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Chapter 1

Appendix

1 Calculating Pi from Nested Radicals

1.1 Introduction

A quarter-circle can be systematically covered by non-overlapping triangles of decreasing area until, in the
infinite limit, the whole shape is covered. Working on a unit circle, we set lengths OA and OB equal to one.

1.2 Zero-Order Triangle (1)

The largest triangle that fits in the quarter-unit circle is AOB, whose area is clearly 1/2. To start a pattern
though, we’ll write this as:

A0 =
1

2
(1) (1) =

1

2

Since the lines OA, OB are perpendicular, let us define two unit vectors

î = OB ĵ = OA ,
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1. CALCULATING PI FROM NESTED RADICALS CHAPTER 1. APPENDIX

and the line AB is the hypotenuse of AOB, which implies a non-unit vector

h⃗0 = AB = î− ĵ .

1.3 First-Order Triangles (2)

The triangles DCA and DCB are identical by symmetry, so we may focus on DCB and remember to
multiply its area by two to cover the quarter-circle. To denote the sides of DCB, first define two vectors

x̂1 = OD x⃗1 = OC ,

which differ only in length. Remember that any vector extending from O and touching the arc of the circle
has length one, and is denoted as a unit vector. Any vector longer or shorter gets no hat, and wears an
arrow symbol. The hypotenuse may be represented as

h⃗1 = DB .

To proceed, we need to write the first-order vectors in the already-established notation, which means
solving for x̂1, x⃗1, h⃗1 in terms of î and ĵ. By inspection of the diagram, observe that OC bisects triangle
AOB, so we find:

x⃗1 =
î+ ĵ

2
x̂1 =

î+ ĵ√
2

h⃗1 = î− x̂1

Finally, observe that the area of DCB is

ADCB =
CB · CD

2
=

1

2

|⃗h0|
2

(1− |x⃗1|) =
1

2

√
h⃗0 · h⃗0
2

(
1−

√
x⃗1 · x⃗1

)
,

which is easily reduced to a number. Recalling though that the quarter-circle contains two copies of the area
DCB, let is write the first-order area A1 as

A1 = 2 ·ADCB = 2 · 1
2

√
2

2

(
1−

√
1

2

)
= −1

2
+

1√
2

1.4 Second-Order Triangles (4)

In the diagram above, the triangle FEB is one of four identical copies, so the goal now is to get a number
for the area AFEB , and then construct the second-order area A2 = 4 ·AFEB . We need two more vectors

x̂2 = OF x⃗2 = OE ,

along with a hypotenuse
h⃗2 = FB .

A reliable pattern begins to emerge here. Note that in order to ‘get to’ point E from the origin, the
vector sum of OD and DE stays along lines already defined, so we easily write

x⃗2 = x̂1 +
1

2
h⃗1

which means we ‘go to the top of the previous triangle, and walk halfway down the hypotenuse’. Coming
up with the unit vector x̂2 is a small chore, which resolves to

x̂2 =

(
2
√
2

3
− 1

3

)(
î+ ĵ

)
,

and of course, the hypotenuse vector in terms of î, ĵ, is

h⃗2 = î− x̂2 .

3
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The second-order area calculation looks just like the previous area calculation with the vector labels
shifted up by one:

A2 = 4 ·AFEB = 4 · 1
2

√
h⃗1 · h⃗1
2

(
1−

√
x⃗2 · x⃗2

)
= − 1√

2
+

√
2−

√
2

1.5 Third-Order Triangles (8)

By now, we should be able to proceed by pattern alone. There are eight third-order triangles in the quarter
circle, and meanwhile three vectors

x⃗3 = x̂2 +
1

2
h⃗2 x̂3 =

x⃗3√
x⃗3 · x⃗3

h⃗3 = î− x̂3

determine their size and orientation. Any variable with a 3-subscript traces back to one with a 2-subscript,
all the way back to î, ĵ. The third-order area, after a bit of algebra, resolves to

A3 = 8 · 1
2

√
h⃗2 · h⃗2
2

(
1−

√
x⃗3 · x⃗3

)
= −

√
2−

√
2 + 2

√
2−

√
2 +

√
2 .

1.6 Any-Order Triangles

Continuing the established pattern, for a triangle of order n, there are 2n copies of it that cover the quarter-
unit circle. The sides are determined by

x⃗n+1 = x̂n +
1

2
h⃗n h⃗n = î− x̂n ,

and the area is

An = 2n · 1
2

√
h⃗n−1 · h⃗n−1

2

(
1−

√
x⃗n · x⃗n

)
.

Applying this to the next case of n = 4, one finds

A4 = −2

√
2−

√
2 +

√
2 + 4

√
2−

√
2 +

√
2 +

√
2 ,

which is one heck of a job to do by hand.

1.7 Finding a Pattern

Each set of triangles has a total area that more-and-more deeply embeds the square root of 2. Listing these
in a row, we have

A0 =
1

2

A1 = −1

2
+

1√
2

A2 = − 1√
2
+

√
2−

√
2

A3 = −
√

2−
√
2 + 2

√
2−

√
2 +

√
2

A4 = −2

√
2−

√
2 +

√
2 + 4

√
2−

√
2 +

√
2 +

√
2

4
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Interestingly, each An (beyond A0) contains a positive term and a negative term, where the negative
term just happens to negate the positive term from An−1. While this was observed in a ‘brute force’ sense
for trivial cases, we may argue by induction that the grand sum of each An cancels all terms except the final
positive term. Evidently then, we find

A =

N∑
n=0

An =
2n

4

√√√√
2−

√
2 +

√
2 +

√
2 +

√
2 + · · · (N square roots) ,

which is the area of an N -sided polygon approximating the circle.

1.8 Taking the Limit

If we finally let N approach infinity, the term 2N approaches infinity very quickly, where meanwhile the
square root term approaches

√
2− 2. This seems like a dead end, as infinity is being multiplied by zero.

However, we just carefully covered the quarter-unit circles, so is should follow that 4A is the area of the
whole unit circle, also known as π... And indeed this is true, the infinite expression

π = lim
N→∞

2N

√√√√
2−

√
2 +

√
2 +

√
2 +

√
2 + · · · (N square roots)

converges to 3.1415926535... = π.

1.9 BASIC Code Example

DIM b AS DOUBLE

n = 20

a = 2 ^ n

b = SQR(2)

FOR k = 1 TO n - 2

b = SQR(2 + b)

NEXT

b = SQR(2 - b)

PRINT a * b

3.14159...
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2 Collatz Conjecture

2.1 Introduction

In 1937, Lothar Collatz pointed out a pattern followed by (seemingly) all positive integers. Start with any
integer n > 1. If n is even, change n to n/2. If n is odd, change n to 3n+ 1. Repeat this until n changes to
1. The so-called Collatz conjecture states that any integer n > 1 will eventually reduce down to 1.

Any acceptable proof the Collatz conjecture has remained elusive to the most accomplished mathemati-
cians. Paul Erdõs himself conceded that ‘mathematics may not be ready for such problems’, while others
have speculated that a proof, if one exists, cannot be built from standard mathematical axioms. The problem
has nonetheless been explored in several directions and has gained a slew of nicknames along the way, namely
(but not limited to) the 3n + 1 problem, the hailstone sequence, the hailstone numbers, and the wondrous
numbers.

Common literature is ubiquitous with comments and conclusions on the Collatz conjecture, thus none
are purposely repeated here. Instead, following is the summary of back-of-the envelope notes that capture
an exploration of the problem.

2.2 Data

Let us write each positive integer {n} = 1, 2, 3, . . . , and apply the recursive rule

n→


n

2
n even

3n+ 1 n odd

until n→ 1. Stopping at n = 15, a table

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 10 2 16 3 22 4 28 5 34 6 40 7 46

5 1 8 10 11 2 14 16 17 3 20 22 23
16 4 5 34 1 7 8 52 10 10 11 70
8 2 16 17 22 4 26 5 5 34 35
4 1 8 52 11 2 13 16 16 17 106
2 4 26 34 1 40 8 8 52 53
1 2 13 17 20 4 4 26 160

1 40 52 10 2 2 13 80
20 26 5 1 1 40 40
10 13 16 20 20
5 40 8 10 10
. . . . .

emerges, where columns that end with a dot ( . ) continue to a sub-sequence already written elsewhere in
the table (merely for saving space).

