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Introduction

Central forces are ubiquitous in physics, arising in many situations when a particle is pushed
or pulled at a distance from a point (presumably another particle). This is the main feature
of gravitational and electrostatic interactions, and arises as a special case in more exotic
systems.

1 Polar Coordinates

The Cartesian coordinate system with position vectors ~r = x x̂+ y ŷ is an awkward footing
for central force analysis, whereas a system of polar coordinates is more natural. A set of
polar coordinates that overlaps with Cartesian coordinates is expressed by

x = r cos θ y = r sin θ ,

where r is the distance from the origin, and θ is an angular parameter where θ = 0 coincides
with the positive x-axis. The position vector ~r thus reads

~r = r cos θ x̂+ r sin θ ŷ .

1.1 Unit Vectors

Divide the position vector ~r by its magnitude r to write the radial unit vector r̂:

r̂ =
~r

r
= cos θ x̂+ sin θ ŷ

The angular unit vector θ̂ is computed from the position vector as:

θ̂ =

∣∣∣∣∂r̂∂θ
∣∣∣∣−1(∂r̂∂θ

)
= − sin θ x̂+ cos θ ŷ

Inverting the above equations to solve for x̂ and ŷ is straightforward in two dimensions.

x̂ = cos θ r̂ − sin θ θ̂

ŷ = sin θ r̂ + cos θ θ̂

Since the unit vectors r̂, θ̂ depend on the coordinates in the 2D plane (much unlike the
Cartesian unit vectors), their derivatives are nontrivial. Taking time derivatives, we find

d

dt
r̂ = −dθ

dt
sin θ x̂+

dθ

dt
cos θ ŷ =

dθ

dt
θ̂

d

dt
θ̂ = −dθ

dt
cos θ x̂− dθ

dt
sin θ ŷ = −dθ

dt
r̂
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1.2 Velocity and Acceleration

While the position vector does not need a θ-component, its time derivative, namely the
velocity, surely does:

d

dt
~r (t) =

dr

dt
r̂ + r

dr̂

dt

=
dr

dt
r̂ + r

dθ

dt
θ̂

Further, the acceleration is straightforwad to calculate, although a bit messy:

d2

dt2
~r (t) =

d2r

dt2
r̂ +

dr

dt

dr̂

dt
+
dr

dt

dθ

dt
θ̂ + r

d2θ

dt2
θ̂ + r

dθ

dt

θ̂

dt

=
d2r

dt2
r̂ +

dr

dt

dr̂

dt
+
dr

dt

dθ

dt
θ̂ + r

d2θ

dt2
θ̂ + r

dθ

dt

dθ̂

dt

=

(
d2r

dt2
− r

(
dθ

dt

)2
)
r̂ +

(
r
d2θ

dt2
+ 2

dr

dt

dθ

dt

)
θ̂

1.3 Lines and Arcs

In Cartesian coordinates, a differential line element is readily given by

d~S = dx x̂+ dy ŷ .

Using x = r cos θ, y = r sin θ, we find the differntial line element in polar coordinates becomes

d~S = (dr cos θ − r dθ sin θ) x̂+ (dr sin θ + r dθ cos θ) ŷ

d~S = dr r̂ + r dθ θ̂ .

The absolute length of a line is calculated from

S =

∫ √
d~S · d~S ,

delivering two useful forms

S =

∫ xf

xi

√
1 +

(
dy

dx

)2

dx =

∫ θf

θi

√
1 +

1

r2

(
dr

dθ

)2

r dθ

1.4 Area Integrals

The total area swept out by the position vector ~r (θ) is a sum of triangles having area
(1/2) r2 dθ such that

A =
1

2

∫ θf

θi

(r (θ))2 dθ .

4



2 Two-Body Problem

We proceed by studying two massive particles (labeled 1 and 2) interacting by an unspecified
force. Newton’s equations of motion read

m1
d2

dt2
~r1 = ~F12 m2

d2

dt2
~r2 = ~F21 ,

where position vectors ~r1,2 are measured from some origin, and the force F is equal and
opposite between the particles.

2.1 Center of Mass

The center of mass of the two-body system is defined as

~R (t) =
m1~v1 +m2~v2
m1 +m2

,

where ~v1,2 is equivalent to d~r1,2/dt. Directly following from the equations of motion we find

d2

dt2
~R (t) = 0

by direct calculation. That is, the center of mass moves at constant velocity ~V0.

2.2 Relative Displacement

The vector displacement
~r (t) = ~r1 (t)− ~r2 (t)

between the two particles avails a shortcut around writing separate differential equations for
each position vector. In terms of ~r and ~R, each position reads

~r1 = ~R +
m2

m1 +m2

~r ~r2 = ~R− m1

m1 +m2

~r .

