in favor of tensors. This is largely encouraged by the success
of tensors in special/general relativity, in where space and time are regarded equally as the
so-called spacetime fabric.

3.1 Four-Vectors and Tensors

Let us begin be defining the contravariant position four-vector qµ in flat three-dimensional
space with a spatially-normalized time component, where c is the (invariant) speed of light:

qµ = (ct, x, y, z)

The up-index position vector has a down-index counterpart qµ, called the covariant position
vector, namely

qµ = (−ct, x, y, z) .

Four-vectors fit under a more general classification called tensors, and are classified by
their type, which is an ordered pair that denotes the number of indices in the up- and down-
position. For instance, a contravariant (up-index) four-vector is a type (1, 0) tensor, whereas
as covariant (down-index four-vector is a type (0, 1) tensor. Tensors can contain any number
of indices. A two-index tensor Λ has three possible types (2, 0), (1, 1), (0, 2), represented by
Λµν , Λν

µ, Λµν , respectively.

3.2 Contraction

The act of equating an up-index and a down-index is called contraction, and triggers a
sum over that index,. Summation symbols are generally omitted according to the Einstein
summation convention. For example, consider a type (1, 1) tensor tensor product xµxν .
Setting µ = ν implies:

xµxµ = x1x1 + x2x2 + · · ·+ xNxN = S2

The scalar result is a real or complex tensor of type (0, 0) loosely represented as S2, formally
called the norm. For ordinary vectors, this is equivalent to the dot product.

3.3 Metric Tensor

One question naturally implied by four-vectors concerns whether there exists an object or
operation that converts a contravariant four-vector to a covariant one, or vice-versa. It turns
out that contraction with the metric tensor does just this. One particularly special tensor is
called the flat space metric, also known as the Minkowski space metric, denoted ηµν , defined
as

ηµν =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 .

Note ηµν is not a matrix.

11



Raising and Lowering Indices

To see ηµν at work, consider the contraction ηµνA
µ, where Aµ is any four-vector. Note the

µ-index occurs twice, both in the up- and down- positions. When any index is repeated,
contraction triggers a sum over that index. This means

ηµνA
µ =

3∑
µ=0

ηµνA
µ ,

however the summation symbol is almost always ignored, a shortcut called the Einstein
summation convention. Carrying out the calculation, we find:

ηµνA
µ = η00A

0 + η11A
1 + η22A

2 + η33A
3

ηµνA
µ = −A0 + A1 + A2 + A3

ηµνA
µ = Aν

Similarly, the inverse metric tensor, has both indices in the up-position, namely ηµν . In
flat space (but not generally for curved space), the inverse metric components are the same
as the ordinary metric:

ηµν = ηµν

By identical arguments, it follows that the inverse metric can raise the index on a four-vector,
namely

ηµνAν = Aµ .

Note that the definition of the inverse metric tensor tells us the contraction between an up-
and down-index yields a Kronecker delta function:

ηνρη
ρµ = δµν ,

where δνµ resolves to 1 if µ = ρ, and equals zero otherwise.

3.4 Coordinate Transformations

As part of a the formal definition of a tensor, let us demand that under a general set of
coordinate transformations, a tensor must obey an analog to the A~x = ~b calculation from
linear algebra. In the most general case possible we would have a tensor A of type (N,M)
undergoing N +M coordinate changes:

A
µ′1···µ′N
ν′1···ν′M

=
∂qµ

′
1

∂qµ1
· · · ∂q

µ′N

∂qµN
∂qν1

∂qν
′
1
· · · ∂q

νM

∂qν
′
M

Aµ1···µNν1···νM

Strictly, any object not obeying the above is not a tensor. For the simple case of one-index
vectors V µ and Vµ, the transformation law reads

V µ′ =
∂qµ

′

∂qµ
V µ Vµ′ =

∂qµ

∂qµ′
Vµ ,

where the partial derivative terms are analogous to the ‘Jacobian’ matrix from vector calcu-
lus.
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3.5 Lorentz Transformation

Coordinate systems qµ and qµ
′

that are inertial, meaning not unjustly accelerated, adhere to
the Lorentz transformation:

qµ
′
= Λµ′

ν q
ν

For a so-called ‘Lorentz-boost’ along the x-direction at speed v, the coordinates qµ transform
via 

ct′

x′

y′

z′

 =


γ −γv/c 0 0

−γv/c γ 0 0
0 0 1 0
0 0 0 1



ct
x
y
z

 ,

where

γ =
1√

1− v2/c2
ηαβ = ηµνΛ

µ
αΛν

β .

The inverse Lorentz transformation tensor (Λ−1) has the signs on v reversed. The com-
bination (Λ−1)

µ
ρ Λρ

ν must resolve to a Kronecker delta function with µ as the up-index and ρ
as the down-index: (

Λ−1
)µ
ρ

Λρ
ν = δµν

Covariant Lorentz Transformation

The Lorentz transformation of a covariant four-vector reads:

qµ′ = Λν
µ′qν

We prove this by starting with qα = Λα
βq

β, and then proceeding as follows:

ηαµ′q
α = Λα

βq
βηαµ′ = Λα

βq
βηρνΛ

ρ
αΛν

µ′ = δρβq
βηρνΛ

ν
µ′ = Λν

µ′qν

3.6 Proper Time

The notion of time becomes slippery when comparing inertial reference frames in relative
motion. Using the Lorentz transformation, the time interval in a boosted reference frame is

c∆t′ = γ
(
c∆t− v∆x/c2

)
,

and setting ∆x = 0 delivers the an equation for time dilation,

∆t′ =
1√

1− v2/c2
∆t = γ∆τ ,

where the rest-frame time (the unprimed t-variable) is known as the proper time τ .
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3.7 Four-Velocity

The derivative of the position vector qµ with respect to the proper time τ is the four-velocity:

Uµ =
d

dτ
qµ (τ) =

(
c
dt

dτ
,
dx

dτ
,
dy

dτ
,
dz

dτ

)
Using the Minkowski metric ηµν , it’s straightforwardly shown that the norm of the velocity
vector is invariant:

UµUµ = −γ2c2 + γ2v2 = −c2

14



4 Fields and Derivatives

A field, in the broadest sense, is any function that depends on the generalized position qµ

(including time), and covers the entire coordinate system, A scalar field φ (qµ) is a single
function, whereas a vector field V µ (qµ) has multiple components tracked by an index.

4.1 Scalar Fields

Scalar fields φ (qµ) are always invariant under coordinate transformations. For a simple
example, the temperature T (qµ) at a point in a room must be invariant with respect to the
coordinate system used to map the room.

To prove this, note first that the contraction of two four-vectors V µ and Uµ always yields
a scalar, as in

V µUµ = V 0U0 + V 1U1 + V 2U2 + V 3U3 = S2 .

Next, consider a primed reference frame (i.e. different coordinate system) where the two
four-vectors manifest as V µ′ , Uµ′ . In terms of coordinate transformations, the primed and
un-primed vectors relate by

V µ′Uµ′ =
∂qµ

′

∂qµ
∂qν

∂qµ′
V µUν = δνµV

µUν = V νUν = S2 ,

producing the same scalar as the unprimed case.