2.3 Sequence Notation

In the table above, each column contains a sequence ϕ (n, k) that starts at number n and ends at number
k. The simplest meaningful case starts with n = 2, meaning ϕ (2, 1) = (2, 1), whereas for n = 3 we have
ϕ (3, 1) = (3, 10, 5, 16, 8, 4, 2, 1). Let us denote the ‘width’ of a sequence, i.e. the number of elements, as
ñ+ 1, where ñ is the number of jumps required to reach 1 from the base number n.

For certain base integers, we observe that the resulting sequence may start repeating that of a previous
base integer. Taking n = 6 for example, we find

ϕ (6, 1) = (6, 3, 10, 5, 16, 8, 4, 2, 1)

= (6, 3, 10) (5, 16, 8, 4, 2, 1)

= ϕ (6, 10) ϕ (5, 1) .

6



2. COLLATZ CONJECTURE CHAPTER 1. APPENDIX

Of course, the same exercise can be repeated on ϕ (5, 1), all the way down to ϕ (2, 1). In the general case,
sequences that satisfy the Collatz conjecture obey

ϕ (n, 1) = ϕ (n, x) ϕ (j, k) ϕ (y, 1) ,

where y must follow from x across a known sequence ϕ (j, k).

2.4 Progress Operator

Let us construct the progress operator f (n) that applies a single instance of the transformation rule

f (n) =


n

2
n even

3n+ 1 n odd

(i.e. non-recursively) to any integer n > 0, generating a table:

f (1) = 4 f (16) = 8 f (31) = 94
f (2) = 1 f (17) = 52 f (32) = 16
f (3) = 10 f (18) = 9 f (33) = 100
f (4) = 2 f (19) = 58 f (34) = 17
f (5) = 16 f (20) = 10 f (35) = 106
f (6) = 3 f (21) = 44 f (36) = 17
f (7) = 22 f (22) = 11 f (37) = 112
f (8) = 4 f (23) = 70 f (38) = 19
f (9) = 28 f (24) = 12 f (39) = 118
f (10) = 5 f (25) = 76 f (40) = 20
f (11) = 34 f (26) = 13 f (41) = 124
f (12) = 6 f (27) = 82 f (42) = 21
f (13) = 40 f (28) = 14 f (43) = 130
f (14) = 7 f (29) = 88 f (44) = 22
f (15) = 46 f (30) = 15 f (45) = 136

Also construct the compound progress operator fk (n) as the progress operator applied k times to a base
number n such that

f2 (n) = f (f (n)) fk (n) = f (f (f (· · · k · · · (f (n))))) .

2.5 Collatz Condition

In the language of the progress operator, any integers that satisfy the Collatz conjecture must satisfy the
condition

fñ (n) = f (f (f (· · · ñ · · · (f (n))))) = 1 ,

where the number of iterations equals the number of forward jumps ñ needed to traverse the sequence ϕ (n, 1).

2.6 Regress Operator

To accompany the progress operator f (n), we have grounds to define its inverse called the regress operator
g (n) such that

g (f (n)) = {n} ,

7
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where the right side of g (n) is multi-valued for certain n. That is, the operator g (n) asks ‘which number(s)
could have brought us to n?’ A partial answer is in the following table:

g (1) = 2 g (16) = 32, 5 g (31) = 62
g (2) = 4 g (17) = 34 g (32) = 64
g (3) = 6 g (18) = 36 g (33) = 66
g (4) = 8, 1 g (19) = 38 g (34) = 68, 11
g (5) = 10 g (20) = 40 g (35) = 70
g (6) = 12 g (21) = 42 g (36) = 72
g (7) = 14 g (22) = 44, 7 g (37) = 74
g (8) = 16 g (23) = 46 g (38) = 76
g (9) = 18 g (24) = 48 g (39) = 78

g (10) = 20, 3 g (25) = 50 g (40) = 80, 13
g (11) = 22 g (26) = 52 g (41) = 82
g (12) = 24 g (27) = 54 g (42) = 84
g (13) = 26 g (28) = 56, 9 g (43) = 86
g (14) = 28 g (29) = 58 g (44) = 88
g (15) = 30 g (30) = 60 g (45) = 90

There is clearly more ‘order’ in the g (n)-table as compared to the previous f (n)-table. Each n > 0 has
at least one solution 2n, accounting for all even-number results of g (n). The odd-number results of g (n)
occur as second solutions to the cases 4, 10, 16, 22, 28, 34, and so on. Evidently, all operations g (4 + 6j)
for integers j = 0, 1, 2, . . . are multi-valued:

g (4 + 6j) =

{
2 (4 + 6j)

1 + 2j
j = 0, 1, 2, 3, . . .

Let us finally denote the compound regress operator gk (n) as the regress operator applied k times to a
base number n such that

g2 (n) = g (g (n)) gk (n) = g (g (g (· · · k · · · (g (n))))) .

Note that the right hand side of g (n) is generally multi-valued, giving rise to a tree-like right hand side of
gk (n).

2.7 Regress Tree

Now, let us write the Collatz condition
fñ (n) = 1 ,

and apply the regress operator g ( ) to each side. On the left, we have g (fñ (n)) = fñ−1 (n), and meanwhile
g (1) is produced on the right, giving us

fñ−1 (n) = g (1) = 2 .

Apply g ( ) again to get another statement

fñ−2 (n) = g (g (1)) = g2 (1) = 4 ,

and again for yet another
fñ−3 (n) = g (g (g (1))) = g3 (1) = 8 ,

and again for ñ− 4:
fñ−4 (n) = g4 (1) = 16

8
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Proceeding carefully for the ñ− 5 case, we get two possible results

fñ−5 (n) = g5 (1) = g (16) =

{
32

5
.

Applying g ( ) to the left and both items on the right, we have

fñ−6 (n) = g6 (1) =

{
g (32)

g (5)
=

{
64

10
,

and such a pattern can continue. Doing so, we produce a regress tree. In the following equations, each
elongated brace symbol represents a multi-valued result in gk (1):

fñ−7 (n) = g7 (1) =

{
g (64)

g (10)
=



{
128

21{
20

3

fñ−8 (n) = g8 (1) =



{
g (128)

g (21){
g (20)

g (3)

=



{
256

42{
40

6

fñ−9 (n) = g9 (1) =



{
g (256)

g (42){
g (40)

g (6)

=




{
512

85

84
{
80

13

12

fñ−10 (n) = g10 (1) =




{
g (512)

g (85)

g (84)
{
g (80)

g (13)

g (12)

=




{
1024

170

168
{
160

26

24

fñ−11 (n) = g11 (1) =




{
g (1024)

g (170)

g (168)
{
g (160)

g (26)

g (24)

=






{
2048

341

340

336


{
320

53

52

48

9



2. COLLATZ CONJECTURE CHAPTER 1. APPENDIX

fñ−12 (n) = g12 (1) =






{
g (2048)

g (341)

g (340)

g (336)


{
g (320)

g (53)

g (52)

g (48)

=







{
4096

682{
680

113

672



{
640

106{
104

17

96

fñ−13 (n) = g13 (1) =







{
g (4096)

g (682){
g (680)

g (113)

g (672)



{
g (640)

g (106){
g (104)

g (17)

g (96)

=









{
8192

1365{
1364

227{
1360

226

1344





{
1280

213{
212

35{
208

34

192

10
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fñ−14 (n) = g14 (1) =









{
g (8192)

g (1365){
g (1364)

g (227){
g (1360)

g (226)

g (1344)





{
g (1280)

g (213){
g (212)

g (35){
g (208)

g (34)

g (192)

=









{
16384

2730{
2728

454

{
2720

453{
452

75

2688





{
2560

426{
424

70

{
416

69{
68

11

384

Condensing notation, let us flatten each tree gk=ñ (1) into a sequence ψ (ñ):

ψ (0) = (1)

ψ (1) = (2)

ψ (2) = (4)

ψ (3) = (8)

ψ (4) = (16)

ψ (5) = (32, 5)

ψ (6) = (64, 10)

ψ (7) = (128, 21, 20, 3)

ψ (8) = (256, 42, 40, 6)

ψ (9) = (512, 85, 84, 80, 13, 12)

ψ (10) = (1024, 170, 168, 160, 26, 24)

ψ (11) = (2048, 341, 340, 336, 320, 54, 52, 48)

ψ (12) = (4096, 682, 680, 113, 672, 640, 106, 104, 17, 96)

ψ (13) = (8192, 1365, 1364, 227, 1360, 226, 1344, 1280, 213, 212, 35, 208, 34, 192)

· · ·

As constructed, any given sequence ψ (ñ) contains all of the integers that are ñ jumps from one (which
is to say ñ jumps from satisfying the Collatz condition). Since no integer n can have two different ‘jump
numbers’ ñ and ñ′ ̸= ñ, no integer occurs more than once throughout the tree.