2.3 Reduced Mass

To make use of the relative displacement vector, multiply the Newtonian equations of motion
through by m2, m1 respectively to get

m1m2
d2

dt2
~r1 = m2

~F12 m1m2
d2

dt2
~r2 = −m1

~F12 ,

where ~F21 = −~F12 has been used, and then subtract the results to get

m∗
d2

dt2
~r = ~F12 m∗ =

m1m2

m1 +m2

,

where m∗ is called the reduced mass of the system. The resulting differential equation for
~r (t) is equivalent to an equation of motion of a single particle of mass m∗ with respect to
an origin ~r = 0.
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2.4 External Potential Energy

From Newtonian mechanics, we know the external force vector ~F12 is the negative gradient
of the external potential energy U12, as in

~F12 = − ∂

∂~r
U12 (~r) = − ∂

∂r
U12 (r)

~r

r
.

Note that the vector ~r has been replaced by its magnitude r inside the argument of U12 from
symmetry arguments, that is U (~r) = U (r).

2.5 Total Energy

The total energy of a particle moving at velocity ~v = d~r/dt combines its kinetic energy with
its external potential energy U (r) to get

E =
1

2
m∗v

2 + U (r) .

It’s readily shown that E is constant by taking a time derivative:

d

dt
E = m∗ ~v ·

d~v

dt
+
d

dt
U (r)

=
d~r

dt
·
(
m∗

d~v

dt
+

∂

∂~r
U (r)

)
= ~v ·

�������
(
~F12 − ~F12

)
= 0

2.6 Momentum

The linear momentum ~p = m∗~v is surely not conserved, however the angular momentum
about the orign is a constant of motion. By definition, the angular momentum ~L reads

~L = m∗~r × ~v .

It’s readily shown that L is constant by taking a time derivative

d

dt
~L = m∗~r × ~v

= m∗����(~v × ~v) +m∗ ~r × ~F12

= 0 ,

which resolves to zero because ~r is parallel to ~F12. That is, there is no torque exerted in the
system.

Using polar coordinates, the angular momentum of a test particle is

~L = m∗~r × ~v

= m∗ (r cos θ x̂+ r sin θ ŷ)× dθ

dt
(−r sin θ x̂+ r cos θ ŷ)

= m∗r
2dθ

dt
ẑ ,
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giving us a tight expression for L in terms of the coordinates

L = m∗r
2dθ

dt
.

2.7 Planar Motion

The angular momentum vector ~L is constant of motion, meaning it does not change sign or
direction. It follows that ~r and ~v are always confined to the same plane perpendicular to ~L,
which is an important feature of central force motion: all trajectories occur in a plane.

2.8 Effective Potential Energy

Meanwhile, in terms of L, the energy of the particle becomes

E =
1

2
m∗

(
dr

dt

)2

+
L2

2m∗r2
+ U (r) ,

which is a first-order differential equation in r. The latter two terms naturally combine into
the effective potential energy

Ueff (t) = U (r) +
L2

2m∗r2
,

where the combination L2/2m∗r
2 is known as the centrifugal potential energy, the gradient

of which is the centrifugal force. The energy is now the sum of distinct time-dependent and
space-dependent parts:

E =
1

2
m∗

(
dr

dt

)2

+ Ueff (r)

2.9 Effective Force

A time derivative of E reveals a one-dimensional version of Newton’s second law:

m∗
d2

dt2
r (t) = Feff (r) Feff (r) = − d

dr
Ueff (r)
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3 One-Dimensional Motion

Two-body analysis considers a pair of interacting particles (m1, m2) as a single body of
reduced mass m∗ with an external potential energy. In deriving the analog to Newton’s
second law, we have introduced the notion of the central potential, i.e. U (~r) = U (r). The

total energy E and angular momentum ~L are constants of motion.
Before resuming a general study of central force motion, let us focus on the purely one-

dimensional case. For a particle of mass m in a one-dimension with effective potential U (x),
we have Newtonian equations of motion

m
d2

dt2
x (t) = F (x) F (x) = − d

dx
U (x) ,

implying the energy conservation equation

E =
1

2
m

(
dx

dt

)2

+ U (x) .

In the general case, the solution to the above is given by

dx

dt
= ±

√
2

m
(E − U (x))

to get the equation of motion

t = ±
√
m

2

∫ xf

xi

dx√
E − U (x)

.

3.1 Time-Reversal Symmetry

The ± symbol in the equation of motion indicates time-reversal symmetry of the problem.
Typically in one-dimensional systems, the solution to the equation of motion exhibits such
symmetry, a stronger constraint than what we have. Supposing x (t) is a solution to the
equation of motion, time-reversal symmetry implies that x1 (t) = x (t0 − t) is also a solution
that differs from original x (t) by an integration constant.