Example

Consider the scalar field
φ (qµ) = ct− 2y .

According to a primed reference frame moving with velocity v along the x-direction, the field
has each coordinate Lorentz-transformed:

φ
(
qµ

′
)

=
ct′ + vx′/c2√

1− v2/c2
− 2y′

4.2 Vector Fields

Vector fields have a tighter restriction than scalar fields. Recall that under a general change
of coordinates, a multi-component vector field V µ (qν) transform via

V µ (qν) → V µ′
(
qν

′
)

=
∂qµ

′

∂qµ
V µ
(
qν
(
qν

′
))

Vµ (qν) → Vµ′
(
qν

′
)

=
∂qµ

∂qµ′
Vµ

(
qν
(
qν

′
))

,

which we take as part of the definition of a vector field. The transformation occurs in the
components of the vector field and the coordinates.
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Example

Consider the vector field
V µ (qν) = (2x, 0, ct, 0) .

According to a primed reference frame moving with velocity v along the x-direction, the field
components simplify to

(V ′)
0

=
(
Λ−1

)0

0
V 0 = 2γx = 2γ2 (x′ + vt′)

(V ′)
1

=
(
Λ−1

)1

0
V 0 = −2γβx = −2γ2β (x′ + vt′)

(V ′)
2

=
(
Λ−1

)2

2
V 2 = ct = γ (ct′ + vx′/c)

(V ′)
3

=
(
Λ−1

)3

3
V 3 = 0 ,

so the result is written

(V ′)
µ

=
(
2γ2 (x′ + vt′) ,−2γ2β (x′ + vt′) , γ (ct′ + vx′/c) , 0

)
.

4.3 Tensor Fields

Tensor fields are the multi-index generalization of vector fields. The number and position of
indices (i.e. type) indicate how many partial derivative terms are needed for one coordinate
transformation. For a two-index tensor, we have

Aµ
′ν′ =

∂qµ
′

∂qµ
∂qν

′

∂qν
Aµν Aµ

′

ν′ =
∂qν

∂qν′
∂qµ

′

∂qµ
Aµν Aµ′ν′ =

∂qµ

∂qµ′
∂qν

∂qν′
Aµν ,

which, as for vector fields, must uphold if A qualifies as a tensor.

4.4 Gradient

A scalar field, classified as a type (0, 0) tensor, can be converted into a vector field by taking
the ‘spatial’ derivative with respect to the position four-vector, resulting in the four-gradient:

φ (qµ) → ∂

∂qµ
φ (qµ) = ∂µφ =

(
∂φ

∂q0
,
∂φ

∂q1
,
∂φ

∂q2
,
∂φ

∂q3

)
Similarly, the derivative can be taken with respect to the contravariant version of the position
vector:

∂

∂qµ
φ (qµ) = ∂µφ = ηµν∂νφ → ∂µφ =

(
∂φ

∂q0

,
∂φ

∂q1

,
∂φ

∂q2

,
∂φ

∂q3

)
Two Gradients

Unfortunately, higher-order derivatives of a scalar field φ (qµ) don’t generally result in tensors,
as demonstrated by calculating two gradients ∂µ∂νφ with respect to a primed coordinate
system, as

∂µ′∂ν′φ =
∂qµ

∂qµ′
∂

∂qµ

(
∂qν

∂qν′
∂φ

∂qν

)
=
∂qµ

∂qµ′
∂qν

∂qν′
∂µ∂νφ+

∂qµ

∂qµ′
∂2qν

∂qµ∂ν′
∂φ

∂qν

clearly violates the tensor transformation rule. The last term shouldn’t be there.
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4.5 Divergence

The four-divergence of a vector field Aµ (qµ) is a contraction across the derivative of each
component

∂Aµ

∂qµ
= ∂µA

µ ,

which resolves to a scalar.
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5 Field Theory

Classical field theory shares the same philosophical starting point as Lagrangian mechanics,
that is, the principle of least action. To generalize Lagrange and Hamiltonian formalism for
fields, the bold innovation is that generalized coordinates qµ (t) are replaced by spacetime-
dependent vector fields φµ(qµ), along with their derivatives.

Begin by defining the action S as the integral of the Lagrangian L between two times ti
and tf :

S =

∫ c tf

c ti

L
(
~q, ∂0~q, q

0
)
c dt

As a function of space and time, the Lagrangian can be recast as the spatial integral of the
Lagrangian density, denoted L. Let us also replace the spatial arguments qµ with the field
φµ, as in

L =

∫ ~qf

~qi

L (φµ, ∂νφ
µ) d3~q .

The action becomes a four-dimensional integral

S =

∫ qµf

qµi

L (φµ, ∂νφ
µ) d4q .

5.1 Euler-Lagrange Equation for Fields

To derive an analog to the Euler-Lagrange equation, we extremize the action subject to small
variations in the field and its derivative

φµ → φµ + δφµ

∂νφ
µ → ∂νφ

µ + ∂ν (δφµ)

such that first-order expansion of the Lagrangian density becomes

L (φµ, ∂νφ
µ)→ L (φµ, ∂νφ

µ) +
∂L
∂φµ

δφµ +
∂L

∂ (∂νφµ)
∂ν (δφµ) .

Then, the variation in the action is

δS =

∫ qµf

qµi

(
∂L
∂φµ

δφµ +
∂L

∂ (∂νφµ)
∂ν (δφµ)

)
d4q ,

where the equality δ (∂νφ
µ) = ∂ν (δφµ) has been used. The second term can be integrated

by parts by setting

u =
∂L

∂ (∂νφµ)
du = ∂ν

(
∂L

∂ (∂νφµ)

)
d4q

dv = ∂ν (δφµ) d4q v = δφµ
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such that

δS =

∫ qµf

qµi

δφµ
(
∂L
∂φµ
− ∂ν

(
∂L

∂ (∂νφµ)

))
d4q +

����������(
∂L

∂ (∂νφµ)
δφµ
) ∣∣∣∣qµf

qµi

,

where all variations are set to zero on the integration boundaries. Letting δS → 0, we pick
out the Euler-Lagrange equation for fields:

∂L
∂φµ
− ∂ν

(
∂L

∂ (∂νφµ)

)
= 0

5.2 Real Scalar Fields

In order to produce a kind of ‘mechanics’ for fields, the Lagrangian density L must be
expressed in terms of some Lorentz-invariant combination of kinetic and potential terms. As
scalar fields, energy potentials U (φ) already satisfy this - the trouble is choosing a kinetic
term to fit into L. Starting with something that we know will work, recall that spacetime
interval invariant

dS2 = dqµdqµ = ηµνdq
µdqν

is the same in all reference frames. A similar invariant ηµν∂
µφ∂νφ exists for a real scalar

field φ (with no index). Exploiting this, we take the Lagrangian density as

L = −1

2
ηµν∂µφ∂νφ− U (φ) =

1

2c2

(
∂φ

∂t

)2

− 1

2

(
~∇φ
)2

− U (φ) .