Tree Analysis

As we’ve seen, the operation g (ψ (ñ)) is used to calculate ψ (ñ+ 1), and the number of elements per sequence
never decreases as ñ increases. (There are thus no empty branches.)As an informal exercise, we note that, if

11
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handed a random result of g (n), the limit probability of the result being even versus odd is

lim
N≫0

Nodd

N
≈ 1

7
≈ 0.143 lim

N≫0

Neven

N
≈ 6

7
≈ 0.857 .

Testing this, the count of even and odd occurrences included within all sequences ψ (0), · · · , ψ (14) results
in 79 total elements, comprising of 17 odd integers and 62 even integers. Calculating the ratio of each to the
total, we find

Nodd =
17

79
= 0.218 Neven =

62

79
= 0.795 ,

in rough agreement with the above. Without requiring said ratios to represent all sequences ψ (ñ), it should
generally follow that sequences with ñ≫ 1 contain roughly six even integers for every odd integer. Any odd
integer n contained in ψ (ñ) becomes an even integer in ψ (ñ+ 1), which is ultimately balanced by new odd
integers emerging elsewhere in the tree.

Treating each element n in ψ (ñ) as a pseudo-random integer, it follows that each updated element g (n)
in ψ (ñ+ 1) has a rough 1/6 probability being multi-valued. Denoting N (ñ) as the number of elements in
the sequence ψ (ñ), we should have, in the limit of large ñ,

N (ñ+ 1) ≈ N (ñ)

(
1 +

1

6

)
→ N (ñ+ 1)−N (ñ)

N (ñ)
≈ 1

6
,

implying exponential growth in N (ñ),
N (ñ) ≈ exp (ñ/6) ,

where the initial value N (ñ = 0) corresponds to one.

To proceed, condense all ψ (ñ) into the grand sequence

Ψ (ñ) = ψ (0) ∪ ψ (1) · · · ψ (ñ− 1) ∪ ψ (ñ) .

That is, Ψ (ñ) contains one instance of every integer that progresses to one in ñ jumps or less. Also, let T (ñ)
equal the total number of elements in Ψ (ñ). It quickly follows that

T (ñ) =

ñ∑
j=0

N (j) ≈
ñ∑

j=0

exp (j/6) .

In the large-ñ regime, we may further approximate the sum of exponential terms as a continuous integral in
j having step size dj:

T (ñ) ≈
∫ ñ

0

exp (j/6) dj = 6 exp (j/6)
∣∣ñ
0
≈ 6 exp (ñ/6)

Evidently, an integer that satisfies the Collatz conjecture after ñ jumps is a single element in a sequence
ψ (ñ) containing approximately exp (ñ/6) elements. For a given number of jumps ñ, the total count of
integers that satisfy the Collatz conjecture is approximately 6 exp (ñ/6).

2.8 Base-Odd Lattice

It’s easy to see that odd integers are the star players in the problem, as all even integers eventually collapse
down to an odd integer {αj}. Rewriting the whole set of positive integers in this light, we can write out a
base-odd lattice, growing downward in multiples of 2λαj , where λ = 1, 2, 3, . . . , as follows (stopping at 10

12
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rows, 9 columns):
1 3 5 7 9 11 13 15 17
2 6 10 14 18 22 26 30 34
4 12 20 28 36 44 52 60 68
8 24 40 56 72 88 104 120 136
16 48 80 112 144 176 208 240 272
32 96 160 224 288 352 416 480 544
64 192 320 448 576 704 832 960 1088
128 384 640 896 1152 1408 1664 1920 2176
256 768 1280 1792 2304 2816 3328 3840 4352
512 1536 2560 3584 4608 5632 6656 7680 8704

Using such a lattice, Collatz sequences can be easily visualized: any process n → 3n + 1 will land n in the
field of even integers, which then ‘boils upward’ to an odd integer in the top row. In the above, italicized
odd integers lead to boldface evens in nearby columns.

As it turns out, a complete base-odd lattice has (nearly) every second bold entry corresponding to some
odd number. For instance, jumping down the leftmost column to 16, 64, 256, 1024, 4096, etc., it follows
that each original n→ 3n+1 had to be 5, 31, 85, 341, 1365, etc. Continuing in the space allotted, we find a
pattern in the boldface even integers that is conspicuously absent in any column whose elements are divisible
by three:

1 3 5 7 9 11 13 15 17
2 6 10 14 18 22 26 30 34
4 12 20 28 36 44 52 60 68
8 24 40 56 72 88 104 120 136
16 48 80 112 144 176 208 240 272
32 96 160 224 288 352 416 480 544
64 192 320 448 576 704 832 960 1088
128 384 640 896 1152 1408 1664 1920 2176
256 768 1280 1792 2304 2816 3328 3840 4352
512 1536 2560 3584 4608 5632 6656 7680 8704

An odd integer αj in the top row sits on an infinite stack of even numbers
{
αj2

λ
}
. For the columns not

divisible by three, the boldface evens could come from some different odd number αk ̸=j for each power of λ.
We deduce that any integer in the top row that satisfies the Collatz conjecture ‘brings along’ a column

of subsequent odd integers that also satisfy the Collatz conjecture (excluding columns divisible by three).
Reading down the first column, the odd integers {βj} implied by the bold evens are given by

β1,k =
1 · 22k − 1

3
k = 1, 2, 3, . . . ,

where the next nontrivial column is begins with 5 and follows with

β5,k =
5 · 22k−1 − 1

3
k = 1, 2, 3, . . . .

In the same notation, note that β3,k contains nothing. These patterns repeat every three columns:

β1+6j,k =
(1 + 6j) · 22k − 1

3
j = 0, 1, 2, . . . k = 1, 2, 3, . . .

β3+6j,k = ∅

β5+6j,k =
(5 + 6j) · 22k−1 − 1

3
j = 0, 1, 2, . . . k = 1, 2, 3, . . .

Explicitly, this means if n = 1 satisfies the Collatz conjecture, then so does (5, 21, 85, . . . ). Similarly, if n = 5

13
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satisfies the Collatz conjecture, then so does (3, 13, 53, . . . ), and so on:

{β1} = (1, 5,21, 85, 341,1365, 5461, 21845,87381 . . . )

{β5} = (3, 13, 53,213, 853, 3413,13653, 54613, . . . )

{β7} = (9, 37, 149,597, 2389, 9557,38229, 152917, . . . )

{β11} = (7, 29,117, 469, 1877,7509, 30037, 120149, . . . )

{β13} = (17,69, 277, 1109,4437, 11749, 70997,283989, . . . )

{β17} = (11,45, 181, 725,2901, 11605, 46421,185685, . . . )

{β19} = (25, 101,405, 1621, 6485,25941, 103765, 415061, . . . )

{β23} = (15, 61, 245,981, 3925, 15701,62805, 251221, . . . )

{β25} = (33, 133, 533,2133, 8533, 34133,136533, 546133, . . . )

{β29} = (19, 77,309, 1237, 4949,19797, 79189, 316757, . . . )

{β31} = (41,165, 661, 2645,10581, 42325, 169301,677205, . . . )

Odd integers divisible by three are denoted in boldface, corresponding to the ‘missing’ sequences {β3}, {β9},
etc.