For most configurations, there exists at least one turning point t∗ at which the velocity
goes to zero. We exploit time-reversal symmetry to write an exact time-reversed-and-shifted
equation

x1 (t) = x (2t∗ − t) .
Next, we note from function- and derivative matching that

x1 (t∗) = x (t∗)
d

dt
x1 (x (t∗)) = − d

dt
x (x (t∗)) = 0 ,

and so on for higher derivatives. We may then drop the 1-subscript to get

x (t) = x (2t∗ − t) .
Shifting the above by t∗, the symmetric equation

x (t∗ + t) = x (t∗ − t)
emerges. In one dimension, the essence of time-reversal symmetry means that equations of
motion are symmetric about turning points t∗.
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3.2 Trapped Particle

Potential energy functions U (x) that exhibit at least one local minimum can ‘trap’ a particle
into an oscillatory pattern. Supposing xi and xf correspond to turning points in the motion,
the oscillatory period is given by

T =
√

2m

∫ xf

xi

dx√
E − U (x)

.

The quantity E − U (x) is always positive except at the turning points, at which the speed
of the particle is instantaneously zero.

3.3 Harmonic Oscillations

In the vicinity of a local energy minimum at x∗, the first- and second-derivatives of U (x∗)
are

d

dx
U (x∗) = 0

d2

dx2
U (x∗) = λ > 0 ,

which allows U (x) to be approximated by Taylor series:

U (x) ≈ U (x∗) +
1

2
λ (x− x∗)2

Applying Newton’s second law, the corresponding equation of motion is

d2

dx2
x (t) = − λ

m
(x− x∗) ,

whose solution is known as the harmonic oscillator

x (t) = x∗ + A sin

(√
λ

m
t− φ0

)
.

The amplitude of oscillation is A, and the initial phase is contained in φ0.

3.4 Unstable Equilibrium

An equilibrium point x∗ exists at any local maximum of U (x), however motion around such
a point is unstable (non-oscillatory). To show this, reverse the sign on λ to arrive at the
differential equation

d2

dx2
x (t) =

λ

m
(x− x∗) ,

generally solved by
x (t) = x∗ + Aeλt +Be−λt .

That is, the particle is pulled away from x∗ and rides U (x) downhill.
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4 Planar Orbits

We may apply the insights from one-dimensional analysis to the r-variable that occurs in
the two-body problem. The differential equation governing r (t), namely

E =
1

2
m∗

(
dr

dt

)2

+ Ueff (r) ,

has easily-attainable solutions given by

t = ±
√
m∗
2

∫
dr√

E − Ueff (r)
.

Meanwhile, an equation for θ is given in terms of the (constant) angular momentum,
namely L = m∗r

2 dθ/dt, as in

θ (t) = θ0 +
L

m∗

∫ t

0

dt′

r2 (t′)
,

which of course can be expressed in the r-domain instead:

θ = ± L√
2m∗

∫
dr/r2√

E − Ueff (r)

The t- and θ-equations fully determine the geometry of the motion, called the orbit. The
orbit (of a particle) is a special case of the kinematic trajectory in the sense that the initial
conditions are not specified.

4.1 Apogee and Perigee

Supposing there exits a time t∗ at which the radius r reaches a turning point (i.e. dr/dt = 0),
the corresponding point (r∗, θ∗) in the plane is called the apogee if r is at a maximum, and
the perigee if r is at a minimum. Solutions to the θ-equation occur in four explicit branches:

Apogee, θ > θ∗ θ = θ0 +
L√
2m∗

∫ r

r∗

dr/r2√
E − Ueff (r)

Apogee, θ < θ∗ θ = θ0 −
L√
2m∗

∫ r

r∗

dr/r2√
E − Ueff (r)

Perigee, θ > θ∗ θ = θ0 +
L√
2m∗

∫ r∗

r

dr/r2√
E − Ueff (r)

Perigee, θ < θ∗ θ = θ0 −
L√
2m∗

∫ r∗

r

dr/r2√
E − Ueff (r)

Emergent from the above is the reflection property about θ∗, namely

r (θ∗ − θ) = r (θ∗ + θ) .
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4.2 Bounded Orbits

When the potential energy U (x) contains a local minimum, a particle with a sufficiently low
energy may become ‘trapped’ in the so-called potential well. Looking at the evolution of θ
between two extreme points (perigee to apogee or vice-versa), we have

θ =
L√
2m∗

∫ ra

rp

dr/r2√
E − Ueff (r)

,

which is some number that is not generally a rational fraction of π. That is, we find that
orbits are bounded aren’t necessarily repeated shapes, but may have a any (or an infinite)
number of apogees and perigees. We will soon find there are two exceptions to this, where
if the energy U has certain dependence on r, closed orbits are possible.