Applying the Euler-Lagrange equation for fields to L, we find

∂L
∂φ

= −dU
dφ

∂L
∂ (∂νφ)

=
∂

∂ (∂νφ)

(
−1

2
ηαβ∂αφ∂βφ

)
,

where the second term simplifies as

∂L
∂ (∂νφ)

= −1

2
ηαβ

∂ (∂αφ)

∂ (∂νφ)
∂βφ−

1

2
ηαβ∂αφ

∂ (∂βφ)

∂ (∂νφ)

= −1

2
ηαβδνα∂βφ−

1

2
ηαβ∂αφδ

ν
β

= −ηµν∂µφ .

The Euler-Lagrange equation for scalar fields becomes

ηµν∂µ∂νφ−
dU

dφ
= 0 .

d’Alembert Operator

The combination ηµν∂µ∂ν has a special name called the d’Alembert operator, which is es-
sentially the Minkowski generalization of the Laplacian operator ∇2 = ∆. Because the
d’Alembert operator deals with four dimensions, it’s symbol is the square, particularly

� = ηµν∂µ∂ν = − 1

c2

∂2

∂t2
+∇2 .
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The Euler-Lagrange equation for for scalar fields is thus written

�φ− dU

dφ
= 0 .

Klein-Gordon Equation

Perhaps the most common form for U(φ) is the simple harmonic oscillator, namely

U (φ) =
1

2
m̃2φ2 ,

where m̃ = mc/~ is a constant that has units of inverse length, but is referred to as the
‘mass’ of the field. (Note that the combination h/mc is the Compton wavelength.) The
Euler-Lagrange equation becomes the Klein-Gordon equation

�φ− m̃2φ = 0 ,

which is easily solved by plane waves, namely

φ = φ0 e
i(Et−~p·~q)/~ ,

where the momentum ~p is related to the relativistic energy E via

E2 = (~p)2 c2 +m2c4 .

Hamiltonian Formalism for Scalar Fields

By analogy to the definition of the momentum vector in Lagrangian mechanics, the momen-
tum density Π can be defined for fields:

~pi =
∂L

∂~̇ri
→ Π (qµ) =

∂L
∂ (∂0φ)

Then, by analogy to H =
∑

i piq̇i − L, the Hamiltonian density is defined as

H (φ,Π) = (Π (qµ)) (∂0φ (qµ))− L (φ, ∂µφ) .

Substituting the Lagrangian density for real scalar fields into the above, the momentum
density simplifies to ∂0φ, and the Hamiltonian density readily becomes

H (φ,Π) =
1

2
(Π (qµ))2 +

1

2

(
~∇φ
)2

+ U (φ) .

Poisson Brackets for Scalar Fields

The notion of Poisson brackets extends to fields. For two differentiable functions A (φ,Π),
B (φ,Π), we have

{A,B}φΠ =

∫ (
∂A

∂φ (qµ)

∂B

∂Π (qµ)
− ∂A

∂Π (qµ)

∂B

∂φ (qµ)

)
d3~q ,

which differs from the ‘traditional’ version by integrating over space. Letting A = φ, B = Π,
we recover an analog to Hamilton’s equation of motion,

{φ
(
q0, ~q

)
,Π
(
q0, ~r

)
}φΠ = δ (~q − ~r) ,

called the equal-time Poisson bracket relation.
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Connection to Statistical Mechanics

Field theory notation can be used to construct the main object of statistical mechanics,
known as the the partition function Z. We shall employ the notion of imaginary time by
letting t→ −it, or in four-vector notation, q0 → −iq0. The operator ∂0 is replaced with i∂0.

Under this transformation, the action becomes

Si = −i
∫
Li (φ, i∂0φ, ∂jφ) d4q ,

where Li is the Lagrangian density, and operator ∂j excludes the time component altogether.
If the Lagrangian density represents that of a scalar field, the imaginary-time version reads

Li = − 1

2c2

(
∂φ

∂t

)2

− 1

2

(
~∇φ
)2

− U (φ) .

The action is therefore

Si = i

∫ (
1

2c2

(
∂φ

∂t

)2

+
1

2

(
~∇φ
)2

+ U (φ)

)
d4q .

The action now extremizes an energy quantity that lives in 0 + 4 dimensions instead of
1 + 3. With time removed form the picture, a system’s evolution can be understood as a
walk through accessible states. Defining Dφ as the density of states, the partition function
of a classical system reads

Z =

∫
(Dφ) exp [iS (φ, i∂0φ, ∂jφ) /~] .
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6 Symmetry and Conservation

6.1 Conservation Laws

The notions of energy conservation, linear/angular momentum conservation, and Galilean
invariance are all derived from Lagrangian mechanics. Using the form

L = T − U =
N∑
i=1

1

2
mi

(
~̇ri

)2

−
N∑
i<j

U (|~ri − ~rj|) ,

it’s possible to show that a constant of motion arises for every transformation that leaves
the Lagrangian unchanged, also called a symmetry.

Linear/Angular Momentum

Leaving the full derivations to a full study of Lagrangian mechanics, it turns out that a
constant translation ~ε of every position vector implies conservation of linear momentum:

~ri → ~ri + ~ε →
N∑
i=1

∂L

∂~̇ri
= ~P = constant

Meanwhile, a constant angular rotation of every position vector and velocity vector such
that

~ri → ~ri + δ~ri ~vi → ~vi + δ~vi ,

generates the conservation of momentum:

N∑
i=1

~ri ×
∂L

∂~vi
=

N∑
i=1

~ri ×mi~vi = constant

Energy

Conservation of energy arises from Lagrangian invariance with respect to variation in time.
Using Poisson bracket notation, recall that

dF

dt
=
∂F

∂t
+ {F,H}qp ,

and let F = H to immediately find
dH

dt
=
∂H

∂t
.

The Hamiltonian is simply H = T + U , which has implicit t-dependence, but no explicit
t-dependence. Thus, ∂H/∂t = 0 and H = E = constant.

Alternatively, take the Lagrangian

L = T − U =
N∑
i=1

1

2
mi (~vi)

2 −
N∑
i<j

U (|~ri − ~rj|) ,
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and add a small variation to all position and velocity vectors such that

~ri → ~ri + δ~ri ~vi → ~vi + δ~vi ,

where each differential vector can be recast in terms of its derivative, as in

δ~ri = ~vi δt δ~vi = ~ai δt ,

with ~ai being the acceleration vector. To first order in δ, the variation in the Lagrangian is

δL = δt

(
N∑
i=1

~vi ·

(
mi~ai −

N∑
j 6=i

∂

∂~ri
U (|~ri − ~rj|)

))
.

The inner parenthesized term is none other than Newton’s second law applied to a single
particle, and drops out, showing δL→ 0 for finite δt.

6.2 Noether Theorem

To crystallize the connection between symmetries and the Lagrangian, Noether’s theorem
states that any differentiable symmetry of the action S of a physical system has a corre-
sponding conservation law.