2.9 Odd Number Generator

While each sequence {βj} contains an infinite count of odd integers, naturally one wonders if every odd
integer is contained somewhere in a β-sequence. Indeed, each odd number can be systematically generated
by

β1+6j,k =
(1 + 6j) · 22k − 1

3
β5+6j,k =

(5 + 6j) · 22k−1 − 1

3
,

where j = 0, 1, 2, . . . and k = 1, 2, 3, . . . in each:

j k β1+6j,k | j k β5+6j,k

0 1 1 | 0 1 3
0 2 5 | 1 1 7
1 1 9 | 2 1 11
2 1 17 | 0 2 13
0 3 21 | 3 1 15
3 2 25 | 4 1 19
4 1 33 | 5 1 23
1 2 37 | 6 1 27
5 1 41 | 1 2 29
6 1 49 | 7 1 31

| 8 1 35
| 9 1 39
| 10 1 43
| 2 2 45
| 11 1 47
| 12 1 51
| 0 3 53
| 13 1 55

The β-equations above can be generalized into a single equation

βx,y =
x · 2y − 1

3
y = 1, 2, 3, . . .

x

3 �= Z ,

14
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where y is a positive integer, and x is an integer not divisible by three. Generating the same table of odd
numbers, we have:

x y βx,y | x y βx,y
0 2 1 | 11 3 29
5 1 3 | 47 1 31
1 4 5 | 25 2 33
11 1 7 | 29 2 35
7 2 9 | 7 4 37
17 1 11 | 59 1 39
5 3 13 | 31 2 41
23 1 15 | 65 1 43
13 2 17 | 17 3 45
29 1 19 | 71 1 47
1 6 21 | 37 2 49
35 1 23 | 77 1 51
19 2 25 | 5 5 53
41 1 27 | 83 1 55

Since βx,y is always an odd integer, we may apply the progress operator f (βx,y) as a sanity check to
write

f (βx,y) = 3

(
x · 2y − 1

3

)
+ 1 = x · 2y ,

which is surely an even integer. Applying the compound progress operator fy+1 (βx,y), the result reduces
down to x via

fy+1 (βx,y) = x · 2
y

2y
= x ,

reaffirming that an arbitrary odd integer βx,y eventually links forward to another odd integer x not divisible
by three. Meanwhile, odd integers that are divisible by three, namely 3, 9, 15, etc., can only occur as the
first odd member of a sequence ϕ (n, k).

2.10 Cutoff Analysis

The sequences {βj} avail a method for testing a range of odd integers starting from one and ending at a
cutoff ñ. Suppose we were tasked with verifying the Collatz conjecture for odd integers 1 ≤ n ≤ 29, arranged
on the grid that follows. Treating n = 1 as the only ‘tested’ case, cross out from the grid any integers less
than ñ that occur in the sequence {β1}:

�1 3 �5 7 9
11 13 15 17 19

��21 23 25 27 29

Now, since n = 5 has been crossed out, we may read across {β5} and cross out from the grid any integers
less than ñ:

�1 �3 �5 7 9
11 ��13 15 17 19

��21 23 25 27 29

This time n = 13 has been crossed out, which means we may read across {β13} and cross out n = 17, which
then gives us n = 11, and then immediately 7, 29 from {β11}:

�1 �3 �5 �7 9

��11 ��13 15 ��17 19

��21 23 25 27 ��29

Continuing this pattern, we find that 9, 19, 25 can also be crossed out:

�1 �3 �5 �7 �9

��11 ��13 15 ��17 ��19

��21 [23] ��25 [27] ��29
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So far then, only the integers 15, 23, 27 less than ñ = 29 don’t follow automatically from {β1} and its
branches. Of course, the first element in {β23} is 15, meaning there are only two unique calculations left, 23
and 27, denoted in brackets [ ] above. To see why, we solve

(5 + 6j) · 22k−1 − 1

3
= 23 ,

to find j = 5, k = 1, meaning 23 is the first element in {β35}, and is only a guaranteed solution if n = 35
is a solution, which is outside of the ñ-domain. Thus, we’re stuck testing n = 23 for ñ fixed at 29. Similar
reasoning applies to n = 27.

Extending ñ from 29 to 39, we need the elements of {β35}, {β37} that are less than ñ. Using the
β-equations above, we find

{β35} = (23, 93, 373, . . . )

{β37} = (49, 187, 789, . . . ) ,

extending our table of odd numbers by one row, crossing out members that trace back to n = 1:

�1 �3 �5 �7 �9

��11 ��13 15 ��17 ��19

��21 23 ��25 [27] ��29
[31] ��33 [35] ��37 [39]

In contrast to the ñ = 29 case, there are four unique integers to verify, however note that n = 23 need not
be uniquely verified.

Extending ñ further by one member, making ñ = 41, first note that

{β41} = (27, 109, 437, . . . ) ,

reducing the burden of verifying n = 27 to verifying n = 41, which is already a member of {β31}, leaving us
with:

�1 �3 �5 �7 �9

��11 ��13 15 ��17 ��19

��21 23 ��25 27 ��29
[31] ��33 [35] ��37 [39]
41

So far, only the integers 31, 35, 39 need to be directly verified in the domain 1 ≤ n ≤ ñ = 41.
Without extending ñ, we use n → f (n) to calculate the next odd integers that follow 31, 35, 39 respec-

tively:

31 → 94 → 47

35 → 106 → 53

39 → 118 → 59

While the 31- and 39-cases don’t help for our choice of ñ, the 35-case lands on 53, which is a member of
{β5}, already crossed out. Thus, 35 may be crossed out as well (along with 53 when we get there):

�1 �3 �5 �7 �9

��11 ��13 15 ��17 ��19

��21 23 ��25 27 ��29
[31] ��33 ��35 ��37 [39]
41

Extending ñ higher, the ‘frontier’ of non-guaranteed integers shifts upward, leaving crossed-out or oth-
erwise guaranteed integers behind. We learn that the burden of testing a range of integers up to ñ reduces
to the smaller task of verifying a handful of bracketed integers near ñ. Cutoff analysis transforms the ‘hard
work’ of carrying out repetitions of n→ f (n) to table lookup.
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2.11 Very Odd Integers

Looking once more at the generator for all odd integers, namely

βx,y =
x · 2y − 1

3
y = 1, 2, 3, . . .

x

3 �= Z ,

we assign a special name to any case when y = 1, giving rise to very odd integers βx,1 < x. That is, a very
odd integer βx,1 is greater than the odd integer x (not divisible by three) that generates it.

With respect to cutoff analysis, very odd integers whose generating x-values are greater than a given
cutoff ñ are precisely those that must be checked explicitly (in square brackets). Explicitly, the members 31
and 39 in the table above each (i) qualify as very odd integers, and (ii) point to odd integers greater than ñ.

As ñ increases arbitrarily, it follows that most odd integers in the associated table are either crossed
directly, or depend on other odd numbers that are eventually crossed out. The adjustment in ñ required to
cover such a very odd integer βx,1 is

ñ ≈ 3βx,1 + 1

2
.

Thus, no odd integer remains permanently out of reach with increasing ñ. In the worst-case scenario, the
cutoff value would itself qualify as a very odd integer, giving ñ = βx,1.

2.12 Cycles

Let us denote a cycle θk ({n}) as an occurrence where an integer n lands back at its original value after k
jumps such that

fk (n) = n .

It follows that any integers that progress from n via f (n) also repeat their values, and are thus members of
the same cycle. Applying successive instances of f ( ) to both sides of the above, we eventually land at

f2k (n) = fk (n) = n ,

affirming the k-periodicity of the cycle.