4.3 Circular Orbits

Any trapped particle can exhibit the special behavior of circular motion about the center,
namely

r (t) = r0 θ (t) = θ0 +
Lt

m∗r20
,

in which case the effective potential energy is constant:

Ueff (r0) = U (r0) +
L2

2m∗r20

d

dr
Ueff (r0) = 0

The spatial derivative of the above tells us the force balance between the attraction and the
centrifugal repulsion

d

dr
U (r0) =

L2

m∗r30
=
m

r0

(
r0
dθ

dt

)2

=
mv20
r0

,

where r dθ/dt is the (constant) speed v0 of the particle. The period of motion is the time
required for θ to increase by 2π, easily written from our θ (t) solution:

T =
2πm∗r

2
0

L
= 2π

√
mr0
U ′ (r0)

d

dr
U (r0) = U ′ (r0)
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5 Power Law Potentials

Most central potential energies follow a power law, namely

U (r) = − γ

rα
Ueff (r) = − γ

rα
+

L2

2m∗r2
,

where γ and α are constants depending on the specific potential.

5.1 Circular Orbit Stability

For near-circular orbits, the effective potential energy Ueff (r) with γ > 0 can be Taylor-
expanded in the vicinity r ≈ r0 by

Ueff (r) ≈ Ueff (r0) +�������d

dr
Ueff (r)

∣∣
r0

(r − r0) +
d2

dr2
Ueff (r)

∣∣
r0

(r − r0)2

2!
+ ... ,

where the first-order term is zero by definition, and the second-order derivative term resolves
to:

d2

dr2
Ueff (r0) = −α (α + 1) γ

rα+2
0

+
3L2

m∗r40

= −α (α + 1) γ

rα+2
0

+
3

r0����
���(

d

dr
U (r0)

)
αγ

rα+1
0

=
αγ

rα+2
0

(2− α)

=

(
L2

m∗r40

)
(2− α)

The orbital angular frequency ω of the circular orbit equals 2π over the period, namely

ω0 =
2π

T
=

��2πL

��2πm∗r20
,

simplifying the second-order derivative term further. As a result, we have

Ueff (r) ≈ Ueff (r0) +
1

2
ω2
0 (2− α) (r − r0)2 ,

which has two nontrivial classes of behavior.
For all α > 2, near-circular orbits are unstable, meaning particles with high enough

energy will slip away to r →∞, whereas particles with sufficiently low energy or sufficiently
low radius will inevitably collapse to r = 0. For α < 2, the system corresponds to a
one-dimensional harmonic oscillator in r, thus near-circular orbits are stable. The angular
frequency in the r-variable is given by

ωr = ω0

√
2− α ,

implying that periodic closed orbits occur when
√

2− α is a rational number. Conveniently
we’ll see that the Coulomb and gravitational potentials (α = 1), along with the harmonic
oscillator (α = −2) each produce closed orbits not limited to circles. The next closed orbit
corresponds to α = −7.
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5.2 Harmonic Potential

Power law potential energies that restrict γ > 0 and α < 0 always lead to bounded motion,
not much different than the behavior of U (r) ∝ −1/rα, in where the orbit is non-periodic
(many apogees and perigees). One special case is the harmonic potential

U (r) = γr2 .

In three dimensions, the harmonic potential reads

U (r) = γ
(
x2 + y2 + z2

)
,

a separable differential equation. Since central force motion is always confined to a plane,
let us choose to align the z-axis as perpendicular to the xy-plane of motion. This implies a
pair of independent one-dimensional differential equations in x and y:

d2

dt2
x (t) = −ω2x (t)

d2

dt2
y (t) = −ω2y (t) ω =

√
2γ

m∗

General solutions to the above are trigonometric, namely

x (t) = Ax cos (ωt− φx) y (t) = Ay cos (ωt− φy) ,

where Ax,y and φx,y are determined from initial conditions. We can do away with the φx-term
by placing the particle at Ax at t = 0 and defining the x-axis to pass through that point.
Then, the y-component of the position must be zero, telling us φy = π/2. Finally, we find a
closed equation for elliptical orbits with the origin at the center:

x (t) = Ax cos (ωt) y (t) = Ay sin (ωt)
x2

A2
x

+
y2

A2
y

= 1

5.3 Dimensionless Variables

The power law potential U (r) does not imply any special cases in scale or energy. However,
the effective potential Ueff (r) embeds the notion of a minimal-energy circular orbit charac-
terized by the angular momentum of the particle. It makes sense therefore to define three
dimensionless variables

ρ =
r (t)

r0

E =
E

|Emin|
=

E

|Ueff (r0)|

τ =
t

Tcirc
= t

L

2πm∗r20

where r0 is the radius of the circular orbit corresponding to the lowest energy allowed, Emin.
The condition for circular orbits (d/dr)Ueff (r0) = 0 tells us how to relate r0, |Emin|, L, and

13



γ:

r
(2−α)
0 =

L2

αγm∗

|Emin| =
2− α
α

L2

2m∗r20

Using dimensionless variables, the equations of motion become

θ = ±
∫ ρf

ρi

dρ/ρ2√
(2− α) E/α− 1/ρ2 + (2/α) /ρα

τ = ±
(

1

2π

)∫ ρf

ρi

dρ√
(2− α) E/α− 1/ρ2 + (2/α) /ρα

.