6.3 Noether Current

Consider an infinitesimal change in a scalar field φ(qµ) such that

φ (qµ)→ φ (qµ) + δφ (qµ) .

In response to the change δφ, the Lagrangian density behaves as L → L + δL, where the
change δL shall be expressed as a four-divergence ∂µJ µ via

δL = ∂µJ µ .

In terms of δL, the variation in the action is simply

δS =

∫
R

(δL) d4q =

∫
R

∂µJ µ d4q .

Now take the variation of the action S =
∫
L(φ, ∂µφ) d4q in the region R. To first-order

approximation, the variation in the action is

δS =

∫
R

(
∂L
∂φ

δφ+
∂L

∂ (∂µφ)
∂µδφ

)
d4q ,

where the equality δ∂µφ = ∂µδφ has been used. Examining the second term, the chain rule
tells us

∂µ

(
∂L

∂ (∂µφ)
δφ

)
= ∂µ

(
∂L

∂ (∂µφ)

)
δφ+

∂L
∂ (∂µφ)

∂µδφ ,
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so δS becomes

δS =

∫
R

(
δφ

(
�����������∂L
∂φ
− ∂µ

(
∂L

∂ (∂µφ)

))
+ ∂µ

(
∂L

∂ (∂µφ)
δφ

))
d4q ,

where an instance of the Euler-Lagrange equation drops out.
Comparing the two versions of δS on hand, we must have

δS =

∫
R

∂µ

((
∂L

∂ (∂µφ)
δφ

)
− J µ

)
d4q ,

where taking the limit δS → 0 we discover the Noether current :

jµ =

(
∂L

∂ (∂µφ)
δφ

)
− J µ ,

clearly having zero divergence:
∂µj

µ (φ (qµ)) = 0

Noether Charge

Define a quantity called ‘charge’ that is the volume integral over the 0-component of the
Noether current:

Q =

∫
R

j0 d3q

Interpreting j0 as a charge density implies the existence of a current vector ~J obeying the
continuity equation

∂0j
0 = −~∇ · ~J .

Applying the divergence theorem to both sides, we find∫
R

∂0j
0 d3q = −

∫
R

~∇ · ~J d3q =

∫
∂R

~J · d ~A

where the last integral vanishes by arguing that R may be sufficiently large such that ∂R far
out-paces growth in ~J . Since the time-derivative of j0 is zero under the integral, we have
evidently found Q is conserved:

dQ

dt
=

∫
R

∂0j
0 d3q = 0

6.4 Rotations

Consider three scalar fields φi in three-dimensional space. To examine SO (3) symmetry we
let each field infinitesimally rotate about a unit vector n as

φi → φi + ∆θεijknjφk .
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Lagrangian Invariance

It’s straightforward to show by substitution that the Lagrangian density

L =
1

2
∂µφi∂

µφi −
1

2
m̃2φiφi

remains invariant under infinitesimal rotations:

L′ = 1

2
∂µ (φi + ∆θεijknjφk) ∂

µ (φi + ∆θεijknjφk)

− 1

2
m̃2 (φi + ∆θεijknjφk) (φi + ∆θεijknjφk)

L′ = L+
1

2

(
∂µφi∂

µφk − m̃2φiφk
)

∆θ������
(εijk + εkji)nj +�����O

(
∆θ2

)
L′ = L

Current

Evidently we have δL = 0, and the corresponding Noether current is

jµ =

(
∂L

∂ (∂µφ)
δφ

)
−��J µ =

1

2
(∂µφi) ∆θεijknjφk
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7 Stress-Energy Tensor

Armed with the notions of Noether’s theorem and the Noether current, we may explore
symmetries in the Lagrangian density to uncover new statements of conservation. In this
section we show that the conserved Noether current associated with spacetime translations
is the stress-energy tensor, also known as the energy-momentum tensor. The stress-energy
tensor is defined as a two-index object written as T µν , and contains (you guessed it) all
information about the energy, momentum, pressure, etc., associated with a field.

7.1 Derivation from Noether Current

Begin by shifting all position four-vectors by an infinitesimal constant four-vector aµ such
that

qµ → qµ − aµ ,
causing the field and the variation in L to respond by

δφ = −aν∂νφ J µ = −aµL .

Inserting these into the Noether current gives

jµ = aν
(
− ∂L
∂ (∂µφ)

∂νφ+ δµνL
)

= aν

(
− ∂L
∂ (∂µφ)

∂νφ+ ηµνL
)

The parenthesized term is identified as the stress-energy tensor T̂ µν . Explicitly, we have
found

jµ = aνT̂
µν T̂ µν = − ∂L

∂ (∂µφ)
∂νφ+ ηµνL ,

and because we know the Noether current is conserved, it follows that

∂µT̂
µν = 0 .

Note the ‘hat’ symbol ( ˆ ) above each instance of T foreshadows a generalization of T̂ µν

based on symmetry arguments (see below).

7.2 Derivation from Action

An equivalent derivation starts with the Lagrangian density L (qµ, φ, ∂νφ), leading to varia-
tion in the action

δS =

∫
R

(
∂L
∂qµ

δqµ +
∂L
∂φ

δφ+
∂L

∂ (∂µφ)
∂µδφ

)
d4q ,

where the equality δ∂µφ = ∂µδφ has been used. Note also that δxν is equal to the infinitesimal
shift aν , and (as we required in the previous derivation) δφ = −aν∂νφ. Integrating the last
term by parts (identically as before), we get

δS =

∫
R

δφ
�������������(
∂L
∂φ
− ∂ν

(
∂L

∂ (∂νφ)

))
d4q +

∫
R

aν
(
∂L
∂qν

)
d4q −

∫
∂R

aν
∂L

∂ (∂µφ)
∂νφ dµσ ,
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where an instance of the Euler-Lagrange equation drops out. Note the boundary terms are
not set to zero, but are instead retained in a surface integral bordering the region R. The
final R-integral contains a derivative of L, which can be recast as a surface integral on the
same domain ∂R:

δS =

∫
∂R

aν
(
− ∂L
∂ (∂µφ)

∂νφ+ δµνL
)
dµσ =

∫
∂R

aνT̂ µν dµσ =

∫
∂R

aνT̂
µν dµσ

Finally, we take the limit δS → 0 to simultaneously (re)discover

∂µT̂
µν = 0 T̂ µν = − ∂L

∂ (∂µφ)
∂νφ+ ηµνL .

7.3 Stress-Energy Tensor for Real Scalar Field

Consider a region R enclosed by ∂R, on which we define the action

S =

∫
∂R

√
−η L dσ .

The Lagrangian density L shall be replaced by the form used for real scalar fields, i.e.

L = −1

2
ηµν∂µφ∂νφ− U (φ) ,

and the index-free symbol η is the determinant of the metric tensor. (Including this term
handles Lorentz transformations among coordinates qµ.) The variation in S is thus

δS =

∫
∂R

(
δ
(√
−η
)
L+
√
−η δL

)
dσ ,

subject to the variations

ηµν → ηµν + δηµν δL = −1

2
δηµν∂µφ∂νφ .