One-Odd Cycle

It is clear that a cycle must contain at least one odd integer, as jumping to strictly even integers will always
have n→ n/2, and the cycle would never be established. Consider the general cycle

θk = (a, . . . , r, s, t, α, v, w, x, . . . , a) ,

where α is a forced odd integer in the qth position, with all other elements being unknown integers. Working
outward from α, its immediate neighbors can only be even integers:

θk = (a, . . . , r, s, 2α, α, 3α+ 1, w, x, . . . , a)

Supposing we seek a cycle with precisely one odd integer in the qth position, the general cycle becomes

θk =

(
2q−1α, . . . , 8α, 4α, 2α, α, 3α+ 1,

3α+ 1

2
,
3α+ 1

4
, . . . ,

3α+ 1

2k−q

)
.

Comparing the first and last terms, see that

a = 2q−1α =
3α+ 1

2k−q
→ α =

3α+ 1

2k−1
,

which loses all q-dependence, as the cycle is invariant with respect to which element is listed first. Isolating
α, we find

α =
1

2k−1 − 3
,

which is only solved by the pair α = 1, k = 3. Evidently then, we find

θ3 = (4, 2, 1, 4) = (1, 4, 2, 1) = (2, 1, 4, 2)

to be the only cycle allowed to contain one odd integer.
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Two-Odd Cycle

Consider a cycle that contains exactly two odd integers α and β

θk = (a, . . . , 2α, α, 3α+ 1, . . . , 2β, β, 3β + 1, . . . , a) ,

with all other elements being even integers. Following the even integers from α, we advance λ positions to the
right until encountering β. Similarly, starting from β, we advance λ′ positions to the right until encountering
α, giving simultaneous equations

3α+ 1

2λ
= β

3β + 1

2λ′ = α ,

where the exponents λ, λ′ determine the total length of the cycle. Isolating α, β, we have

α =
2λ + 3

2λ+λ′ − 9
β =

2λ
′
+ 3

2λ+λ′ − 9
.

For two-odd cycles with λ and λ′ very large, we approximately have

α ≈ 1

2λ′ β ≈ 1

2λ
,

which has no valid solution. We thus deduce that, if the two-odd cycle is to contain very many elements,
then the two odd numbers α, β cannot be separated by very many jumps. To capture this, we write

ϵ = |λ− λ′| ≪ λ+ λ′ ,

where ϵ is a positive integer far smaller than the number of elements in the cycle. Next, the ratio β/α tells
us

(3α+ 1)α

(3β + 1)β
= 2λ−λ′

→ ln

(∣∣∣∣ (3α+ 1)α

(3β + 1)β

∣∣∣∣) 1

ln 2
= |λ− λ′| = ϵ ,

reaffirming α, β cannot vastly differ in value. To proceed, choose the case that α follows from a long descent
of even numbers, and then β occurs ≈ ϵ jumps after. As β is reached, the next jump is 3β + 1, which is by
construction far smaller than the even numbers that lead to α. The descent from β cannot link back to α,
telling us that a two-odd cycle with many elements cannot exist.

For two-odd cycles with α, β very large, we first notice from the first set of equations that

α≫ 2λ β ≫ 2λ
′
.

If so, the second set of equations demands that the denominator 2λ+λ′ −9 be a small number, maximizing α,
β at 2λ+λ′ ≈ 9, severely restricting the sum λ+ λ′. The smallest denominator we legally make corresponds
to λ + λ′ = 4, meaning the cycle must have very few elements. Moreover, the numerators 2λ + 3, 2λ

′
+ 3

already correspond to numbers smaller than α, β, respectively. Therefore, a cycle containing exactly two
very large odd integers implies contractions, and cannot exist.

Clearly, the two-odd cycle cannot contain one large element and one non-large element, leaving the last
non-trivial case, in where the cycle has two non-large odd integers. At this point we note the chore of testing
the Collatz conjecture can be automated, where the domain of successfully tested integers spans from one
to ≈ 260 (citation needed). Thus, all small-enough integers are already ‘used up’ in valid Collatz sequences,
and cannot participate in two-odd cycles. In summary, no two-odd cycle can occur at all.

Multi-Odd Cycle

Generalizing the two-odd cycle analysis entails noticing that the structure 2αj , αj , 3αj + 1 occurs once per
odd integer, with index j = 1, 2, 3, . . . , N tracking each:

θk = (a, . . . , 2α1, α1, 3α1 + 1, . . . , 2α2, α2, 3α2 + 1, . . . , 2α3, α3, 3α3 + 1, . . . , a)
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This generates a list of j equations relating to the number of jumps between the odd numbers αj :

3αj + 1

2λj
= αj+1

3αN + 1

2λN
= α1

Looking closely, we notice that any odd integer αj ‘ratchets upward’ by a factor of 3αj + 1, and then
downward by a factor of 2λj to produce the next odd member αj+1 in the cycle. By similar arguments
that apply to the two-odd cycle, the exponents {λj} cannot be very large, as a high density of n → n/2
operations induces a downward trend in n, preventing the end of the cycle from linking to the beginning.
Thus if multi-odd cycles exist, the population of odd integers is ‘dense’, i.e. not separated by many jumps.

Maximal-Odd Cycle

A special case of the multi-odd cycle occurs if all λj = 1, meaning every second element is an odd integer.
Such a cycle cannot exist, as the odd base numbers produced by n→ (3n+ 1) /2 can only increase, and the
cycle is forever open. This in fact corresponds to a divergent sequence with n→ ∞.

2.13 Summary

The Role of Three

Odd integers divisible by three play a special role in the problem. It was shown that such integers cannot
occur as intermediate elements in any given sequence ϕ (n, k), but only occur as the first odd element. As a
corollary, we find that no integer divisible by three can occur in any cycle θk.

On a separate note, the base number n = 33 = 27 leads to an unexpectedly long Collatz sequence, finally
reaching one after 111 jumps. Supposing we undertake the computational burden of verifying f111 (27) = 1,
it follows that n = 27 lives in the regress tree ψ (ñ = 111), which has approximately

N (111) ≈ exp (111/6) ≈ 108

members.

Regress Trees and Cycles

With exception of the trivial cycle θ3 = (4, 2, 1, 4), it follows that the existence of any cycle θk that arises
via fk (n) = n would give rise to recursive branches in the grand regress tree Ψ (ñ). Of course, regress trees
are built from the n = 1 case, which is never reached by the cycle θk. Thus, cycles are not represented in
regress trees.

For an odd integer αj in a cycle θk, there eventually exists another odd integer γ, namely a member of{
βαj

}
, that leads to αj from outside the cycle. We similarly conclude that no γ-like integer can be a member

of a regress tree.

Stepping to Infinity

Consider the set of regress trees
Ψ (ñ) = {ψ (ñ)} = {n} ,
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where any given ψ (ñ) contains all of the integers {n} that are ñ jumps from one. In condensed notation, we
found:

0 | 1
1 | 2
2 | 4
3 | 8
4 | 16
5 | 32, 5
6 | 64, 10
7 | 128, 21, 20, 3
8 | 256, 42, 40, 6
9 | 512, 85, 84, 80, 13, 12
10 | 1024, 170, 168, 160, 26, 24
11 | 2048, 341, 340, 336, 320, 54, 52, 48
12 | 4096, 682, 680, 113, 672, 640, 106, 104, 17, 96
13 | 8192, 1365, 1364, 227, 1360, 226, 1344, 1280, 213, 212, 35, 208, 34, 192
. . . | . . .

The left column lists the set of all jump numbers ñ = (1, 2, 3, . . . ), whereas the field of integers {n} on
the right are those that satisfy the Collatz condition for a given ñ. While we guarantee no cycle exists in
Ψ (ñ), there is no air-tight assurance that {n} does not ‘skip’ any integers.

Tree vs. Lattice

Base-odd lattice analysis allows all odd integers to be written in a Collatz-ready format, namely

βx,y =
x · 2y − 1

3
y = 1, 2, 3, . . .

x

3 �= Z .

In contrast to the regress tree, the base-odd lattice has an automatic plan for all integers. That is, no integer
is excluded from the lattice, however the existence of a mysterious multi-odd cycle is not ruled out from
existing when the progress operator is to applied some undiscovered special set of integers.