In the above, that the square root term(s) resolve to zero at turning points ρ = (ρa, ρp).
Thus,

(2− α) E/α− 1/ρ2 + (2/α) /ρα = 0

can be used to determine all apogees and perigees.

14



6 Inverse-Square Attraction

The special case (α = 1), (γ > 1)

U (r) = −γ
r

is responsible for the gravitational force and the attractive Coulomb force. The circular orbit
is natural to this potential such that

r0 =
L2

γm∗
Tcirc =

2πL3

m∗γ2
=

2πm∗r
2
0

L
|Emin| =

m∗γ
2

2L2
.

The equation of motion for θ drastically simplifies to

θ = ±
∫

dρ/ρ2√
E − 1/ρ2 + 2/ρ

,

which can be solved analytically by letting ξ = 1/ρ and then β = ξ − 1 to get

θ = ±
∫

−dξ√
− (ξ − 1)2 + 1 + E

= ±
∫

−dβ√
−β2 + 1 + E

.

Factor 1 + E out of the square root and let γ = β/
√

1 + E :

θ = ±
∫

−dβ/
√

1 + E√
−β2/ (1 + E) + 1

= ±
∫

−dγ√
1− γ2

Next, let γ = cosψ to get

θ = ±
∫

���sinψ dψ

���sinψ
= ±ψ .

Undo each substitution all the way back to ρ and we finally get

θ = θ0 ± arccos

(
1/ρ− 1√

1 + E

)
.

The integration constant is ignored as a mere rotation of the xy-plane. Solving the above
for ρ, we find

ρ =
1

1 +
√

1 + E cos θ
,

the polar equation of a conic section with the origin at the right-hand focus.
The quantity

e =
√

1 + E

is identified as the eccentricity of the orbit. For all e < 2, the orbit corresponds to an ellipse.
For e > 2, the motion is hyperbolic. The special case e = 0 corresponds to a parabola.
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6.1 Runge-Lenz Vector

The fact that the −γ/r potential supports closed stable orbits suggests a conserved quantity
beyond energy and momentum. It turns out that the Runge-Lenz vector has been here all
along, written as

~Z = ~v × ~L− γ r̂ ,

proven to be constant using a time derivative:

d

dt
~Z =

d~v

dt
× ~L+

�
�
�
�

~v × d~L

dt
− γ dr̂

dt

= − 1

m∗

γ

r2
r̂ × (~r ×m∗ ~v)− γ d

dt

(
~r

r

)
= γ

(
− (r̂ (r̂ · ~v)− ~v (r̂ · r̂))

r
− ~v

r
+
r̂

r
(r̂ · ~v)

)
= 0

Being constant, we’re free to evaluate ~Z anywhere on the orbit. Choosing a perigee at
~rp = rp x̂ where ~vp · ~rp = 0, we find:

~Z = ~vp × (~rp ×m∗ ~vp)− γ r̂p
= m∗ ~rp (~vp · ~vp)−m∗ ~v�����(~vp · ~rp)− γ r̂p

=

(
L2

m∗rp
− γ
)
r̂p = γ

(
1

ρp
− 1

)
x̂

= γ
(

1 +
√

1 + E − 1
)
x̂

~Z = γe x̂

Interpreting ~Z, it follows that all orbits in a −γ/r potential contain at least one perigee,
defining the x-axis, about which the orbit is symmetric. All other details of the orbit are
contained in the eccentricity e.

6.2 Geometry

We verify all orbits to be conic sections by projecting ~r onto ~Z:

~r · ~Z = ~r ·
(
~v × ~L

)
− γ~r · r̂

|~r|
∣∣∣~Z∣∣∣ cos θ = ~L · (~r × ~v)− γr

rγe cos θ =
L2

m∗
− γr

r =
r0

1 + e cos θ

16



We can relate a and b to r0 using the r (θ) equation. Taking the difference between r (0)
and r (π), we find

a =
1

2

(
r0

1 + e
+

r0
1− e

)
=

r0
1− e2

.

Solving for b isn’t as simple. Proceed by calculating

0 =
d

dθ
y =

d

dθ
(r sin θ)

to find the angle θ∗ that corresponds to the top of the ellipse:

0 =
d

dθ

(
r0 sin θ

1 + e cos θ

)
= r0

e+ cos θ

(1 + e cos θ)2
cos θ∗ = −e

At θ∗, it follows that

r∗ =
√
e2a2 + b2 b = r∗ sin θ∗ ,

leading to

b =
r0√

1− e2
.