To proceed, take the identity

δµν = (ηµρ + δηµρ) (ηρν + δηρν)

and solve for δηµν to get, to first order,

δηµν = −ηµαηβνδηαβ .

Meanwhile, the variation δ (
√
−η) expands as

δ
(√
−η
)

= − δη

2
√
−η

= −1

2

√
−η (ηµνδη

µν) .

Putting the pieces together, the variation in S becomes

δS =

∫
∂R

(
−
√
−η
2

)
δηµν

(
∂µφ∂νφ− ηµν

(
1

2
ηαβ∂αφ∂βφ+ U (φ)

))
dσ .

Taking the limit δS → 0, we are handed the stress-energy tensor T̂µν with low indices.
Raising the each index, we finally find, for real scalar fields:

T̂ µν = ηµαηβν∂αφ∂βφ− ηµν
(

1

2
ηαβ∂αφ∂βφ+ U (φ)

)
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Symmetry and Trace

The stress-energy tensor T̂ µν derived above is clearly symmetric, as swapping µ↔ ν leaves
the tensor unchanged:

T̂ µν = T̂ νµ

Meanwhile, the trace

T̂ µν = ∂µφ∂νφ− δµν
(

1

2
∂ρφ∂ρφ+ U (φ)

)
is readily shown not to vanish.

7.4 General Properties

The stress-energy tensor T̂ µν derived above must be repackaged for general use, namely
because T̂ µν is only symmetric for real scalar fields. To remedy this, we introduce a new
tensor K such that

T µν = T̂ µν + ∂ρK[ρµ]ν ,

where K is antisymmetric in the indices ρ, µ, and is also a total divergence:

K[ρµ]ν =
1

2
(Kρµν −Kµρν) ∂µ∂ρK[ρµ]ν = 0

The general stress-energy tensor T µν obeys the following:

� T µν is symmetric:
T µν = T νµ

� T µν is traceless:
T µµ = 0

� The 00-component is positive-definite:

T 00 > 0
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8 Electromagnetism

8.1 Maxwell’s Four Equations

Classical electrodynamics is neatly contained in Maxwell’s four equations

~∇ · ~E =
ρ

ε0
~∇× ~E = −∂

~B

∂t

~∇ · ~B = 0 ~∇× ~B = µ0
~J + µ0ε0

∂ ~E

∂t
,

where ~E and ~B are the electric and magnetic fields in vacuum. The charge density ρ and
current density ~J are subject to the continuity equation

∂ρ

∂t
+ ~∇ · ~J = 0 .

Electromagnetic Radiation

It’s readily shown that electromagnetic wave equations emerge from Maxwell’s equations
plus the vector calculus identity

~∇×
(
~∇× ~F

)
= ~∇

(
~∇ · ~F

)
−∇2 ~F .

In a region free of charges and currents, the time-derivative of each ~∇×-equation develops
as follows:

~∇× ∂ ~E

∂t
= −∂

2 ~B

∂t2
~∇× ∂ ~B

∂t
= µ0ε0

∂2 ~E

∂t2

~∇×
(
~∇× ~B

)
= −µ0ε0

∂2 ~B

∂t2
~∇×

(
~∇× ~E

)
= −µ0ε0

∂2 ~E

∂t2

∇2 ~B = µ0ε0
∂2 ~B

∂t2
∇2 ~E = µ0ε0

∂2 ~E

∂t2

The final pair of relations are simultaneous wave equations having propagation speed

c =
1

√
µ0ε0

.

8.2 Scalar Potential and Vector Potential

Insight from vector calculus tells us that the electric and magnetic fields ~E, ~B can be recast
as derivatives of other functions

~E = −~∇φ− ∂ ~A

∂t
~B = ~∇× ~A ,

where φ (~x, t) is the scalar potential, and ~B (~x, t) is the vector potential.
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Equations of Motion

In terms of scalar and vector potentials, Maxwell’s equations readily yield two new equations
of motion:

∇2φ+
∂
(
~∇ · ~A

)
∂t

= − ρ
ε0

−µ0
~J + ~∇

(
~∇ · ~A+

1

c2

∂φ

∂t

)
= − 1

c2

∂2 ~A

∂t2
+∇2 ~A = � ~A

Calculating Potentials

For a given charge distribution ρ(~x, t) and current density ~J(~x, t), the scalar and vector
potentials are given by

φ (~x, t) =
1

4πε0

∫
d3x′

ρ (~x′, tr)

|~x− ~x′|
~A (~x, t) =

µ0

4π

∫
d3x′

~J (~x′, tr)

|~x− ~x′|
,

where

tr = t− |~x− ~x
′|

c

is the retarded time.

8.3 Electromagnetic Field Strength Tensor

Four-Potential

To begin updating the full apparatus of electromagnetism with index-notation, merge the
electric scalar potential with the magnetic vector potential into the electromagnetic four-
potential :

Aµ(xµ) =

(
1

c
φ (~x, t) , ~A (~x, t)

)
Next, we construct a Lagrangian L for a particle of mass m and charge q that is the sum of
a kinetic term plus a ‘minimal coupling’ to the covariant version of the four-potential as

L =
m

2
UµUµ +

q

2
AµU

µ ,

where Uµ is four-velocity, that is, the proper time derivative of the position four-vector xµ.
The Euler-Lagrange equation

∂L

∂xµ
=

d

dτ

∂L

∂Uµ

readily tells us

m
dUµ
dτ

= qUν

(
∂Aν
∂xµ
− ∂Aµ
∂xν

)
= qUν (∂µAν − ∂νAµ) .

The parenthesized quantity is known as the electromagnetic field strength tensor :

Fµν = ∂µAν − ∂νAµ
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Derivation

Observe that Fµν is an antisymmetric tensor, which means

Fνµ = −Fµν ,

indicating that the ‘diagonal’ entries Fµµ are identically zero, thus there are six independent
components in F . The nonzero components of Fµν are straightforward to evaluate using the

four-potential Aµ = (−φ/c, ~A). Begin with F0i, with i = (1, 2, 3), giving the i-th component
of the electric field:

F0i =
(
∂t ~A/c+ ~∇φ/c

)
i

= −Ei
c

The magnetic field components are contained in terms Fij, namely:

F23 =
(
~∇× ~A

)
x

F13 = −
(
~∇× ~A

)
y

F12 =
(
~∇× ~A

)
z

Altogether we have, in block form (not a matrix):

Fµν =


F00 F01 F02 F03

F10 F11 F12 F13

F20 F21 F22 F23

F30 F31 F32 F33

 =


0 −Ex/c −Ey/c −Ez/c

Ex/c 0 Bz −By

Ey/c −Bz 0 Bx

Ez/c By −Bx 0


Note the components Fik can be written more clearly in terms of ~B by using the Levi-Civita
symbol:

Fik =
3∑

k=1

εijkBk

Using the Minkowski metric ηµν , the (2, 0) and (1, 1) forms of F work out to:

F µν =


0 Ex/c Ey/c Ez/c

−Ex/c 0 Bz −By

−Ey/c −Bz 0 Bx

−Ez/c By −Bx 0

 F µ
ν =


0 Ex/c Ey/c Ez/c

Ex/c 0 Bz −By

Ey/c −Bz 0 Bx

Ez/c By −Bx 0


Invariants

The inner product of the electromagnetic field tensor is equal to a Lorentz invariant:

FµνF
µν = 2

(
B2 − E2

c2

)
A pseudo-scalar invariant involves a contraction with the Levi-Civita symbol:

1

2
εαβγρF

αβF γρ = −4

c
~E · ~B

The determinant of F yields yet another Lorentz invariant:

det (F ) =
c

c2

(
~E · ~B

)2
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8.4 Equation of Motion

In terms of the electromagnetic field tensor, we have found (after adjusting the indices for
aesthetics), the relativistic equation of motion of a particle in mixed fields in flat space:

d2xµ

dτ 2
=

q

m
F µ
ν

dxν

dτ

Lorentz Force Law

The Lorentz force law ~F = q~v× ~B is only correct in the non-relativistic limit. The true force
law is derived from the above, giving:

d (E − E0)

dt
=
dT

dt
=
q ~E · ~v
γ2

m

(
d2~x

dτ 2

)
= qγ

(
~E + ~v × ~B

)
Boosted E and B Fields

Consider two inertial reference frames in relative motion at speed v in the x-direction. Using
the Lorentz transformation (F ′)µν = Λµ

αΛν
βF

αβ the components of (F ′) in terms of the
unprimed fields are straightforward to compute:

E ′x = Ex B′x = Bx

E ′y = γ (Ey − vBz) B′y = γ
(
By + vEz/c

2
)

E ′z = γ (Ez + vBy) B′z = γ
(
Bz − vEy/c2

)
(Note this is not the whole story, because the components of xµ must also be Lorentz-
transformed.) We can extend the above to handle boosts in any direction ~v as:

E ′‖ = E‖ B′‖ = B‖

~E ′⊥ = γ
(
~E⊥ − ~v × ~B

)
~B′⊥ = γ

(
~B⊥ + ~v × ~E/c2

)
Particle in Electric Field

Consider a particle of mass m and charge q initially at rest at the origin in a constant electric
field ~E = E x̂. The relativistic equation of readily tells us

dU t

dτ
=

q

m

E

c
Ux dUx

dτ
=

q

m

E

c
U t ,

where cross substituting the τ -derivative of each equation gives

d2U t

dτ
=

(
q

m

E

c

)2

U t d2Ux

dτ 2
=

(
q

m

E

c

)2

Ux ,

indicating hyperbolic solutions

U t (τ) = c cosh

(
qE

mc
τ

)
Ux (τ) = c sinh

(
qE

mc
τ

)
.
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Recalling that U t = d (ct) /dτ and Ux = dx/dτ , the above can be integrated:

t (τ) =

(
mc

qE

)
sinh

(
qE

mc
τ

)
x (τ) =

(
mc2

qE

)
cosh

(
qE

mc
τ

)
− mc2

qE

Using the identity
cosh

(
sinh−1 (x)

)
=
√

1 + x2 ,

the results are combined to solve for x (t):

x (t) =
c

qE

√
(qEt)2 + (mc)2 − mc2

qE

Particle in Magnetic Field

Consider a particle of mass m and charge q initially at rest at in a constant magnetic field
~B = B x̂. The relativistic equation of readily tells us

dUy

dτ
=
qB

m
U z dU z

dτ
= −qB

m
Uy ,

where cross substituting the τ -derivative of each equation gives

d2Uy

dτ
= −

(
qB

m

)2

Uy d2U z

dτ 2
= −

(
qB

m

)2

U z ,

indicating sinusoidal solutions

Uy (τ) = A sin

(
qB

m
τ + φ0

)
U z (τ) = A cos

(
qB

m
τ + φ0

)
where A and φ0 are integration constants. Integrating once more gives equations for y (τ),
z (τ), namely:

y (τ) = −A m

qB
cos

(
qB

m
τ + φ0

)
+ y0 z (τ) = A

m

qB
sin

(
qB

m
τ + φ0

)
+ z0

Meanwhile, the t- and x- components of the four-velocity are

U t (τ) = c
dt

dτ
Ux (τ) = ẋ0 .

The norm of the four-velocity always resolves to −c2, allowing us to solve for t (τ) by inte-
gration (of the gamma factor):

t = τ

√
1 +

ẋ2
0 + A2

c2
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Motionless Particle

Consider a point charge of magnitude q fixed at the origin in a reference frame qµ. The
electric and magnetic fields ~E, ~B for all points in space are given by

~E =
q

4πε0

~x

|~x|3
~B = 0 .

A boosted reference frame moving along the x-direction at speed v observes the same
point charge. Using the Lorentz transformation to find the electric and magnetic fields ( ~E)′,

( ~B)′ at all points in the boosted frame, we must have

( ~E)′ =
q

4πε0

(γ (x′ − vt′) , γy′, γz′)(
γ2 (x′ − vt′)2 + y′2 + z′2

)3/2

( ~B)′ =
v

c2

q

4πε0

(0, γz′,−γy′)(
γ2 (x′ − vt′)2 + y′2 + z′2

)3/2
.

For the case of ultra-relativistic motion v → c, the primed fields are

( ~E)′ = δ (x′ − ct′) 2q

4πε0

(0, y′, z′)

y′2 + z′2

( ~B)′ = δ (x′ − ct′) v
c2

2q

4πε0

(0, z′,−y′)
y′2 + z′2

.

Note that the above fields are confined to a two-dimensional plane that extends orthogo-
nally to the direction of motion, called an electromagnetic shock wave, whose derivation is
facilitated by

lim
β→1

1√
1− β2

f

(
x− ct
1− β2

)
= δ (x− ct)

∫ ∞
−∞

f (w) dw ,

along with the theory of distributions.

8.5 Currents

Similar to the rest mass, the quantity of charge is invariant in all reference frames. On the
other hand, the notion of current involves charge density and velocity, and must be treated
to accommodate special relativity.

Four-Current

Multiply the rest-frame charge density ρ0 into the velocity four-vector to write the four-
current :

Jµ = (ρ0γc, ρ0γ~v) = (ρc, ρ~v) =
(
ρc, ~J

)
The non-relativistic continuity equation is the four-gradient of the four-current:

∂µJ
µ =

∂ρ

∂t
+ ~∇ · ~J = 0

34



Boosted Current

In the same way that space and time interweave in special relativity, the current and the
density become mixed under general coordinate transformations. In a boosted reverence
frame moving at speed v in the x-direction, the components of Jµ

′
are given by the Lorentz

transformation
Jµ

′
= Λµ′

ν J
ν

such that
ρ′ = γ

(
ρ− vJx/c2

)
Jx

′
= γ (Jx − vρ) .