As our final move, let us combine the cycle-free advantage of the regress tree with the all-integers-included
advantage of the base-odd lattice. Perhaps not astonishingly, the regress tree and the base-odd lattice seem
to contain the same data. The most obvious pattern in each structure is (1, 2, 4, 8, 16, . . . ), however looking
closely, the pattern (5, 10, 20, 40, 80, . . . ) also occurs in each, and so on. That is, the content of Ψ (ñ), reading
‘downward’ across ñ, embeds the columns

{
αj2

λ
}
. By the same token, a reciprocal reading of the base-odd

lattice can recover the regress tree. In the equivalence

lim
ñ→∞

Ψ(ñ) ↔
{
αj2

λ
}
∀ j, λ ∈ Z > 0 ,

we should have that (i) there exist no multi-odd cycles in the sequences {βj}, and (ii) the regress tree Ψ (ñ)
eventually contains every integer. Since Ψ (ñ) is the list of all integers that satisfy the Collatz conjecture,
and all integers are seemingly on the list, we can finally stop.
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3 Rule of Six

3.1 Introduction

Every tabletop game player, and perhaps every normal person as well, is familar with the dice, a physical
object used to generate classical random integers. The most common dice is considered a fair dice, taking
the shape of a homogenously-constructed cube with optionally-rounded corners. Each of it’s six faces is
uniquely marked with a distinguishing but physically inconsequential glyph symbolizing a number. A dice
properly ‘rolled’ eventually stops rolling by interaction with its surroundings, landing with one face looking
upward.

Standard Dice

Depicted below are the faces of a standard six-sided dice, arguably the icon of ‘randomness’ itself. To
introduce some notation, members of the six-sided dice shall be denoted (d6) such that:

(d6) = { , , , , , }

It doesn’t matter that the glyphs , , etc. are listed in order, this is just a convenience. This is to
say that the -face ‘doesn’t care which face’ on which is situated. One can swap glyphs between any two
faces and the dice will behave the same.

Non-Standard Dice

Any dice not having six faces is ‘non-standard’. It turns out that several non-standard dice can be built,
however most cannot. There must be an equal probability of landing on each face of any fair dice, and
interestingly (or tautologically) enough, only the Platonic solids1 manage to satisfy this. Using the (d6)-
nomenclature, the set of fair non-standard dice is limited to:

{(d4) , (d6) , (d8) , (d12) , (d20)}

As an aside, note that plenty of unfair dice have been engineered for the purpose of gaming. For instance,
a 26-sided dice representing letters of the alphabet cannot easily be made fair, as 26 equal tiles do not fit
together in a Platonic way.

Virtual Dice

With a little bit of mathematics and a modest computer, the question of generating random values takes on
a new hue, as we may rely on a virtual dice that need not correspond to a Platonic solid. Then, generating
random numbers in any given range becomes trivial (for most purposes) on a computer. This of course spoils
all the fun, so to make things interesting we shall turn backward and address the virtual dice issue in a less
privileged way.

One may imagine a handful of ways to go about simulating virtual dice with varying degrees of rigor.
Specifically, let’s confine our efforts to constructing virtual dice of any range using only one kind of the
Platonic solids (or copies of the same one). Choosing (d6) as a starting for no particular reason, we will
carry forward with this question in mind.

3.2 Multiplicative Relationships

Consider a pair of the standard dice, i.e. a separate (d6) in each hand. We already know that one dice is
good for the values 1 to 6, and there are two of them, sure surely two (d6)’s constitute a (d12), right? Hold
that thought.

Suppose instead you’re holding a pair of (d10) dice. Don’t worry that these aren’t Platonic solids - this
is a thought experiment. Rolling each dice produces two digits chosen from the range {0, . . . , }. Arranging
these side-by-side, we have

(d10) (d10) = {00, 01, 02, 03, . . . 96, 97, 98, 99} ,
1

21



3. RULE OF SIX CHAPTER 1. APPENDIX

and there are in fact 100 possible outcomes for such roll. For a shortcut we can take 10 and raise it to the
power of the number of dice, in this case, two.

Returning to the first situation, we may glean that holding a pair of two standard (d6) dice is effectively
the same as holding one single 36-sided dice. Counting all possible outcomes of the two (d6) rolls, there are
indeed 36. Summarizing these findings, we may write

(d100) = (d10) (d10)

(d36) = (d6) (d6) ,

along with similar relations without ambiguity.

A (d36) Simulation

Whether or not the above argument is an easy swallow, it’s still worth conducting an armchair check on our
claims. In the psuedocode that follows, a (d36) is simulated by appending the results of two (d6) rolls. The
resulting combination, i.e. ‘13’, ‘64’, etc,. is then translated into a base-ten number between 1 and 36, and
then histogrammed. The final lines of code churn out the normalized occurrence counts of all 36 possibilities.

Running a 106-event simulation, the program delivers an average occurrence count of

R = 0.02777± 0.00016 .

Running a checksum on this, we find

|R| × 36 ≈ 0.02777× 36 ≈ 1 ,

as expected. Each member of in thevrange of (d36) has a 1/36 chance of occurring.

For j = 1 To 6 : Dice6(j) = string(j)

Function Roll6 = Random member from {1,2,3,4,5,6}

InterpretRoll (x as string)

For j = 1 To 6

For k = 1 To 6

n = n + 1

If (x = string(j) + string(k)) Then

y = n

Exit both loops

return y

main:

For j = 1 To Large Number

x = InterpretRoll(Roll6() + Roll6())

Histo(x) = Histo(x) + 1

For j = 1 To Histogram Size

n = n + Histo(j)

For j = 1 To Histogram Size

If (Histo(j) <> 0) Then Print j, Histo(j) / n

3.3 Re-Rolls and Subtractions

Most solutions to the so-called analog virtual dice problem involve re-rolling, which is to discard invalid
outcomes as if they never occurred. Re-rolling continues until getting a result that works.
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Basic Re-Roll

For a virtual (d20), first contrive a vitrual (d36). On rolling the (d36):

• If the result is above 21, re-roll.

• If the result is within 1-20, stop.

Using this same process, we can target and overshoot any desired range using enough copies of (d6), thereby
creating any vitrual dice (dx) by re-rolling on outcomes greater than x. This is a qualifying solution the
problem on hand, and is arguably one of the shortest solutions we’ll find.

Subtraction Trick

A semi-satisfying exercise is to construct a vitrual (d12) from (d36). To do this, roll the (d36) and:

• If the result is between 1-12, stop.

• If the result is between 13-24, subtract 12 and stop.

• If the result is between 25-36, subtract 24 and stop.

One criticism of these approaches though, is sheer luck factor of targets like 12, if not outright cheating
done in the (d20) example. Re-rolling does feel a bit uncivilized, after all.

3.4 Additive Relationships

Strange Range

To develop another tool, suppose you’re handed a pair of two (d3) dice. Instead of combinatorically multi-
plying the outcome of each dice roll, we may also add them (the thing you’re more used to). There is a devil
in the details though, for if we roll the pair of virtual (d3) dice, note that the highest outcome is 6, but the
lowest outcome is in fact 2, not one. For this reason, the sequence 2d3, which means ‘two additive rolls of
(d3)’, is a strange virtual dice of range {2, . . . , 6}.