For elliptical orbits, note that the semi-major axis a and semi-minor axis b relate to the
eccentricity, and thus the physical qualities of the system, by

b

a
=
√

1− e2 =
√
−E ,

reminding us that the energy of a closed orbit is always negative. Meanwhile, hyperbolic
curves correspond to positive-energy orbits and obey

b

a
=
√
e2 − 1 =

√
E .

6.3 Dynamics

The time evolution of a particle in a −γ/r potential is an analytically-solvable problem.
Setting α = 1 in the dimensionless equations of motion, we have, for the time component:

τ = ±
(

1

2π

)∫ ρf

ρi

ρ dρ√
Eρ2 + 2ρ− 1

E 6= 0

= ±

(
1

2π
√
|E|

)∫ (
β/
√
E − 1/E

)
dβ√

β2 − (1/E + 1)
β =
√
Eρ+

1√
E

= ±

(
1

2π
√
|E|

)∫ (
β/
√
E − 1/E

)
d (β/γ)√

(β/γ)2 − 1
γ =

√
1

E
+ 1

= ±

(
1

2π
√
|E|

)∫ (
ξγ/
√
E − 1/E

)
dξ√

ξ2 − 1
ξ =

β

γ

= ±

(
1

2π
√
|E|

)∫
(λξ − 1/E) dξ√

ξ2 − 1
λ =

γ√
E

=

√
1 + E
|E|

17



Depending on the sign of E , the integral to solve is either of

τ = ±

(
1

2π
√
|E|

)∫
(λξ − 1/E) dξ√

1− ξ2
E < 0

τ = ±

(
1

2π
√
|E|

)∫
(λξ − 1/E) dξ√

ξ2 − 1
E > 0 .

To proceed, let

ξ = − cosψ E < 0

ξ = coshψ E > 0

such that the integrals become trivial to solve:

τ = ±

(
ψ − e sinψ

2π |E|3/2

)
E < 0

τ = ±

(
e sinhψ − ψ

2π |E|3/2

)
E > 0 .

Following the substitutions backward, we can also write equations for ρ:

ρ =
1

|E|
(1− e cosψ) E < 0

ρ =
1

E
(e coshψ − 1) E > 0

Note that the period of the orbit corresponds to the interval 0 ≤ ψ < 2π, which imme-
diately tells us

τperiod = 2τp→a = 2τ0→π = |E|−3/2

6.4 Zero-Energy Case

For the special case of parabolic orbits with E = 0, the τ -integral reduces to

τ = ±
(

1

2π

)∫
ρ dρ√
2ρ− 1

,

easily solved:

τ = ±
(

1

6π

)√
2ρ− 1 (ρ+ 1)

6.5 Inverse-Square Repulsion

The modified case (α = 1), (γ > 1)

U (r) =
γ

r

18



is responsible for the repulsive Coulomb force. In analogy the the preceding analysis, it’s
straightforwardly shown that the ρ-equation gains an embedded minus sign

ρ =
1

−1 +
√

1 + E cos θ
.

Meanwhile, the ψ-parameterization becomes:

τ = ±

(
e sinhψ + ψ

2π |E|3/2

)
ρ =

1

E
(e coshψ + 1)
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7 Kepler’s Laws of Planetary Motion

Johannes Kepler (1571 - 1630) was a German natural philosopher. His eclectic career pre-
dates the Newtonian revolution, meaning there was no awareness of universal gravitation,
the correct laws of motion, or calculus. Working from astronomical data accumulated by
Tyco Brahe, who himself had a 30+ year career as a celestial observer, Kepler was able to
discern three essential ‘laws’ that seemed to govern planetary motion.

7.1 Law of Ellipses (1609)

The orbit of each planet is an ellipse, with the sun located at a focus.

We verify Kepler’s law of ellipses by recalling that the shape of a bounded orbit occurs
as a conic section:

ρ = 1/ (1− e cos θ) r = 0 at left focus

ρ = 1/ (1 + e cos θ) r = 0 at right focus

7.2 Law of Equal Areas (1609)

A line drawn between the sun and the planet sweeps out equal areas in equal times.

Just how Kepler came to ponder the law of equal areas is itself mysterious, because it
does turn out that the radius vector sweeps out equal areas in equal times. To prove this,
recall the integral that computes area in polar coordinates, namely

A (θf − θi) =
1

2

∫ θf

θi

r2 dθ .