Gauss-Ampere Law

The key objects of electromagnetism are the four-potential Aµ, the electromagnetic field
tensor F µν , and the four-current Jµ. Assembling these into a (scalar) Lagrangian density
(and adjusting ahead for units), let us take

LEM = − 1

4µ0

F µνFµν − JµAµ

as a starting point. Applying the Euler-Lagrange equation for fields

∂L
∂Aµ

− ∂ν
(

∂L
∂ (∂νAµ)

)
= 0 ,

we find

µ0J
µ = ∂ν

(
∂L

∂ (∂νAµ)

)
= −1

4
ηαρηβσ∂ν

(
∂

∂ (∂νAµ)
(FαβFρσ)

)
= −1

4
ηαρηβσ∂ν

(
Fρσ

(
δναδ

µ
β − δ

ν
βδ

µ
α

)
+ Fαβ

(
δνρδ

µ
σ − δνσδµρ

))
= −1

4
∂ν (F νµ − F µν + F νµ − F µν)

−µ0J
µ = ∂νF

νµ ,

a result known as the Gauss-Ampere law in index notation.

8.6 Maxwell’s Two Equations

Using index notation, the set of four Maxwell’s equations can be reduced to two equations.

Four-Curl

The electromagnetic field tensor obeys a cyclic derivative equation (an analog to the Bianchi
identity from Riemann geometry)

∂ρFµν + ∂µFνρ + ∂νFρµ = 0 ,
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also known as the four-curl of the electromagnetic field strength tensor. Note that when
two indices are equal, the above yields 0 = 0, and permutations in the indices yield no new
information.

Choosing
ρ = 1 µ = 2 ν = 3 ,

we get the familiar statement about the divergence of any magnetic field, namely

∂xBx + ∂yBy + ∂zBz = ~∇ · ~B = 0 .

Meanwhile, writing three instances with (0, 1, 2), (0, 2, 3), (0, 3, 1) gives

∂tBz + ∂xEy − ∂yEx = 0

∂tBx + ∂yEz − ∂zEy = 0

∂tBy + ∂zEx − ∂xEz = 0 ,

which add to deliver another of Maxwell’s equations,

~∇× ~E = −∂
~B

∂t
.

The Gauss-Ampere law isn’t a new law, but in fact contains the two Maxwell’s equations
not contained in the four-curl of F . Writing out the law explicitly,

∂νF
νµ = −µ0J

µ

breaks into:

∂νF
νµ =

[
−~∇ · ~E/c

c−2∂ ~E/∂t− ~∇× ~B

]
=

[
−µ0ρc

−µ0
~J

]
= −µ0J

µ

8.7 Gauge Fixing

The equations of electromagnetism stem from derivatives the four-potential Aµ. The four-
potential is not uniquely determined, but is set by the gauge of the theory being applied.

Lorenz Gauge

The continuity equation ∂µJ
µ = 0 automatically implies that the four-potential may be

translated by a harmonic scalar function fµ that obeys ∂µ∂µf = 0, namely

Aµ → Aµ + fµ ,

with no physical consequences, i.e. Fµν remains unchanged:

(F ′)µν = ∂µ (Aν + fν)− ∂ν (Aµ + fµ) = Fµν

The translation Aµ → Aµ + fµ may also be written

∂µA
µ = 0 ,
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known as the Lorenz gauge-fixing condition. (Note ‘Lorenz’ is not a misspelling of ‘Lorentz’
- these are two different names if this subject wasn’t confusing already.) In ordinary vector
notation, the Lorenz gauge-fixing condition is written

1

c2

∂φ

∂t
+ ~∇ · ~A = 0 ,

which greatly simplifies the corresponding equations of motion (previously written) to inho-
mogeneous wave equations

−∂
2φ

∂t2
+∇2φ = − ρ

ε0

− 1

c2

∂2 ~A

∂t2
+∇2 ~A = −µ0

~J + ~∇
����������
(
~∇ · ~A+

1

c2

∂φ

∂t

)
,

more succinctly written in terms of the d’Alembert operator as

�Aµ = µ0J
µ .

Coulomb Gauge

In contrast to the Lorenz gauge, which makes no reference to a preferred reference frame, we
may also work in the so-called Coulomb gauge, also known as the ‘radiation’ or ‘transverse’
gauge-fixing condition by setting

~∇ · ~A = 0 .

The corresponding equations of motion become:

∇2φ = − ρ
ε0

− 1

c2

∂2 ~A

∂t2
+∇2 ~A = −µ0

~J + ~∇
(

1

c2

∂φ

∂t

)
It can be shown that the final term in the above can be restated as µ0 times the longitudinal
component of the current density Jl such that ~∇ × ~Jl = 0. The transverse component of
the current density Jt has the property ~∇ · ~Jt = 0 and ~J = ~Jl + ~Jt according to Helmholtz’s
theorem. The latter equation is thus:

∇2 ~A− 1

c2

∂2 ~A

∂t2
= −µ0

~Jt

8.8 Electromagnetic Stress-Energy Tensor

The most general form of the stress-energy tensor for a covariant vector field Aσ was found
to be

T µν = − ∂L
∂ (∂µAσ)

∂νAσ + ηµνL+ ∂ρK[ρµ]ν ,
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where the K-term assures gauge invariance and the zero-trace property of T µν . Using the
Lagrangian density

LEM = − 1

4µ0

F µνFµν − JµAµ ,

along with setting

∂ρK[ρµ]ν =
1

µ0

F µρ∂ρA
ν ,

the electromagnetic stress-energy tensor reads

T µνEM =
1

µ0

(
F µρF ν

ρ −
1

4
ηµνFαβFαβ

)
− ηµνJρAρ .

Properties

For spaces enclosing no charges or currents (Jµ = 0), the homogeneous electromagnetic
stress-energy tensor is easily shown to be symmetric, have zero divergence, and have zero
trace:

T µνEM = T νµEM ∂µT
µν
EM = 0 (TEM)µµ = 0

Components

Determining the components of T µνEM is a matter of brute-force calculation based on our
previous achievements. In space not enclosing charges or currents, the homogeneous version
(Jλ = 0) reads

T µν =


ε0E

2/2 +B2/2µ0 Sx/c Sy/c Sz/c
Sx/c −σxx −σxy −σxz
Sy/c −σyx −σyy −σyz
Sz/c −σzx −σzy −σzz

 ,

where Sj are components of the Poynting vector

~S =
1

µ0

~E × ~B ,

and any purely spatial components are contained in the Maxwell stress tensor σij:

σij = ε0EiEj +
1

µ0

BiBj −
1

2

(
ε0E

2 +
1

µ0

B2

)
δij
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9 Matter and Fluids

From the point of view of fields, manifolds, and spacetime geometry, matter is modeled as
a continuous fluid that ignores quantum mechanics. Accounting for special relativity, the
notion of material volume is subject to length contraction, however the number of particles
per unit volume is a Lorentz invariant.