Looking at the range {2, . . . , 6} for a moment, note that this is a single-unit shift away from {1, . . . , 5},
which is reminiscent of (d5). Capturing this idea in the prevailing notation, we write

2d3 = {2, · · · , 6} = {1, . . . , 6}+ 1.0 ,

where solving for {1, . . . , 5} gives what we may claim as a provisional formula for (d5):

(d5)
?
= {1, . . . , 5} = 2d3− 1.0

Weighting Problem

Paying close attention, you’ll notice in that 2d3 does not produce uniform output across the range {2, . . . , 6}.
The cases 2 and 6 are unique, however all members between these, namely 3, 4, 5, do not follow a uniform
distribution from a 2d3 roll. Specifically, there are two ways to make 3 = 1 + 2 = 2 + 1, two ways to make
5 = 2 + 3 = 3 + 2, and three ways to make 4 = 1 + 3 = 2 + 2 = 3 + 1. To capture this more succintly, we
contrive a different set by multiplying each existing member by its occurrence coefficient:

{1 · 2, 2 · 3, 3 · 4, 2 · 5, 1 · 6} = {Cj · j} j = 2, . . . , 6

Next, contrive another set populated by Cj copies of each member j. For the case on hand, we have

2d3 → {2, 3, 3, 4, 4, 4, 5, 5, 6} ,

having 9 total members. In other words, the 2d3 roll is equivalent to rolling a single 9-sided dice habing
mutiple copies of certain numbers, with other numbers absent altogether. This is an interesting ‘profile shot’
of the 2d3 roll, but is also a dead end because we actually need something that does the opposite - to flatten
the profile.
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Towards a Solution

Re-try the above steps while dividing the occurrence coefficients as opposed to multiplying them as{
1

1
· 2, 1

2
· 3, 1

3
· 4, 1

2
· 5, 1

1
· 6
}

=

{
1

Cj
· j
}

j = 2, . . . , 6 ,

and then eliminate the denominators by imposing a global factor of 3! (three-factorial):

{3! · 2, 3 · 3, 2 · 4, 3 · 5, 3! · 6} = {Dj · j}

Do the same move as before, which is to contrive another set populated by Dj copies of each member j,
resulting in

2d3′ → {2, 2, 2, 2, 2, 2, 3, 3, 3, 4, 4, 5, 5, 5, 6, 6, 6, 6, 6, 6} .

This form is a ‘de-Gaussing’ compliment to 2d3, having 20 members.

The Recipe

Proceed by using the data in 2d3′ as a guide in the following ‘recipe’:

• Roll 2d3 exactly six times. If 2 or 6 is attained, stop.

• Roll 2d3 exactly three times. If 3 or 5 is attained, stop.

• Roll 2d3 exactly two times. If 4 is attained, stop.

• If no solution was attained, repeat.

The ‘roll iteration numbers’ are exactly lifted from the 20-member structure above: (i) Members 2 and
6 each occur six times, corresponding to six rolls targeting these results. Members 3 and 5 appear three
times, corresponding to three rolls targeting these results, and so on. The outcome of the process is a result
uniformly chosen from the range {2, . . . , 6}.

Deriving (d5)

Let us finally return to the (d5) problem, which proceeds by unit-shifting the data structure 2d3′ to write

d5′ → {1, 1, 1, 1, 1, 1, 2, 2, 2, 3, 3, 4, 4, 4, 5, 5, 5, 5, 5, 5} .

A uniform spectrum {1, 2, 3, 4, 5} is attained by the recipe:

• Roll (2d3− 1.0) exactly six times. If 1 or 5 is attained, stop.

• Roll (2d3− 1.0) exactly three times. If 2 or 4 is attained, stop.

• Roll (2d3− 1.0) exactly two times. If 3 is attained, stop.

• If no solution was attained, repeat.

Reflecting for a moment on the expression that got us here, namely

(d5)
?
= {1, . . . , 5} = 2d3− 1.0 ,

wiriting such thincs can be done unambiguously provided we never forget {1, . . . , 5} must be correctly ‘de-
Gaussed’. As a matter of program note, we shall abbreviate quantities such as {2, . . . , 6} and {1, . . . , 5} as
{2, 6}, {1, 5} respectively. The context will always be clear.
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Testing

Finally we get to cash in (or not) on the ideas so far developed, particularly by finding out if the recipe for
(d5), and by extention 2d6, actually pulls weight. One unmade remark is that the above recipes only apply
to a ‘single use’. A version of the (d5) recipe that supports multiple iterations goes as follows:

• Roll (2d3− 1.0) exactly six times. Record instances of 1 and 5.

• Roll (2d3− 1.0) exactly three times. Record instances of 2 and 4.

• Roll (2d3− 1.0) exactly two times. Record instances of 3.

• If any solution is attained, continue.

• If no solution was attained, repeat.

Note the new emphasis on not escaping the process when results are found. Indeed, it erroneous to
always start the process from the top, except on the first iteration. This is somewhat akin to the way the
‘wheel’ used on the Wheel of fortune game show remembers its state. The wheel is not reset every time it
is used - the contestant spins the wheel from where it was.

The program handling the (d5)-case is listed pseudocode below:

Function dice(x) = Random member from {1,,,x}

main:

For j = 1 To Large number

For k = 1 To 6

f = dice(3) + dice(3) - 1.0

If (f = 1) Or (f = 5) Then Histo(f) = Histo(f) + 1

For k = 1 To 3

f = dice(3) + dice(3) - 1.0

If (f = 2) Or (f = 4) Then Histo(f) = Histo(f) + 1

For k = 1 To 2

f = dice(3) + dice(3) - 1.0

If (f = 3) Then Histo(f) = Histo(f) + 1

For j = 1 To Histogram Size

n = n + Histo(j)

For j = 1 To Histogram Size

If (Histo(j) <> 0) Then Print j, Histo(j) / n

Results

For testing, above program attempts to collect one million outputs, each histogrammed by value 1− 5. The
normalized histogram counts are displayed the main loop finishes, reproduced here as

n Hist (n) /Total
1 0.19984
2 0.20013
3 0.19990
4 0.20003
5 0.20010

,

with each hovering nicely around 1/5 = 0.2. In case it’s not clear what just happened: the fact that the
numbers in the table above are very close to each other means the weighting problem is rectified for the (d5)
virtual dice. (Since there are only five records it makes more sense to show the numbers than it does to
perform statistics on them.)
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3.5 The (d6) Manifold

Deriving (d2), (d3)

Now we show how to attain whole families of virtual dice from (d6). Consider again the members of (d6),
arranged in groups of three even numbers and three odd numbers:

(d6) = { , , , , , }

By adding a line of parition to separate the even members from the odd members entirely, the (d6) Platonic
dice becomes the (d2) virtual dice for free:

(d2) = {{ or or } , { or or }}
= {{ } , { }}
= {odd, even}
= { , }

A similar agrument applies for constructing the (d3) virtual dice. Alas, we write

(d3) = {{ or } , { or } , { or }}
= {{ } , { } , { }}
= {a,b, c}
= { , , }

to realize the (d6) is also a (d3). Results 1-2 correspond to a = , results 3-4 correspond to b = , and so
on.

Dicey FizzBuzz

With the virtual dice (d2), (d3) established, we can go down the empty list (d4), (d5), (d6), etc. to get a
slew of virtual dice with ease. An easy case is construction of (d4), which is equivalent to the product of two
‘coins’:

(d4) = (d2) (d2) =

{
a
b

}{
c
d

}
=

{
ac bc
ad bd

}
=

{ }
Another easy case is reconstruction of (d6), equivalent to the two-fold product:

(d6) = (d2) (d3) =

{
a
b

}c
d
e

 =

ac bc
ad bd
ae be

 =




Without surprise, (d8) simply extends the pattern:

(d8) = (d4) (d2) =

{
ac bc
ad bd

}{
e
f

}
= {1, 2, 3, 4, 5, 6, 7, 8}

In general, one can see that (dx) is determined if x is a multiple of 2, a multiple of 3, or a multiple of
both. Thus we can play a ‘strange FizzBuzz2’ game to construct (d12), (d16), (d18), and so on.

Finally, note too that the pattern we’ve established is ready to extend further, provided that more results
for terms such as (d5) are derived. Supposing for a moment we had (d5) (which we do, see above), this
would imply we can attain all (dx) where x consists of multiples of 2, 3, or 5.

2
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Dicey Algebra

Jumping back to the system used for busting the weighting problem, namely

(d5) = {1, 5} = 2d3− 1.0 ,

recall that the quantity {1, 5} quietly requires the recipe for attining a uniform spectrum. With this caution
firmly in place, we will prcodeed using language that is not constantly bogged down and hedged, which
means to speak freely of virtual dice as if they’re pocket-sized objects.