Also recall that the angular momentum of a planet in orbit is constant, as in

L = m∗r
2dθ

dt
,

which brings the area integral from θ to the time domain:

A (ti − tf ) =
L

2m∗

∫ tf

ti

dt

Setting the initial condition A (t = 0) = 0, the above resolves to

A (t) =
Lt

2m∗
,

which embeds the mathematical statement of Kepler’s law of equal areas:

d

dt
A (t) =

L

2m∗

Kepler was unaware that the right side of the result is L/2m∗, but surely knew it is constant
for a given planet.
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7.3 Harmonic Law (1618)

The square of the period of a planet is directly proportional to the cube of the semi-major
axis of its orbit.

Years after his first two discoveries, Kepler discerned yet another relationship for linking
the time scale of the orbit to its length scale. While Kepler only knew of the proportionality
between the period and the semi-major axis, we can do better by finding the associated
constant.

Starting with the A (t) equation and letting t = T for one full orbit, the left side is the

area πab of the closed ellipse. Simplifying, we recover a familiar result τperiod = |E|−3/2:

πab =
L

2m∗
T

πa2
√

1− e2
√
r0

=

√
γm∗

2m∗
T

T =
2π√
γ/m∗

a3/2
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8 Newton’s Law of Gravitation

Isaac Newton’s approach to planetary motion started with the observation that planets follow
elliptical orbits with the sun at a focus (not the center), from which he reverse-engineered
the −1/r2 signature of the gravitational force. While our notation is different than Newton’s,
let us ‘stumble upon’ the law of gravitation in a similar way.

8.1 Inverse-Square Attraction

Take the acceleration vector in polar coordinates, namely

d2

dr2
~r (t) =

(
d2r

dt2
− r

(
dθ

dt

)2
)
r̂ +

(
r
d2θ

dt2
+ 2

dr

dt

dθ

dt

)
θ̂ ,

and assume r (θ (t)) to be the equation of an ellipse:

r =
r0

1 + e cos θ

The angular component of the acceleration is easily shown to be zero by differentiating
the (constant) angular momentum, giving

0 =
d

dt
L =

d

dt

(
m∗r

2dθ

dt

)
= m∗r

(
2
dr

dt

dθ

dt
+ r

d2θ

dt2

)
.

In terms of L, the acceleration vector reads

d2

dr2
~r (t) =

(
d2r

dt2
− L2

m∗r3

)
r̂ .

The second derivative term is a bit messy:

dr

dt
=

e

r0
r2 sin θ

dθ

dt

d2r

dt2
=

e

r0

(
sin θ

��
����d

dt

(
L

m∗

)
+

(
L2

m2
∗r

2

)(
r0
e

1

r
− 1

e

))
=

(
L2

m2
∗r

2

)(
1

r
− 1

r0

)
The anticipated acceleration vector is thus

d2

dr2
~r (t) =

(
L2

m2
∗r

2

)(
�
�
�1

r
− 1

r0
−

�
�
�1

r

)
r̂ = − γ

m∗

r̂

r2
,

indicating the −1/r2 attraction along r̂. Evidently, the acceleration vector of a planet in
orbit swivels to point at the center of attraction.
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8.2 Universal Gravitation

Having cracked the problem of planetary orbits, Newton proposed that the same mechanism
be responsible for all celestial motions, including ground-level kinematics, unifying the notion
of gravity. Between any two particles, the gravitational attraction is

~F12 = −Gm1m2

r2
r̂ ,

proportional to the product of each mass, inversely proportional to the square of the distance,
and balanced by a proportionality constant G. As a special case of the two-body problem,
it’s readily shown that

γ = Gm1m2 .

8.3 Conical Orbits

As an exercise and reality check, we should be able to recover the equation for conic sections
using the law of gravitation and conservation of angular momentum. Replacing r2 as it
occurs in L = m∗r

2dθ/dt, we have

d2

dt2
~r (t) =

d

dt
~v (t) = − γ

m∗

m∗
L

dθ

dt
r̂ ,

which can be integrated over the time variable∫
d

dt
~v (t) dt = −γ

L

∫
r̂ dθ =

γ

L

∫
dθ̂

dθ
dθ ,

resulting in

~v (t) =
γ

L
θ̂ (t) + ~V ,

where ~V is an integration constant. Define the x-axis to pass through a perigee at which
velocity is purely along ŷ, thus the integration constant points that way:

~v (t) =
γ

L
θ̂ (t) + V ŷ

Next, write the angular momentum vector ~L = m∗~r×~v in full form and cancel all of the
ẑ unit vectors:

L ẑ = m∗~r ×
(γ
L
θ̂ + V ŷ

)
= m∗

γ

L
r
(
r̂ × θ̂

)
+m∗V r (r̂ × ŷ)

L =
γm∗
L

r +m∗V r sin
(π

2
− θ
)

= m∗r
(γ
L

+ V cos θ
)

Indeed we find
r =

r0
1 + (m∗r0V/L) cos θ

,

where m∗r0V/L is the eccentricity of the orbit,

e =
m∗r0V

L
=
V L

γ

classifying the overall shape.
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8.4 Shell Theorem

Outside the Shell

So far, we have assumed that the ‘particles’ involved in central force interactions are infinitely
small, with all mass concentrated at its center. Realistically though, celestial bodies are (at
best) approximately spheres, so care must be taken to make sure we haven’t gone astray.
Newton was plagued by the same concern, which held up publication of his work for several
years.