9.1 Number-Flux Four-vector

At any point in space mapped by coordinates qµ, there exists a dimensionless matter density
scalar n (qµ). Coupling this with the velocity four-vector gives the number-flux four-vector,

Nµ = n (qµ)Uµ (qµ) .

In the non-relativistic limit, Nµ reduces to

Nµ =
(
c n (~x, t) , ~J (~x, t)

)
,

where ~J is the non-relativistic number-flux three-vector. Taking the divergence of N , we
find

∂µN
µ =

∂

∂t
n (~x, t) + ~∇ · ~J (~x, t) ,

identical in form to the electric and gravitational continuity equations. To ensure conserva-
tion of matter, we set the equation equal to zero:

∂µN
µ = 0

9.2 Stress-Energy Tensor for Matter

By definition, the stress-energy tensor T µν is the flux of the four-momentum P µ = (E/c, ~p)
across a surface of constant qµ = (ct, ~q). Using suitable notation for neutral matter, the
components of T µν are:

T 00 =
∆E

d3q
= Energy Density

T i0 =
∆pi

d3q
= Momentum Density

T 0i =
∆E

∆t

1

∆qj∆qk
= Energy Flux

T ij =
∆pi

∆t

1

∆qi∆qk
= Shear Stress or Momentum Flux

T ii =
∆pi

∆t

1

∆qj∆qk
= Pressure
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9.3 Isolated Particle

A single particle of mass m that traces out the trajectory ~qp with velocity components V µ

has

T µν = m
V µV ν√

1− V 2/c2
δ (~q − ~qp) .

Since we know E = γmc2, we may instead write

T µν = E
V µV ν

c2
δ (~q − ~qp) ,

where E may also be replaced via E2 = p2c2 +m2c4. At rest, T µν simplifies to

T µν = mc2δ (~qp) δ
00 .

9.4 Perfect Fluid

A continuum of matter in thermodynamic equilibrium is known as a perfect fluid. Treating
the four-velocity as a vector field, each point in space caries a stress-energy tensor given by

T µν =
(
ρ+ p/c2

)
UµUν + ηµνp ,

where ρ is the mass-density, and ~p is the isotropic pressure. In its rest frame, the stress-energy
tensor for a perfect fluid has only diagonal components:

T µν = diag
(
ρc2, p, p, p

)
Boosted Fluid

Consider a perfect fluid at rest in the coordinate system qµ. A boosted system moving at
speed v = βc along the x-direction mapped by qµ

′
that observes the fluid will carry a different

stress-energy tensor given by
T µ

′ν′ = Λµ′

µ Λν′

ν T
µν .

The non-zero components of T µ
′ν′ work out to:

(T ′)
00

= Λ0
0Λ0

0T
00 + Λ0

1Λ0
1T

11 (T ′)
11

= Λ1
1Λ1

1T
11 + Λ1

0Λ1
0T

00

(T ′)
00

=
ρc2 + pβ2

1− β2
(T ′)

11
=
p+ ρv2

1− β2
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10 Einstein’s Field Equation

10.1 Riemannian Geometry

Index notation and tensors are a natural language for Riemannian geometry, which applies
calculus on multi-dimensional curved manifolds admitting a general metric tensor gµν .

Covariant Derivative

To begin, the notion of the partial derivative must be replaced by the covariant derivative
in order to ensure that tangent vectors remain on the manifold via:

∂νV
µ → DνV

µ = ∂νV
µ + ΓµνρV

ρ ,

where the connection coefficients Γρµν (not a tensor!) are given in terms of the metric tensor
as

Γρµν =
1

2
gρα (∂µgνα + ∂νgαµ − ∂αgµν) .

Geodesics

The un-accelerated equation of motion is the geodesic equation

0 =
dUρ

dτ
+ ΓρµνU

µUν .

Curvature

For curved space, the Riemann curvature tensor

Rρ
σµν = ∂µΓρνσ − ∂νΓρµσ + ΓρµλΓ

λ
νσ − ΓρνλΓ

λ
µσ ,

is nonzero, where a contraction over the top and bottom-middle indices yields the more
accessible Ricci tensor

Rµν = Rρ
µρν = gαβRαµβν .

The Ricci tensor can be projected into a scalar by contracting indices via

gµνRµν = Rµ
µ = R .

Einstein Tensor

A particular combination of Ricci-objects combine to a new tensor that has zero covariant
derivative, called the Einstein tensor:

Gµν = Rµν − 1

2
gµνR DνG

µν = 0
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10.2 Weak Curvature

A weakly-curved space admits a perturbed Minkowski metric

gµν = ηµν + hµν ,

where hµν is the non-flat component. In the non-relativistic limit, the geodesic equation tells
us

d2~q

dt2
=
c2

2
~∇h00 ,

which implies a curved surface is analogous to acceleration. Finally, note it’s readily shown
that the time-component of the Ricci tensor reads

R00 = −1

2
∇2h00 .

10.3 Curvature and Gravity

With all the elements laying around, Einstein eventually postulated that perhaps the accel-
eration that arises due to curvature is gravity. In the weak-field case, it would immediately
follow that

h00 = − 2

c2
V (~r) R00 =

1

c2
∇2V (~r) ,

where V (~r) is the gravitational potential scalar. Of course, the Laplacian operator ∇2

acting on the gravitational potential resolves to 4πGρm, where G is the Newton’s gravitation
constant, and ρm is the mass-density. That is,

R00 =
4πG

c2
ρm

10.4 Curvature and Matter

Knowing that Gµν has zero covariant derivative on curved manifolds, Einstein further spec-
ulated that the general stress-energy tensor T µν , which must also have zero covariant deriva-
tive, is in fact proportional to Gµν via

DνG
µν = DνT

µν = 0 → Gµν ∝ T µν ,

where we simply have to find the proportionality constant κ in

Gµν = κT µν .

To proceed, take the low-index version of the Einstein tensor and contract with gµν ,
giving

gµνGµν = gµν
(
Rµν −

1

2
gµνR

)
= κgµνTµν .

Note that gµνRµν is simply the Ricci scalar R, and the product gµνgµν counts the dimension
of the manifold, which we take to be four. Also, note that the product gµνT

µν is the trace
of the stress energy-tensor, denoted T . With this in mind, the above reduces to

−R = κT ,
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such that the field Gµν now reads

Rµν +
1

2
gµνκT = κTµν .

Isolating the 00-component, we have

R00 +
1

2
κT = κT00 .

Since all we’re doing is solving for the constant κ, we’re free to work in the non-relativistic
limit. Taking the perfect fluid at rest, it follows that T00 = ρmc

2, and the trace of T is −ρmc2.
Evidently then,

R00 =
1

2
κρmc

2 .

Comparing R00 to the result that arises from weak curvature, κ may finally be isolated:

1

2
κρmc

2 =
4πG

c2
ρm → κ =

8πG

c4

Finally, we write the mighty Einstein Field equation

Gµν =
8πG

c4
T µν ,

telling us that the presence of matter and energy cause curvature in spacetime, and that
curved spacetime is the literal interpretation of gravity.
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