To blueprint odd-ranged virtual dice such as (d5), one way to get started is to fiddle around with the
vitrual dice on hand, namely (d2), (d3). By doing so, several derivations for (d5) emerge:

(d5) = (2d3− 1.0) = {2, 6} − 1.0 = {1, 5}
(d5) = (4d2− 3.0) = {4, 8} − 3.0 = {1, 5}

Evidently, we can either (i) roll two (d3) and subtract 1 from the result, or (ii) roll four (d2) and subtract 3
from the result. Both of these lead to (d5).

This way of finding combinations is of course terribly ad-hoc, and it would be cumbersome to stumble
up through the integers without a guide. Define three variables:

• Let x equal the number of faces on the virtual dice we wish to derive.

• Let y represent a virtual dice (dy) of any construction.

• Let z equal the number of rolls to which (dy) is subject.

These ingredients allow the general relationship between x, y, z to be written:

x = zy − (z − 1)

This is one equation with three unknowns, thus the way we’ll proceed is to (i) provide a value for x, and (ii)
seek positive nontrivial integer solutions for y, z.

Testing on x = 5, we write
5 = zy − (z − 1) ,

which has two pairs of positive integer solutions:

(y = 2, z = 4) (y = 3, z = 2) ,

giving the same two results for (d5) derived above (so far so good). Repeating the exercise for x = 7, we
have

7 = zy − (z − 1) ,

which has three pairs of positive integer solutions:

(y = 2, z = 6) (y = 3, z = 3) (y = 4, z = 2) ,

delivering three fresh formulae for (d7):

(d7) = (2d4− 1.0) = {2, 8} − 1.0 = {1, 7}
(d7) = (3d3− 2.0) = {3, 9} − 2.0 = {1, 7}
(d7) = (6d2− 5.0) = {6, 12} − 5.0 = {1, 7}

Without overbeating the point, it turns out that the even members (d4), (d6), (d8), etc. can also be
derived by playing the so-called ‘odd game’. For completeness, these results are listed here:

(d4) = (3d2− 2.0) = {3, 6} − 2.0 = {1, 4}
(d6) = (5d2− 4.0) = {5, 10} − 4.0 = {1, 6}
(d8) = (7d2− 6.0) = {7, 14} − 6.0 = {1, 8}

27



3. RULE OF SIX CHAPTER 1. APPENDIX

Deriving (d70)

Any virtual dice can be constructed using copies of (d6) and its derivatives. Letting the notation do the
dirty work, the following brew for (d70) can be cobbled together:

(d70) = (d2) (d35)

= (d2) (2d18− 1.0)

= (d2) (2 [(d2) (d3) (d3)]− 1.0)

Note that the quantity 2 [ ] − 1.0 arrives with nonequal weighting of its output, warranting a de-Gaussing
recipe of its own.

Scratchwork

Following is a semi-complete list of (dx) calculations used to verify the patterns discovered in this study.

d2 = 135 or 246 = {1,2} = (d2)

d3 = 12 34 56 = {1,2,3} = (d3)

(2d2 - 1.0) = {2,4} - 1.0 = {1,3} = (d3)

d4 = (d2)(d2) = {1,2,1’,2’} = (d4)

(3d2 - 2.0) = {3,6} - 2.0 = {1,4} = (d4)

d5 = (2d3 - 1.0) = {2,6} - 1.0 = {1,5} = (d5)

(4d2 - 3.0) = {4,8} - 3.0 = {1,5} = (d5)

d6 = (d2)(d3) = (d6)

(5d2 - 4.0) = {5,10} - 4.0 = {1,6} = (d6)

d7 = (2d4 - 1.0) = {2,8} - 1.0 = {1,7} = (d7)

(3d3 - 2.0) = {3,9} - 2.0 = {1,7} = (d7)

(6d2 - 5.0) = {6,12} - 5.0 = {1,7} = (d7)

d8 = (d2)(d4) = (d8)

(7d2 - 6.0) = {7,14} - 6.0 = {1,8} = (d8)

d9 = (d3)(d3) = (d9)

(2d5 - 1.0) = {2,10} - 1.0 = {1,9} = (d9)

(4d3 - 3.0) = {4,12} - 3.0 = {1,9} = (d9)

(8d2 - 7.0) = {8,16} - 7.0 = {1,9} = (d9)

d10 = (d2)(d5) = (d10)

(3d4 - 2.0) = {3,12} - 2.0 = {1,10} = (d10)

(9d2 - 8.0) = {9,18} - 8.0 = {1,10} = (d10)

d11 = (2d6 - 1.0) = {2,12} - 1.0 = {1,11} = (d11)

(5d3 - 4.0) = {5,15} - 4.0 = {1,11} = (d11)

d12 = (d3)(d4) = (d12)

d13 = (2d7 - 1.0) = {2,14} - 1.0 = {1,13} = (d13)

(3d5 - 2.0) = {3,15} - 2.0 = {1,13} = (d13)

(4d4 - 3.0) = {4,16} - 3.0 = {1,13} = (d13)

(6d3 - 5.0) = {6,18} - 5.0 = {1,13} = (d13)

d14 = (d2)(d7) = (d14)

d15 = (d3)(d5) = (d15)

(2d8 - 1.0) = {2,16} - 1.0 = {1,15} = (d15)

(7d3 - 6.0) = {7,21} - 6.0 = {1,15} = (d15)

d16 = (d4)(d4) = (d16)

(3d6 - 2.0) = {3,18} - 2.0 = {1.16} = (d16)

(5d4 - 4.0) = {5,20} - 4.0 = {1,16} = (d16)

d17 = (2d9 - 1.0) = {2,18} - 1.0 = {1,17} = (d17)

(4d5 - 3.0) = {4,20) - 3.0 = {1,17} = (d17)

(8d3 - 7.0) = {8,24} - 7.0 = {1,17} = (d17)

(16d2 - 15.0) = {16,32} - 15.0 = {1,17} = (d17)

28



3. RULE OF SIX CHAPTER 1. APPENDIX

d18 = (d2)(d9) = (d18)

d19 = (2d10 - 1.0) = {2,20} - 1.0 = {1,19} = (d19)

(3d7 - 2.0) = {3,21} - 2.0 = {1,19} = (d19)

(6d4 - 5.0) = {6,24} - 5.0 = {1,19} = (d19)

(9d3 - 8.0) = {9,27} - 8.0 = {1,19} = (d21)

d20 = (d4)(d5) = (d20)

d21 = (2d11 - 1.0) = {2,22} - 1.0 = {1,21} = (d21)

(4d6 - 3.0) = {4,24} - 3.0 = {1,21} = (d21)

(5d5 - 4.0) = {5,25} - 4.0 = {1,21} = (d21)

d22 = (d2)(d11) = (d22)

(3d8 - 2.0) = {3,24} - 2.0 = {1,22} = (d22)

(7d4 - 6.0) = {7,28} - 6.0 = {1,22} = (d22)

d24 = (d4)(d6) = (d24)

d25 = (4d7 - 3.0) = {4,28} - 3.0 = {1,25} = (d25)

(6d5 - 5.0) = {6,30} - 5.0 = {1,25} = (d25)

d26 = (d2)(d13)

(5d6 - 4.0) = {5,30} - 4.0 = {1,26} = (d26)

d27 = (d3)(d3)(d3) = (d27)

d33 = (2d17 - 1.0) = {2,34} - 1.0 = {1,33} = (d33)

d34 = (d2)(d17)

d35 = (2d18 - 1.0) = {2,36} - 1.0 = {1,35} = (d35)

d36 = (d6)(d6) = (d36)

(7d6 - 6.0) = {7,42} - 6.0 = {1,36} = (d36)

d37 = (4d10 - 3.0) = {4,40} - 3.0 = {1,37} = (d37)

d70 = (d2)(d35)

d71 = (2d36 - 1.0) = {2,72} - 1.0 = {1,71} = (d71)

d72 = (d2)(d36)

d73 = (3d25 - 2.0) = {3,75} - 2.0 = {1,73} = (d73)

d216 = (d6)(d6)(d6)
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