Figure 1: Particle outside of a sphere. (Image credit: Calculus, Gilbert Strang)

In the Figure, we have a solid sphere of radius R having uniform mass per volume
λ = dM/dV = M/ (4πR3/3). A test particle at point D ẑ from the center ‘feels’ the
gravitational attraction all elements dV , each being distance q from the particle and ρ from
the center. For convenience, we label the angle between D and ρ as φ, and similarly the
angle between D and q as α.

By placing the test particle of mass m on the z-axis, the net attraction in the x- and
y-directions resolves to zero by symmetry. The net force is the integral

F =

∫
sphere

d~F · ẑ =

∫
sphere

dF cosα = −Gmλ
∫
sphere

cosα

q2
dV .

Next, we write two geometric observations using the law of cosines

cosα =
q2 +D2 − ρ2

2qD
u = q2 = ρ2 +D2 − 2ρD cosφ ,

and also use spherical coordinates such that

dV = ρ2 dρ dθ sinφ dφ .
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The integral becomes:

F = −Gmλ
2D

∫ π

0

∫ π/2

0

∫ R

0

(
1

q
− D2 − ρ2

q3

)
ρ2 dρ dθ sinφ dφ

F = −Gmλπ
2D2

∫ (D+ρ)2

(D−ρ)2

∫ R

0

(
1√
u
− D2 − ρ2

u3/2

)
ρ dρ du

F = −Gmλπ
2D2

∫ R

0

(
2
√
u− 2 (D2 − ρ2)√

u

) ∣∣∣∣(D+ρ)2

(D−ρ)2
ρ dρ

F = −Gmλπ
2D2

∫ R

0

8ρ2 dρ = −Gmλ
D2

4πR3

3

F = −GMm

D2

Amazingly, the force acts as if all of the sphere’s mass is at the center. Incidentally this is
true for non-spherical objects as well, as long as the test particle is outside of the object.

Inside the Shell

The question of ‘what does gravity feel like inside a planet’ is solved by the shell theorem. If
we consider a spherical shell of fixed radius R, we can pose a similar question with D < R,
i.e., placing the test mass within the shell. The problem setup is more-or-less the same as
the above, however to emphasize the hollowness of the shell we’ll take an area integral over
differential rings such that

dA = 2πR2 sinφ dφ .

The force integral becomes

F = −Gmσ
∫
shell

cosα

q2
dA ,

where the surface density is given by σ = M/4πR2. Then, using the same geometry as
above, we have

F = −GmM
4D

∫ π/2

0

(
1

q
− D2 − ρ2

q3

)
sinφ dφ .

Noting that
2q dq = 2RD sinφ dφ ,

the integral becomes elementary

F = −GmM
4RD2

∫ R+D

R−D

(
1− D2 −R2

q2

)
dq ,

easily shown to be zero:
Finside = 0

Indeed, a test particle anywhere within a hollow shell feels no attraction.
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9 Problems

1. A particle has a known trajectory

r (t) =
r0

cos (ωt)
,

where ω is constant. Graph the motion and determine the velocity vector and the
acceleration vector.

2. Show that Kepler’s law of equal areas hold for any central force, including straight-line
motion.

3. A missile traveling at constant speed is homing in on a target at the origin. Due to an
error in its circuitry, it is constant misdirected by an angle |α| < π/2. Show that the
missile eventually hits the target, taking 1/ cosα times as long as if it was correctly
aimed.

4. If a planet were suddenly stopped in its orbit, supposed circular, show that it would
fall into the sun in a time T̃ which is

√
2/8 times the period of the planet’s revolution.

10 Solutions

1. ...

2. ...

3. ...

4.

E0 = −GMm

R
=

1

2
m

(
dr

dt

)2

− GMm

r (t)

1

2
��m

(
dr

dt

)2

= GM��m

(
1

r
− 1

R

)
dr

dt
=

√
2GM

(
1

r
− 1

R

)
=

√
2GM

R

√
R

r
− 1

∫ 0

R

dr√
R/r − 1

=

√
2GM

R

∫ T̃

0

dt =

√
2GM

R
T̃

r = R cos2 θ → −2R

��
���

����(∫ π
2

π

cos2 θ dθ

)(
−π
4

)
=

√
2GM

R
T̃

T̃ =
πR

2

√
R

2GM
=

√
2

8

2π√
GM

R3/2 =

√
2

8
T
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